
Technical report from Automatic Control at Linköpings universitet

Single Joint Control of a Flexible
Industrial Manipulator using H∞ Loop
Shaping

Patrik Axelsson, Anders Helmersson, Mikael Norrlöf
Division of Automatic Control
E-mail: axelsson@isy.liu.se, andersh@isy.liu.se,
mino@isy.liu.se

26th October 2012

Report no.: LiTH-ISY-R-3053
Submitted to European Control Conference 2013

Address:
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

WWW: http://www.control.isy.liu.se

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Technical reports from the Automatic Control group in Linköping are available from
http://www.control.isy.liu.se/publications.

http://www.control.isy.liu.se/~axelsson
http://www.control.isy.liu.se/~andersh
http://www.control.isy.liu.se/~mino
mailto:axelsson@isy.liu.se
mailto:andersh@isy.liu.se
mailto:mino@isy.liu.se
http://www.control.isy.liu.se/publications/?type=techreport&number=3053&go=Search&output=html
http://www.control.isy.liu.se
http://www.control.isy.liu.se/publications


Abstract

Control of a �exible joint of an industrial manipulator using H∞ loop shap-
ing design is presented. Two controllers are proposed; 1) H∞ loop shaping
using the actuator position, and 2) H∞ loop shaping using the actua-
tor position and the acceleration of end-e�ector. The two controllers are
compared to a standard pid controller where only the actuator position is
measured. Using the acceleration of the end-e�ector improves the nominal
performance. The performance of the proposed controllers is not signi�-
cantly decreased in the case of model error consisting of an increased time
delay or a gain error.

Keywords: Industrial robots, �exible joint, robust control, H∞ loop shap-
ing



Single Joint Control of a Flexible Industrial Manipulator using H∞
Loop Shaping

Patrik Axelsson, Anders Helmersson, and Mikael Norrlöf

Abstract— Control of a flexible joint of an industrial ma-
nipulator using H∞ loop shaping design is presented. Two
controllers are proposed; 1) H∞ loop shaping using the actuator
position, and 2) H∞ loop shaping using the actuator position
and the acceleration of end-effector. The two controllers are
compared to a standard PID controller where only the actuator
position is measured. Using the acceleration of the end-effector
improves the nominal performance. The performance of the
proposed controllers is not significantly decreased in the case
of model error consisting of an increased time delay or a gain
error.

I. INTRODUCTION

The requirements for a controller in a modern industrial
manipulator is that it should provide high performance, at
the same time, robustness to model uncertainty. In the typical
standard control configuration for industrial manipulators the
actuator positions is the only measurements used in the
higher level control loop. At a lower level, in the drive
system, the currents and voltages in the motor are measured
to provide torque control for the motors. As a result of the
development of cost efficient manipulators the mechanical
structure has become less rigid, therefore the need for new
control structures have emerged [3]. To support the proposed
control structures it is necessary to introduce new sensors
such as encoders, measuring joint position after the gearbox,
and accelerometers, measuring the end-effector acceleration.

Control of robots has been considered for many years.
The different contributions differ in e.g. model complexity
(actuator dynamics, rigid and flexible joints and links), and
control structure (PID, feedback linearization, linear and
nonlinearH∞, sliding mode), as discussed in the survey [12].

Controller synthesis usingH∞ methods has been proposed
in [15], [16], where the complete nonlinear robot model first
is linearised using exact linearization, second a H∞ con-
troller is designed using the linearised model. The remaining
nonlinearities due to model errors are seen as uncertainties
and/or disturbances. In both papers, the model is rigid and
the H∞ controller, using only joint positions, is designed
using the mixed-sensitivity method. In [13]H∞ loop shaping
with measurements of the actuator positions is applied to
a robot. The authors use a flexible joint model which has
been linearised. The linearised model makes it possible to
use decentralised control, hence H∞ loop shaping is applied
to n SISO-systems instead of the complete MIMO-system.

*This work was supported by the Vinnova Excellence Center LINK-SIC.
P. Axelsson, A. Helmersson and M. Norrlöf are with Division of

Automatic Control, Department of Electrical Engineering, Linköping Uni-
versity, SE-581 83 Linköping, Sweden, {axelsson, andersh,
mino}@isy.liu.se.
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Fig. 1. The 6 DOF industrial manipulator ABB IRB6600, where the joints
are indicated by the arrows.

Explicit use of acceleration measurements for control in
robotic applications has been reported in, for example, [5],
[4], [7], [10] and [17]. In [5], a control law using motor
position and acceleration of the load in the feedback loop
is proposed for a Cartesian robot1. The robot is assumed
to be flexible and modelled as a two-mass system, where
the masses are connected by a linear spring-damper pair.
Another control law of a Cartesian robot using acceleration
measurements is presented in [4]. The model is a rigid joint
model and the evaluation is made both in simulation and
experiments.

In [7] a 2 degrees-of-freedom (DOF) manipulator is con-
trolled using acceleration measurements of the end-effector.
The model is assumed to be rigid and it is exactly linearised.
The joint angular acceleration used in the nonlinear feed-
back loop is calculated using the inverse forward kinematic
acceleration model and the measured acceleration. The use
of direct measurements of the angular acceleration in the
feedback loop is presented in [10] for both rigid and flexible
joint models. A more recent work is presented in [17], where
a 3 DOF manipulator is controlled using only measurements
of the end-effector acceleration.

This contribution investigates the possibility to use both
H∞ loop shaping [8] and measurements of the end-effector
acceleration. The controllers are synthesised for a highly flex-
ible single joint model. The joint model represents the first
joint of a serial 6 DOF industrial manipulator, see Figure 1.
Compared to many previous contributions, the flexible joint
model is not a two-mass model, but instead described by a

1For a Cartesian robot the joint acceleration is measured directly by an
accelerometer, while for a serial type robot there is a non-linear mapping
depending on the states.



four-mass model, which is a more representative description
of the behaviour of the manipulator [9].

The theory for synthesis of H∞ controllers is presented
in Section II, including a brief description of model order
reduction. The model describing the robot joint is explained
in Section III. In Section IV, the requirements of the system
as well as the design of two controllers are described. Finally,
Section V shows the simulation results and Section VI
concludes the work.

II. CONTROL THEORY

In this section, the general H∞ synthesis design is pre-
sented together with an introduction to loop shaping using
H∞ methods. At the end, a brief presentation of model order
reduction is given.

A. H∞ Control

For design of H∞ controllers the system(
z
y

)
=

(
P11(s) P12(s)
P21(s) P22(s)

)(
w
u

)
= P (s)

(
w
u

)
(1)

is considered, where w is the exogenous input signals (dis-
turbances and references), u is the control signal, y is the
measurements and z is the exogenous output signals. Using
a controller u = K(s)y, see Figure 2(a), the system from w
to z can be written as

z = Fl(P,K)w, (2)

where Fl(P,K) denotes the lower linear fractional trans-
formation (LFT). The H∞ controller is the controller that
minimises

‖Fl(P,K)‖∞ = max
ω

σ̄ (Fl(P,K)(iω)) , (3)

where σ̄(·) denotes the maximal singular value. It is not
always necessary and sometimes not even possible to find
the optimal H∞ controller. Instead, a suboptimal controller
is derived such that

‖Fl(P,K)‖∞ < γ, (4)

where γ can be reduced iteratively until a satisfactory con-
troller is obtained. Often the aim is to get γ ≈ 1. Efficient
iterative algorithms to find K(s), such that (4) is fulfilled,
exist, see e.g. [14], [18], where two Riccati equations are
solved in general. Note that the resulting H∞-controller has
the same state dimension as P . A stabilising proper controller
exists if a number of assumptions are fulfilled as discussed
in [14].

B. Loop Shaping using H∞ Synthesis

In this paper, loop shaping using H∞ synthesis is consid-
ered. The method was first presented in [8] and is based on
robust stabilisation of a normalised coprime factorisation of
the system as described in [6]. Let the system G be described
by its left coprime factorisation G = M−1N , where M and
N are stable transfer functions. The set of perturbed plants

Gp =

{
(M + ∆M )−1(N + ∆N ) :

∥∥(∆N ∆M

)∥∥
∞ <

1

γ

}
,

P
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zw
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Fig. 2. System description for general H∞ synthesis (a) and loop shaping
(b).

where ∆M , and ∆N are stable unknown transfer functions
representing the uncertainties, is robustly stabilised by the
controller K(s) if the nominal feedback system is stable
and [6] ∥∥∥∥(KI

)
(I −GK)−1M−1

∥∥∥∥
∞
≤ γ. (5)

Synthesis of the controller K consists of the solution of two
algebraic Riccati equations and does not involve any iteration
of γ, see [6] for more details.

For loop shaping [8], the system G(s) is pre- and post-
multiplied with weights W1(s) and W2(s), see Figure 2(b),
such that the shaped system Gs(s) = W2(s)G(s)W1(s) has
the desired properties. The controller Ks(s) is then obtained
using the method described above applied on the system
Gs(s). Finally, the controller K(s) is given by

K(s) = W1(s)Ks(s)W2(s). (6)

Note that the structure in Figure 2(b) for loop shaping can be
rewritten as a standardH∞ problem according to Figure 2(a),
see [18] for details.

The MATLAB function ncfsyn, included in the Robust
Control Toolbox, is used in this paper for synthesis of H∞
controllers using loop shaping.

C. Model Order Reduction

Controllers that are synthesised using H∞ design methods
often get a high model order. The total model order for an
H∞ design is the sum of the order of the system and the
order of all the weights introduced in the design process. For
implementation aspects, it is preferable to have a low order
controller. It can therefore be advantages to analyse if the
order of the controller can be reduced without changing the
behaviour of the controller.

Before the model is reduced, a balanced realisation is de-
rived such that the controllability and observability Gramians
C and O satisfy

C = O = diag(σ1, . . . , σn) = Σ, (7)

where σ1 ≥ . . . ≥ σn > 0 are the Hankel singular values.
The balanced model is then partitioned according to

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, (8)

C =
(
C1 C2

)
, Σ =

(
Σ1 0
0 Σ2

)
, (9)
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Fig. 3. A four-mass flexible joint model, where Jm is the motor and Ja1,
Ja2, and Ja3 are the arm divided up in three parts.

where the diagonal elements in Σ2 are small enough com-
pared to the values in Σ1, meaning that the model is not
affected if the lower part of the system is removed. The
model can be reduced in two ways; i) Truncation, where
the reduced model is given by (A11, B1, C1, D) and ii)
Residualization. A more throughout description is given
in [14].

Note that there is no guarantee that the resulting, reduced
controller, stabilises the system. To guarantee the stability,
special methods for synthesis of low order controllers must
be used.

III. ROBOT MODEL

The model considered in this paper is a four-mass model
of a single flexible joint, see Figure 3, presented in [9]. The
model corresponds to joint 1 of a serial 6 DOF industrial
manipulator, see Figure 1, and the model parameters are
computed using system identification of experimental data.

Input to the system is the motor torque u, the motor
disturbance wm and the tool disturbance wP . The four
masses are connected by spring-damper pairs, where the first
mass corresponds to the motor. The other masses are placed
along the arm. The first spring-damper pair is modelled by a
linear damper and nonlinear spring, whereas the other spring-
damper pairs are modelled as linear springs. The non-linear
spring is characterised by a low stiffness for low torques and
a high stiffness for high torques. This behaviour is typical for
compact gear boxes, such as harmonic drive [11]. For design
of the H∞ controllers, the nonlinear model is linearised in
the high stiffness region, meaning that a constant torque, e.g.
gravity, is acting on the joint. Moreover, the friction torques
are assumed to be linear and the input torque u is limited to
±20 Nm. The output of the system is the motor position qm
and the tool acceleration P̈ , where

P =
l1qa1 + l2qa2 + l3qa3

η
. (10)

In (10), η is the gear ratio and l1, l2, and l3 are the respective
link lengths.

The flexible joint model can be described by a set of four
ODEs according to

Jmq̈m =u+ wm − fmq̇m
− k1(qm − qa1)− d1(q̇m − q̇a1), (11a)

Ja1q̈a1 =− fa1q̇a1 + k1(qm − qa1) + d1(q̇m − q̇a1)

− k2(qa1 − qa2)− d2(q̇a1 − q̇a2), (11b)

Ja2q̈a2 =− fa2q̇a2 + k2(qa1 − qa2) + d1(q̇a1 − q̇a2)

− k3(qa2 − qa3)− d3(q̇a2 − q̇a3), (11c)
Ja3q̈a3 =wP − fa3q̇a3

+ k3(qa2 − qa3) + d3(q̇a2 − q̇a3). (11d)

From the set of ODEs (11), a linear state space model can
be derived according to

ẋ = Ax+Bu+Bww (12a)
y = Cx+Du+Dww (12b)

where

w =
(
wm wP

)T
, (13a)

x =
(
qm qa1 qa2 qa3 q̇m q̇a1 q̇a2 q̇a3

)T
, (13b)

which is used for synthesis of the H∞ controllers. Note that
the matrix C differs for the different controllers.

IV. DESIGN OF CONTROLLERS

In this section, two controllers based on loop shaping using
H∞ synthesis are presented. The first controller uses only
the motor angle qm as measurement, whereas the second
controller uses both qm and the acceleration of the tool P̈
as measurements. The two controllers are compared to an
ordinary PID controller where only qm is measured. The PID
controller is tuned to give the same performance as the best
controller presented in [9].

A. Requirements

The controllers using H∞ loop shaping are designed to
give better performance than the PID controller. In practise
it means that the H∞ controllers should attenuate the distur-
bances at least as much as the PID controller and the cut-off
frequency should be approximately the same.

In Figure 4, the singular values of the two systems from w

to y = qm and w to y =
(
qm P̈

)T
show that an integrator is

present. It means that in order to attenuate the disturbances,
it is required to have at least two integrators in the open loop
GK. Since G already has one integrator, see Figure 4, the
other integrator has to be included in the controller K. An
integrator is included in the controller if W1 or W2 has one
integrator, recall (6).

In addition to nominal performance, the robustness of the
controllers with respect to increased time delay and increased
system gain is investigated. An increase in the time delay
makes the system lose phase, hence a to small phase margin
φm for a SISO-system can make the closed-loop system
unstable if the time delay increases. The requirement for a
stable closed-loop system is to have φm > ωcT , where ωc is
the cut-off frequency and T the total time delay. If instead
the gain of the open-loop system increases, the closed-loop
system can be unstable if the gain margin is not large enough.
Note that phase and gain margins has no trivial analogy in the
case of MIMO-systems. The requirements for the controllers
in this paper are to handle a 4 times higher time delay and
a gain increase of 2.5.
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Fig. 4. Singular values for the system from u to y (top) and w to y
(bottom), for y = qm (blue) and y = (qm P̈)T (red).

B. Choice of Weights

1) Loop Shaping using qm: Using only qm as a mea-
surement gives a SISO-system, hence W1 and W2 are scalar
transfer functions. Since it is a linear SISO-system it does not
matter which one of W1 and W2 that is considered since the
transfer functions commute with the system G(s). Therefore,
W1(s) = 1 and W2(s) is chosen such that the desired loop
shape is obtained. First of all, it is necessary to have an
integrator in W2 to be able to handle the disturbances at
low frequencies. Having a pure integrator will lead to that
the phase margin will be decreased, a zero in s = −10 is
therefore added in order not to change the loop gain for
frequencies above 10 rad/s. The gain is then increased until
the cut-off frequency is the desired one. The loop shape have
peaks above 30 rad/s. To reduce the magnitude of the peaks
a modified elliptic filter

H(s) =
0.5227s2 + 3.266s+ 1406

s2 + 5.808s+ 2324
(14)

is introduced in W2. The filter H(s) has a gain of approxi-
mately 0 dB up to the frequency 50 rad/s, after that it drops
down to approximately -10 dB. Ripple which is unavoidable
is present in both the pass and stop band. The weights are
finally given as

W1(s) = 1, W2(s) = 100
s+ 10

s
H(s). (15)

Using ncfsyn a controller of order 13 is obtained
where γ = 2.3, hence the maximum stability margin is∥∥(∆N ∆M

)∥∥
∞ < 0.43. The resulting loop gain is shown

in Figure 5. Also, the loop gain using the PID controller is
presented. In Figure 6, the magnitude of the two controllers
are presented. The PID controller is smoother than the other
controller. The reason is that a part of the system dynamics
is included in the controller when loop shaping synthesis is
performed. It tries to remove the resonance peaks from the
system, which can be seen Figure 4, hence the peaks in the
amplitude function of the controller. The controller will from
now on be denoted by H∞(qm).

2) Loop Shaping using qm and P̈: Adding an extra
measurement signal in terms of the acceleration of the tool
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Fig. 5. Loop gain |KG| for PID (blue), H∞(qm) (red) and H∞(qm, P̈)
(green).

gives a system with one input and two outputs. It is now
more tricky to shape the loop gain. To start with, it is not
possible to have an integrator for both of the measurements.
Therefore, the integrator is placed in the channel for qm since
the accelerometer measurement has low frequency noise,
such as drift. For the same reason as for the other controller,
a zero in s = −3 is introduced. The transfer function from
input torque to acceleration of the tool has a high gain in the
frequency range of interest. To decrease the gain such that
it is comparable with the motor angle measurement, a low
pass filter is added in the acceleration channel. The weights
are chosen as

W1(s) = 50, W2(s) = diag

(
s+ 3

s
,

0.2

(s+ 5)2

)
, (16)

giving a controller of order 13 with γ = 2.8 which give
a maximum stability margin of

∥∥(∆N ∆M

)∥∥
∞ < 0.36.

The resulting loop gain is shown in Figure 5, where it
can be seen that there are peaks present above the cut-off
frequency. In the case with only qm as a measurement, it
was possible to attenuate the peaks using an elliptic filter. In
the case with two measurements it was not as easy. Instead
of improving the loop gain, the elliptic filter made it worse.
The magnitude of the controller is shown in Figure 6. The
peaks in the amplitude function have the same explanation
as for the controller using only qm. It can be seen that
for frequencies above 100 rad/s, the two H∞ loop shaping
controllers behave similar. In the sequel, the controller will
be denoted by H∞(qm, P̈).

V. SIMULATION RESULTS

The three controllers are evaluated using a simula-
tion model. The simulation model consists of the robot
model (11), a measurement system, and a controller. The
robot model is implemented in continuous-time whereas
the controller operates in discrete-time. The continuous-time
controllers developed in Section IV, are therefore discretized
using Tustin’s formula. The measurements are affected by
a time delay of one sample as well as zero mean normal
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Fig. 6. Controller gain |K| for PID (blue), H∞(qm) (red), and
H∞(qm, P̈) (green).

distributed measurement noise. The sample time is Ts =
0.5 ms.

The system is excited by a disturbance signal w containing
steps and a chirp signals on both motor and tool. The nominal
performance is evaluated using a performance index, which
is a weighted sum of different properties in the simulated
tool position and motor torque. The properties for the tool
position are the maximum deviations after each step and
chirp disturbances as well as settling times after each step
disturbances. The properties used in the torque signal is the
largest applied torque and the torque noise. The disturbance
signal and the performance index are described in more
details in [9].

A. Nominal Performance

Nominal performance means that the same model is used
both for synthesis of the controllers and in the simulation
model. Figure 7 shows how the motor torque differs between
the three controllers. It can be seen that H∞(qm) gives a
higher torque during the transients, whereas the PID con-
troller gives more noise during steady state. The H∞(qm, P̈)
controller gives the lowest torque changes which implies
a lower energy consumption and an increased wear in the
motor and gear.

The simulated tool position for the three controllers is
shown in Figure 8. For step disturbances, the PID controller
deviates more than the other two controllers, and for chirp
disturbances the H∞(qm) controller deviates more. The
H∞(qm, P̈) controller deviates the least for both step and
chirp disturbances. The response to step disturbances is
however slower than for the other two controllers.

The steady state error of approximately 2 mm after 25 s is
because of a constant torque disturbance on the tool, which
cannot be decreased since the tool position is not measured.
The motor position, which is measured for all three con-
trollers, is controlled to zero and due to the flexibilities the
tool position cannot be controlled to zero as long as it is not
measured.

The performance index Vnom for the three controllers
is presented in Table I. It shows, as discussed above, that

H∞(qm) and the PID controller behaves similar and that
H∞(qm, P̈) performs better.

B. Robust Performance

Increasing the time delay by a factor 4 gives a total time
delay of T = 2 ms. The performance of the three controllers
does not change significantly with the increased time delay,
see the performance index Vdelay in Table I.

When the gain of the system increases by 2.5 more
interesting things happen. First of all, the applied motor
torque from PID controller oscillates between2 ±20 Nm. The
tool position is, in spite of the oscillating motor torque, just
a bit worse than in the nominal case. For H∞(qm) and
H∞(qm, P̈) the applied motor torque is decreased by a factor
of approximately 2 and the tool position is similar to the
nominal case. The reason for a decreased motor torque is
that it is not necessary to have the same amount of torque
applied on the motor to attenuate a disturbance since the gain
of the system from motor torque to output is larger.

The performance index Vgain is presented in Table I,
where the large value for the PID controller originates from
the large torque noise (40 Nm) and the low values for
H∞(qm) and H∞(qm, P̈) originates from the fact that the
maximum applied torque is approximately half as much as
in the nominal case.

C. Model Order Reduction of K

Model order reduction of the two H∞ controllers will be
investigated. For H∞(qm), the Hankel singular values are
given by

(∞, 204.56, 189.07, 51.19, 51.15, 48.03, . . .

14.12, 13.07, 3.29, 3.04, 1.98, 1.89, 0.001) ,

from where it can be concluded that a controller of order 6
is sufficient3. Simulations using the reduced order controller
have shown no significant degradation of the performance
both in the nominal case and when time delay and gain
uncertainties are present. The Hankel singular values for
H∞(qm, P̈) are

(∞, 142.85, 139.70, 39.33, 11.84, 11.07, . . .

5.20, 3.13, 2.89, 1.03, 0.01, 0.0005, 0) ,

which indicates that the controller can be reduced to order
6. However, the reduced order controller give an unstable
closed loop system. Even a reduction to order 12 gives an
unstable closed-loop system.

VI. CONCLUSIONS AND FUTURE WORK

Two different H∞ controllers for a flexible joint of an
industrial manipulator are designed using loop shaping. The
model, on which the controllers are based, is a four-mass
model. As input the controllers use either only the motor
angle as input or both the motor angle and the acceleration

2It is the maximum and minimum allowed torque.
3The Hankel singular value equal to ∞ corresponds to the integrator in

the controller, which is on the stability boundary.
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Fig. 8. Tool position for PID (blue), H∞(qm) (red), and H∞(qm, P̈)
(green).

of the end-effector. The controllers are compared to a PID
controller and it is shown that there is no significantly
improvement usingH∞ design methods when only the motor
angle is measured. If instead the tool acceleration is added
then the performance is improved significantly. However,
even with the tool acceleration as a measurement, the steady
state error for the tool position is unaffected.

A direct continuation is to investigate the improvement
for other types of sensors. One possibility is to have an
encoder measuring the position direct after the gearbox, i.e.,
qa1. It will not eliminate the stationary error for the tool
position complete but a decrease in the error can possible be
achieved. It is not for practical reasons possible to measure
the tool position, instead the tool position can be estimated,

TABLE I
PERFORMANCE INDEX FOR THE THREE CONTROLLERS OPERATING

UNDER NOMINAL CONDITIONS, INCREASE IN TIME DELAY, AND

INCREASE IN SYSTEM GAIN.

PID H∞(qm) H∞(qm, P̈)
Vnom 55.7 55.4 45.8
Vgain 171.5 49.2 29.5
Vdelay 59.8 56.6 46.0

as described in [1], [2], and used in the feedback loop.
Extending the system to several joints giving a nonlinear

model, which has to be linearised in several points, is also
a future problem to investigate. A controller is designed in
each point and gain scheduling or something similar can be
used when the robot moves between different points. Linear
parameter varying (LPV) methods are also possible solutions
for control of the nonlinear model.
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