Konstruktion av vertikaltransportör för materialhantering

Design of a vertical conveyor for transportation of goods

Micke Furu

Maskinteknik – Produktutveckling
Maskinkonstruktion

Examensarbete
Institutionen för ekonomisk och industriell utveckling
LIU-IEI-TEK-A--12/01463—SE
Sammanfattning
Rotab Rostfria Transportörer AB tillverkar och utvecklar material- och godshanteringsutrustning. Företaget levererar även kompletta materialhanteringslösningar i form av godshanteringsanläggningar som ofta består av transportband och paketeringsutrustning.

Vid examensarbetets slut har en digital prototyp konstruerats i CAD-programmet (Computer Aided Design) SpaceClaim. Konstruktionen är dimensionerad för att hantera gods med dimensionerna (längd x bredd x höjd) 400x400x300 mm samt en godsvikt upp till 20 kg. Den drivs av en elektrisk kuggväxelmotor med 0,55 kW:s effekt. Den lägsta möjliga hämthöjden är 800 mm över golvet. Prototypens högsta avlämningshöjd är 3490 mm över golvet, detta kan dock ökas vid behov. Prototypen klarar av 39,5 transporter i min.

Abstract
Rotab Rostfria Transportörer AB manufactures and develops equipment for handling of materials and goods. The company also provides complete solutions for the handling of materials and goods, these solutions often consist of conveyors and equipment for packaging.

The goal of the thesis is to design a vertical conveyor which is intended to transport goods from one conveyor to second conveyor located at another elevation. The vertical transportation must be variable between 1000 and 3000 mm above the floor. The conveyor must avoid the two major disadvantages that are common amongst competing products, these are often space consuming and/or use synchronized chains. The vertical conveyor is based on a conceptual idea developed at the company. In the thesis work, the idea is developed into a prototype with the aid of product development methodology. The product development process is divided into several phases, starting with a problem defining phase. After the first phase the required features are defined, the features are used as support for the development of several concepts. One of the concepts is chosen for further development. The chosen concept is the base for the design of the prototype. The finished prototype is evaluated.

At the end of the thesis work a digital prototype has been designed using the CAD (Computer Aided Design) software SpaceClaim. The prototype is designed to handle goods with the following dimensions (length x width x height) 400x400x300 mm and also with a mass up to 20 kg. It is powered by an electrical gear motor with a power output of 0.55 kW. The lowest possible pickup height is 800 mm above the floor level. The highest unloading height for the prototype is 3490 mm above floor level; it is possible to increase the unloading height in order to achieve 3000 mm. The rate of transports is 39.5 transports every minute.

The prototype is a good choice for vertical transportation of goods in the same dimensions as described above. It is not as well suited for transportation of smaller goods. The prototype should be used when the vertical transportation is required to be achieved in a short horizontal distance. If the available horizontal space is sufficient for an angled conveyor to be used, a conveyor of that type should be used instead. Since an angled conveyor has higher capacity for transportation, an simpler design and is cheaper than the prototype.
Innehållsförteckning

Sammanfattning ... ii
Abstract ... iii

Figurförteckning .. vi

1 Inledning ... 1
 1.1 Bakgrund ... 1
 1.2 Syfte ... 1
 1.3 Mål ... 1
 1.4 Avgränsningar .. 1
 1.5 Definitioner/Ordlista ... 2

2 Metodik ... 3
 2.1 Genomförande ... 3
 2.2 Fas 1 – Problemdefinition .. 3
 2.2.1 Problemgranskning ... 3
 2.2.2 Konkurrentanalys .. 3
 2.2.3 Konstruktionskriterielista ... 4
 2.3 Fas 2 – Funktionsanalys .. 4
 2.3.1 Blackbox ... 4
 2.3.2 Funktions-/medelträd ... 5
 2.4 Fas 3 - Etablera Koncept .. 5
 2.4.1 Välj medel/skapa koncept .. 5
 2.4.2 Konceptgranskning och vidareutveckling .. 5
 2.4.3 Konceptutvärdering och val av koncept ... 5
 2.5 Fas 4 - Konstruktion .. 6
 2.6 Fas 5 – Utvärdering .. 6

3 Resultat ... 7
 3.1 Fas 1 - Problemdefinition .. 7
 3.1.1 Problembakgrund .. 7
 3.1.2 Ursprungligt koncept ... 7
 3.1.3 Konkurrentanalys .. 9
 3.1.4 Konstruktionskriterielista ... 13
 3.2 Fas 2 - Funktionsanalys .. 14
 3.2.1 Blackbox: Vertikalförflyttning av gods ... 14
 3.2.2 Funktions-/medelträd .. 14
3.3 Fas 3 - Etablera koncept ... 18
 3.3.1 Beskrivning av valt koncept: Koncept 5c .. 18
 3.3.2 Vidareutveckling av valt koncept .. 19
 3.3.3 Beskrivning av slutgiltigt koncept .. 19
3.4 Fas 4 - Konstruktionsfas ... 21
 3.4.1 Konstruktionsbeskrivning ... 21
 3.4.2 Prestanda .. 23
 3.4.3 Skillnader mellan prototyp och det valda konceptet ... 23
 3.4.4 In-/utmatning av gods .. 24
 3.4.5 Funktionsbeskrivning för en godstransport i vertikaltransportörsprototypen 24
4 Slutsatser ... 28
5 Diskussion .. 30
6 Referenser ... 33
7 Appendix .. 34
 7.1 Appendix 1 – Konceptpresentation ... 34
 7.1.1 Konceptpresentation: Förflytta paket .. 34
 7.1.2 Konceptpresentation: In-/utmatning av gods .. 38
 7.1.3 Konceptutvärdering och val .. 39
 7.1.4 Vidareutveckling av valt koncept ... 39
 7.2 Appendix 2 - Konstruktionsfas ... 42
 7.2.1 Klossar och kedjor .. 42
 7.2.2 Transportplans konstruktion ... 53
 7.2.3 Drivhjuls konstruktion ... 54
 7.2.4 Motor och växellåda .. 57
 7.2.5 Transportbana .. 59
 7.2.6 Ramkonstruktion ... 60
 7.2.7 På- och avlastningsplan .. 62
 7.2.8 Säkerhet .. 65
Figurförteckning

Figur 1 - Fasuppdelning ... 3
Figur 2 - Blackbox för "Rosta bröd" .. 4
Figur 3 - Funktions-/medelträd för "Rosta bröd" 5
Figur 4 - Skiss, ursprungligt koncept ... 7
Figur 5 – Godshämtningssekvens med transportband, gods, pålastningsplan och transportplan ... 8
Figur 6 – Av-/pålastningsplan med kedjetransportör 8
Figur 7 - Plan vertikaltransportör ... 9
Figur 8 - Böjd bana .. 9
Figur 9 - Vinkeltransportör ... 10
Figur 10 - Spiralvana ... 10
Figur 11 – Skiss över ursprungskonceptet som är likt Prorunner mk5 11
Figur 12 - Vertikal kedjetransportör .. 11
Figur 13 - Dubbelgreppande hiss ... 12
Figur 14 - Blackbox: Vertikalförflyttning av gods 14
Figur 15 - Blackbox: Teknisk process för vertikalförflyttning av gods 14
Figur 16 - Funktions-/medelträd – Mata in gods 15
Figur 17 - Funktions-/medelträd – Förflytta gods 16
Figur 18 - Funktions-/medelträd – Mata ut gods 17
Figur 19 - Illustration över kopplingen mellan två klossar 18
Figur 20 – Koncept för rammodul .. 19
Figur 21 – Ramkonstruktion med fyra rammoduler samt transportbana ... 19
Figur 22 - Koncept för kloss och transportplan 20
Figur 23 - Kloss med transportplan .. 21
Figur 24 - Ramkonstruktion med komponenter 22
Figur 25 - CAD-modell över prototypen, diverse vyer 23
Figur 26 - Inkommande gods från transportband 24
Figur 27 - Gods lastas på pålastningsplan .. 25
Figur 28 - Kloss med transportplan hämtar gods från pålastningsplan 25
Figur 29 - Kloss med transportplan lyfter gods 25
Figur 30 - Drivhjulet greppar och lyfter klossens axel 26
Figur 31 - Drivhjulet placerar klossen i den andra transportbanan 26
Figur 32 - Gods lastas av på avlastningsplanet 26
Figur 33 - Godset skjuts av ... 27
Figur 34 - Konceptskiss, koncept 1 .. 34
Figur 35 – Koncept 1a, hjul i spår ... 34
Figur 36 - Koncept 1b, kedjebalansering .. 35
Figur 37 - Koncept 1c, styrkloss i spår ... 35
Figur 38 - Koncept 2, hängande transportplan 35
Figur 39 - Koncept 3, länkarm ... 36
Figur 40 - Koncept 4, Plan med stadgande hjul 36
Figur 41 - Koncept 4, Kedjebana (svart) samt bana för hjul 36
Figur 42 - Koncept 5a, Kedja av klossar i bana ... 37
Figur 43 - Koncept 5b, kedja av klossar i bana med transportplan .. 37
Figur 44 - Koncept 5c, Kedja med block anslutna med kedjor .. 37
Figur 45 - Koncept 6, Spiral ... 38
Figur 46 – Friläggning för hjullastberäkning .. 42
Figur 47 - Hjul, Elesa RF8-065-RBL .. 44
Figur 48 – Huvudplåt med nyckelhål, flikar samt hål för hjulaxlar .. 45
Figur 49 - Stödplåt med nyckelhål och hål för flikar ... 45
Figur 50 - Huvudplåt och stödplåt, monterade .. 45
Figur 51 – Hjulaxel, gångad stång utan och med två skruvar (båda i genomskärning) 46
Figur 52 - Huvudplåt, stödplåt, hjulaxlar samt hjul ihop monterade .. 46
Figur 53 - Friläggning av axel som konsolbalk ... 47
Figur 54 - Axel-navförband - ETP-CLASSIC 30 .. 48
Figur 55 - Kedjehjul, ISO 2-108-20 ... 49
Figur 56 - Klolager ... 50
Figur 57 - SGA 30, spärring .. 51
Figur 58 - Axel med komponenter ... 52
Figur 59 - Axel med komponenter i genomskärning ... 52
Figur 62 - Gaffel, gaffelklar monterade på plåt .. 53
Figur 63 - Transportplan monterat på axel ... 53
Figur 64 - Friläggning av drivhjul .. 57
Figur 65 – Svängkranslager, INA VLA20 0414 .. 55
Figur 66 - Klo, radier .. 55
Figur 67 - Drivhjul med klo .. 56
Figur 68 – Friläggning av drivhjul .. 57
Figur 69 – Transmission för drivhjul ... 57
Figur 70 - Kuggväxelmotor, R07DRS71M4 ... 58
Figur 71 - Transportbanans tvärsnitt med kloss, vy från ovan .. 59
Figur 72 – Transportbana (liila), övre ände ... 59
Figur 73 - Rammoduler, kurvmodul till vänster, rak modul till höger 60
Figur 74 - Gränsnitt för rammodulmontering, cirkulära hål till vänster, avlånga hål till höger 60
Figur 75 - Komplett ram, två kurvmoduler samt en rak modul ... 61
Figur 76 – Ramfot konstruktion med rammodul ... 61
Figur 77 - Bild med möjliga inmatningsriktningar (röda) och utmatningsriktningar (blåa) ... 62
Figur 78 – På-/avlastningsplan med rullar ... 62
Figur 79 - Lutande plan med axlar utrustade med hjul ... 63
Figur 80 - Plant hjulplan .. 63
Figur 81 - Lutande hjulplan .. 63
Figur 82 - Monteringsplåt med klämförbandsfunktion .. 64
Figur 83 - Fästplåtar och vinkelstål ... 64
1 Inledning

1.1 Bakgrund

Företaget önskar utöka sin produktflora genom att ta fram en ny vertikaltransportör som ska kunna transportera gods mellan två transportband belägna på olika höjder. Majoriteten av de vertikaltransportörer som finns på marknaden idag har två stora nackdelar, endera kräver de mycket golvyta för att åstadkomma vertikaltransporten eller så använder de sig av två eller flera kedjor som drivs synkroniserat. Detta leder till problem då kredjorna tös olika vilket hämmer maskinens funktion och ger höga underhållskrav.

Företagets produkter tillverkas in små volymer och utvecklingsprojekt drivs under korta tidsperioder. De förlitar sig därför mer på erfarenhet och konstruktörskänsla än på att använda sig av produktutvecklingsmetoder.

1.2 Syfte
Syftet med examensarbetet är att utveckla en produktprototyp som ska fylla ett behov som inte uppfylls av företagets befintliga produkter.

1.3 Mål
- Produktprototypen ska utvecklas med tillämpning av teoretiskt stödda produktutvecklingsmetoder.
- Produktprototypen ska baseras på en befintlig konceptidé som tagits fram av företaget.

Resultatet ska kunna utgöra underlag för en framtida produkt.
- Produktprototypen ska kunna konkurrera med liknande produkter.

1.4 Avgränsningar
Under konstruktionsfasen utvecklades flera olika koncept till lösningar på mindre problem som upptäcktes under arbetets gång, dessa koncept presenteras ej i rapporten på grund av att de ej bedöms som tillräckligt relevanta i förhållande till det arbete och utrymme som en skriftlig redovisning av dessa innebär.
För att maskinen ska kunna släppas på marknaden måste den vara säkerhetscertifierad. Den kommer dock inte att säkerhetscertifieras under examensarbetet då detta arbete anses vara alltför tidskrävande inom tidsramen för arbetet.

1.5 Definitioner/Ordlista

Av-/pålastningsplan – Den del av transportören som godset lastas på innan det börjar förflyttas eller den plats där godset lastas av när förflyttningen är utförd.

CAD – Computer Aided Design

Kedjehjul – Ett kedjehjul är ett tandat hjul avsett för att användas tillsammans med kedjor tillskillnad från ett kugghjul som är avsett för att användas med andra kugghjul.

Rullar – En kullagrad cylinder som tillåter att gods transporteras i en riktning med låg friktion. Finns även i en driven variant där rullen utrustats med en elmotor och på så sätt kan transportera gods i en riktning.

Transportplan – Den del av transportören som transporterar gods.
2 Metodik
Kapitlet avser att beskriva de teorier och metoder som använts under arbetet.

2.1 Genomförande

![Figur 1 - Fasupdelning](image)

2.2 Fas 1 – Problemdefinition
I den första fasen granskas utgångsläget och problemet som produkten ska lösa. Målet med den första fasen är att skapa en konstruktionskriterielista som belyser vilka egenskaper som är viktiga för produkten. (Liedholm, 1999)

2.2.1 Problemgranskning

- Vad är problemet?
- Vem har problemet?
- Vad är målet?
- Vilka är bieffekterna som ska undvikas?
- Vilka begränsningar finns för att lösa problemet?

2.2.2 Konkurrentanalys
2.2.3 Konstruktionskriterielista
När konkurrentanalysen har utförts så etableras konstruktionskriterielistan som är en lista över de egenskaper som produkten måste ha för att klara av att lösa problemet, dessa egenskaper listas som krav. Även egenskaper som inte är vitala för funktionen men som ändå är önskvärda listas, dessa egenskaper listas som önskeliv. Listen ger riktlinjer till konstruktionsprocessen och kan senare användas som underlag vid utvärdering av konstruktionen. Funktionerna bör därför vara kvantifierbara i den mån det är möjligt. (Liedholm, 1999)

Utöver de efterforskningar som görs i problemdefinitionsfasen kompletteras konstruktionskriterielistan med krav och önskeliv från diskussioner med företaget.

2.3 Fas 2 – Funktionsanalys
I funktionsanalysfasen används stödmetoder för att ta fram möjliga lösningar på problemet. Resultatet från stödmetoderna hjälper till att fastställa vilka tekniska funktioner som krävs för att realisera lösningen varefter möjliga medel till att åstadkomma funktionerna fastställs. Resultaten från fasen används till att etablera olika concept för produkten.

2.3.1 Blackbox

För att exemfliera metoden visas nedan en blackbox över huvudfunktionen brödrostning (se Figur 2). Inoperanden blir då "Bröd, icke rostat" och utoperanden blir "Rostat bröd". Blackboxen beskriver då den tekniska process som brödet genomgår när det omvandlas från "Bröd, icke rostat" till "Rostat bröd". Det orostade brödet matas in i rostaren varefter brödet rostas genom att det hettas upp. När brödet rostats matas det ut.

![Figur 2 - Blackbox för "Rosta bröd"](image-url)
2.3.2 Funktions-/medelträd

Ett funktions-/medelträd skapas för att hitta medel till att uppnå de önskvärda funktionerna och det är ett stöd då en översikt över de möjliga lösningarna ska skapas. Delfunktionerna som etablerats i blackboxen används som huvudfunktioner i funktions-/medelträden, utifrån dessa byggs varsitt träd som grenas ut med underfunktioner och stödfunktioner till medlen. (Liedholm, 1999)

Funktionen ”Rosta bröd” från blackbox exemplet ovan används för att förtydliga funktions-/medelträdet. Huvufunktionen ”Rosta bröd” grenas här ut i olika medel som kan användas till att realisera funktionen. I exemplet visas olika medel som kan användas till att rosta bröd såsom värmeelement eller en ugn (se Figur 3).

Figur 3 - Funktions-/medelträd för ”Rosta bröd”

2.4 Fas 3 - Etablera Koncept

I den tredje fasen är målet att etablera koncept samt att utvärdera dessa för att slutligen kunna välja ut det bäst lämpade konceptet. Det utvalda konceptet utvecklas till en prototyp som sedan konstrueras.

2.4.1 Välj medel/skapa koncept

Utifrån de medel som presenterats i funktions-/medelträdet väljs några ut, baserat på lämplighet till att lösa problemet. De utvalda medlen kombineras för att skapa ett antal koncept som anses vara potentiella lösningar. (Liedholm, 1999)

2.4.2 Konceptgranskning och vidareutveckling

2.4.3 Konceptutvärdering och val av koncept

För att kunna göra kvalificerade bedömningar om ett koncepts potential krävs erfarenhet. Då de det på företaget finns expertis inom området, läggs stor vikt vid företagens bedömningar av de olika konceptens potential. En kvalitativ utvärdering utförs i samråd med handledare på företaget och det koncept som bedöms ha störst potential vidareutvecklas.
2.5 Fas 4 - Konstruktion

Konstruktionen av vertikaltransportören sker med CAD-programmet SpaceClaim som används av Rotab.

2.6 Fas 5 – Utvärdering
3 Resultat
I resultatkapitlet presenteras resultatet från de olika faserna.

3.1 Fas 1 - Problemdefinition

3.1.1 Problembakgrund
I det här avsnittet beskrivs utgångsläget för arbetet och en förståelse för problematiken som ligger bakom behovet som produkten ska tillfredsställa.

Vad är problemet?
Problemets uppkomst i anläggningar som hanterar gods där golvytan är en begränsande faktor. Golvytan blir en begränsande faktor av olika skäl, såsom utrymningsmöjligheter för personal och tillgängligt utrymme i lokalen. Genom att transporter sker på högre nivåer kan golvytan nyttjas till annat.

Vem har problemet?
Problemet uppstår i anläggningar som hanterar gods där golvytan är en begränsande faktor.

Vad är målet?
Målet är att konstruera en vertikaltransportör som kan tillämpas i en godshanterande anläggning som tar så lite golvutrymme i anspråk som möjligt utan att kapaciteten försämras.

Vilka bieffekter ska undvikas?
Bieffekter som ska undvikas är att oönskade driftstopp sker. Produkten bör därför vara robust och kräva så lite underhåll som möjligt.

Vilka begränsningar finns för att lösa problemet?
Problemlösningen och möjligheten att hitta den optimala lösningen begränsas av flera faktorer, faktorerna är dels ekonomiska samt produktionstekniska. De begränsar i form av material- och komponentval samt tillgänglig produktionsutrustning.

3.1.2 Ursprungligt koncept
Den ursprungliga konceptidén som utvecklats på företaget och som arbetet är baserat på består i att flera transportplan följer en bana där någon form av mekanism försäkrar att planen är horisontella (se Figur 4). Transportplanen är formade som gafflar och används för att förflytta godset från ett transportband till ett annat.

Figur 4 - Skiss, ursprungligt koncept

Transportplanets klor kommer då i kontakt med godset och det lyfts upp från pålastningsplanet och det följer med i transportplanets rörelse runt banan. Godshämtningssekvensen visas i Figur 5.

Avlastning sker enligt samma princip som pålastning då även avlastningsplanet är utformat som en gaffel. Skillnaden vid avlastning är att det lastade transportplanet kommer ovanifrån och då det passerar avlastningsplanet kommer godset i kontakt med avlastningsplanets gafflar och stannar.

En stor fördel med konceptet är att gaffelutformningen gör att transportören pålastningsplan kan laddas med nytt gods innan nästa transportplan när pålastningsplanet. Detta medför att transportplanen kan utföra en kontinuerlig rörelse utan avbrott för på- och avlastning. För att möjliggöra transporten på detta sätt måste transportplanen hålla en horisontell orientering under hela transportrörelsen för att garantera att paketet inte glider av.

Funktionaliteten för transportören kan ökas i form av flera in- och utmatningsriktningar. Detta sker genom att på- och avlastningsplanens gaffelklor ersätts med drivna rullar eller kedjetransportörer (se Figur 6). De drivna rullarna roteras av en elmotor, detta leder till att godset åker på/av planet då det kommer i kontakt med rullarna. Kedjetransportörer erbjuder möjligheten att mata ut gods i gaffelklornas riktning genom att kedjornas rörelse förflyttar godset.

Figur 5 – Godshämtningssekvens med transportband, gods, pålastningsplan och transportplan

Avlastning sker enligt samma princip som pålastning då även avlastningsplanet är utformat som en gaffel. Skillnaden vid avlastning är att det lastade transportplanet kommer ovanifrån och då det passerar avlastningsplanet kommer godset i kontakt med avlastningsplanets gafflar och stannar.

En stor fördel med konceptet är att gaffelutformningen gör att transportören pålastningsplan kan laddas med nytt gods innan nästa transportplan när pålastningsplanet. Detta medför att transportplanen kan utföra en kontinuerlig rörelse utan avbrott för på- och avlastning. För att möjliggöra transporten på detta sätt måste transportplanen hålla en horisontell orientering under hela transportrörelsen för att garantera att paketet inte glider av.

Funktionaliteten för transportören kan ökas i form av flera in- och utmatningsriktningar. Detta sker genom att på- och avlastningsplanens gaffelklor ersätts med drivna rullar eller kedjetransportörer (se Figur 6). De drivna rullarna roteras av en elmotor, detta leder till att godset åker på/av planet då det kommer i kontakt med rullarna. Kedjetransportörer erbjuder möjligheten att mata ut gods i gaffelklornas riktning genom att kedjornas rörelse förflyttar godset.

Figur 6 – Av-/pålastningsplan med kedjetransportör
3.1.3 Konkurrentanalys
I detta avsnitt presenteras kortare beskrivningar av några alternativa lösningar på vertikaltransportering som tillämpats hos konkurrenter. De konkurrerande produkternas transportkapacitet data är uppskattad för en transportör som transporterar gods 3000 mm vertikalt. Transportkapaciteten är beroende av godsets dimensioner och vikt.

Plan vertikaltransportör
Den plana vertikaltransportören kan liknas vid en personhiss. Ett transportplan lastas med gods, planet lyfts upp och godset skjuts av vid önskad höjd. Lyftet kan göras med cylinder eller kedjedrift vilket innebär att olika lyftlösningar kan användas såsom elektronik, hydraulik eller pneumatik (se Figur 7).

Fördelar:
- Klarar höga laster
- Kompakt, tar liten golvyta

Nackdelar:
- Låg kapacitet (ca. 6 transporter/min), endast ett gods kan transporteras i taget.

Böjd bana
Godset kläms mellan svängda transportband och transporteras mellan dessa. Banorna kan klämma från sidorna eller från under- och ovansidan (se Figur 8).

Fördel:
- Hög transportkapacitet (ca. 1000 transporter/min).
- Tar liten golvyta i anspråk.

Nackdelar:
- Klarar ej tyngre gods.
- Klarar ej gods med stora dimensioner.
Vinkeltransportör
En vinklad transportbana är en simpel och effektiv metod för att förflytta gods vertikalt. Banorna blir dock långa och kräver därför mycket golvyta (se Figur 9).

Fördel:
- Hög transportkapacitet (ca. 1000-2000, beroende på gods).
- Enkel lösning.
- Billig att konstruera.

Nackdelar:
- Risk för att gods rullar tillbaka vid transport uppför branta vinklar.
- Kräver en lång bana.

Spiralbana
Spiralbanan liknar vinkeltransportören men kräver mindre golvyta för samma vertikalförflyttning. Den består av flera vinklade transportbanor som länkas samman med svängda banor. Spiralbanan är mer komplicerad och dyrare att tillverka än en ensam vinkeltransportör (se Figur 10).
Nedpack Prorunner mk5

Fördelar:

- Kompakt, kräver liten golvyta.
- God kapacitet (upp till 50 transporter/min).

Vertikal kedjetransportör

Plan bestående av smala plattor fästs i hörnen i fyra kedjor. De främre hörnen fäster i två kedjor och de bakre hörnen i två andra kedjor. Kedjornas placering leder till att planet rullas ut under godset och sedan lyfts planet och godset vertikalt. När planet når den högsta punkten rullas planet ner längs kedjorna och godset skjuts av (se Figur 12).

Fördelar:

- Kräver liten golvyta.
- God kapacitet (ca. 30 transporter/min).

Nackdelar:

- Synkroniserade kedjor ger upphov till höga underhållsbehov. Det största problemet ligger i att kedjorna töjs olika mycket. Detta leder till att planens fästpunkter blir osynkroniserade och funktionen hämmas.
Dubbelgreppande hiss
Kedjor löper på två sidor om godset. På kedjorna fästs plan. Kedjorna roterar i motsatt riktning detta leder till att ett plan greppar godset underifrån på varsin sida (se Figur 13).

Fördelar:
- Kräver liten golvyta.
- God kapacitet (ca. 45 transporter/min).

Nackdelar:
- Flera kedjor som ska synkroniseras.

Sammanfattning av konkurrentanalys
Bland de konkurrerande produkterna med hög kapacitet återfinns två stora nackdelar; de kräver mycket golvyta eller så använder de sig av flera kedjor som arbetar synkroniserat. Den konkurrerande produkt som inte har dessa nackdelar är Prorunner mk5.
3.1.4 Konstruktionskriterielista

Efterforskningarna i problemdefinitionsfasen kombinerat med diskussioner med företaget har lett till att följande konstruktionskriterielista skapades.

Funktion

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Krav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godsdimension upp till 400x400x200 mm (lxhxw)</td>
<td>Krav</td>
</tr>
<tr>
<td>Godsvikt upp till 20kg</td>
<td>Krav</td>
</tr>
<tr>
<td>30 transporter/min</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Lyfthöjd mellan 1000-3000 mm</td>
<td>Krav</td>
</tr>
<tr>
<td>Lyfthastighet, v = 0,5 m/s</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Inmatning och utmatning möjlig i fler än en riktning</td>
<td>Krav</td>
</tr>
<tr>
<td>Klarar kontinuerlig drift (8h/dag)</td>
<td>Krav</td>
</tr>
<tr>
<td>Godset ska behålla sin orientering</td>
<td>Krav</td>
</tr>
</tbody>
</table>

Konstruktion

<table>
<thead>
<tr>
<th>Konstruktion</th>
<th>Krav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säkerhetscertifierad inför marknadsinlansering</td>
<td>Krav</td>
</tr>
<tr>
<td>Vid kedjedrift ska ej två eller flera synkroniserade kedjor användas</td>
<td>Krav</td>
</tr>
<tr>
<td>Monteringsvänlig</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Modulbaserad konstruktion</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Byggd av lagerförda komponenter</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Förbruka liten golvyta</td>
<td>Krav</td>
</tr>
<tr>
<td>Kan tillverkas i Rotabs verkstad</td>
<td>Krav</td>
</tr>
<tr>
<td>Kan färdigmonteras på plats</td>
<td>Önskemål</td>
</tr>
<tr>
<td>Lätt att installera och transportera</td>
<td>Önskemål</td>
</tr>
</tbody>
</table>
3.2 Fas 2 - Funktionsanalys
I det här avsnittet beskrivs arbetet med analys och definition av produktens funktion. Detta resulterar i ett flertal koncept där ett väljs för vidareutveckling.

3.2.1 Blackbox: Vertikalförflyttning av gods
Blackboxmodellen tilldelas “Vertikalförflyttning av gods” som huvudfunktion. Inoperanden fastställs till ”Gods som ska förflyttras” och utoperanden blir då ”Förflyttat gods” (Figur 14).

![Figur 14 - Blackbox: Vertikalförflyttning av gods](image)

Huvudfunktionen utvecklas till en teknisk process som krävs för att omvandla ”Gods som ska förflyttras” till ”Förflyttat gods”. Detta leder till att nödvändiga delfunktioner identifieras och huvudfunktionen delas upp i tre delfunktioner. Den första delfunktionen innebär att godset som anländer till maskinen måste matas in till anordningen som utför själva lyftet. Själva lyftoperationen blir då den andra delfunktionen och den tredje utgörs av en utmatning till vidare transportering. En teknisk process med följande delfunktioner erhölls därmed, ”Mata in gods”, ”Förflytta gods vertikalt” och ”Mata ut gods” (se Figur 15).

![Figur 15 - Blackbox: Teknisk process för vertikalförflyttning av gods](image)

3.2.2 Funktions-/medelträd
I den sista delen i funktionsanalysen användes delfunktionerna som etablerades i blackboxen. Dessa resulterade i tre funktions-/medelträd, ett för varje delfunktion. De kompletta träden kan ses nedan (se Figur 17 - Figur 18). Den främsta inspirationen till de framtagna lösningsmedlen hämtades ifrån konkurrentanalysen och andra lösningar för vertikaltransportering.
Figur 16 - Funktions-/medelträd – Mata in gods
Funktions-/medelträd – Förflytta gods
Paketutmatning

Rullmatning
- Rullbandspåmantning
- Drivna rullor

Kedjematning

Påskjutning
- Cylinder som skjuter ut paketet

Figur 18 - Funktions-/medelträd – Mata ut gods
3.3 Fas 3 - Etablera koncept

3.3.1 Beskrivning av valt koncept: Koncept 5c

Figur 19 - Illustration över kopplingen mellan två klossar

3.3.2 Vidareutveckling av valt koncept
Den kvarstående problematiken för konceptet som ska vidareutvecklas innan det slutgiltiga konceptet är etablerat och prototypkonstruktionsfasen kan påbörjas är följande:

- Drivning av klosskedjan
- Utformning av klossar och kedjor
- Transportplanets utformning
- Banans utformning
- Ramkonstruktionens utformning
- Modularisering

3.3.3 Beskrivning av slutgiltigt koncept
Det slutgiltiga konceptet bygger på att ramkonstruktionen delas upp i moduler, varje modul utgörs av en rammodul. Detta innebär att en komplett vertikaltransportör består av ett antal moduler. En modul kan antingen vara en kurva, kurva med drivhjul eller en vertikalsträcka, dessa konstrueras genom att olika komponenter monteras på rammodulen.

Figur 20 – Koncept för rammodul

Figur 21 – Ramkonstruktion med fyra rammoduler samt transportbana
Klossarna tillverkas i form av rätblock varur ett stag löper, på staget monteras kedjahjulen och transportplanet (se Figur 22). Genom att tillverka klossarna i plast minskas glidfrktionen mellan kloss och bana. Klossen kommer att vrida sig då den belastas av transportplanet och kedjorna som länkats till de andra klossarna. Därför utrustas varje kloss med fyra hjul för att minska friktionen. Vridningen medför att det övre hjulparet kommer i kontakt med banan på en sida och det undre hjulparet kommer i kontakt med banan på den motsatta sidan. Klossarnas rundade hörn förhindrar dels läsning i de vertikala delarna av banan samt förbättrar förflyttningen.

Banan dimensioneras efter avståndet mellan klossarna, genom att avståndet mellan klossarna sätts till en halv vertikalmoduls längd. Man får på så sätt lägga till fyra nya klossar för varje vertikalmodul som används. Avståndet mellan klossarna är känsligt då drivhjulets tänder skall lyfta upp en kloss och tanden missar klossen om kedjorna är alltför långa eller alltför korta.
3.4 Fas 4 - Konstruktionsfas
I konstruktionsfasen utvecklas det valda konceptet till en producerbar prototyp. I arbetet ingår dimensionering och utformning av komponenter. Hänsyn tas även till produktionsmöjlighet och monteringsaspekten. En beskrivning av konstruktionsprocessen samt beskrivningar av komponenter hittas i Appendix 2.

3.4.1 Konstruktionsbeskrivning

Klosskonstruktion med transportplan
Klossen och transportplanet som transporterar godset. I Figur 23 visas de ingående komponenterna som listas i Tabell 1.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Komponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klossplåtar</td>
</tr>
<tr>
<td>2</td>
<td>Klosshjul</td>
</tr>
<tr>
<td>3</td>
<td>Glidlister</td>
</tr>
<tr>
<td>4</td>
<td>Axel</td>
</tr>
<tr>
<td>5</td>
<td>Kedjehjul</td>
</tr>
<tr>
<td>6</td>
<td>Glidlager för klogrepp</td>
</tr>
<tr>
<td>7</td>
<td>Transportplan</td>
</tr>
</tbody>
</table>

Figur 23 - Kloss med transportplan
Ramkonstruktion med påmonterade komponenter

Här visas de komponenter som utgör ramen samt monteras direkt på ramkonstruktionen (se Figur 24 - Ramkonstruktion med komponenter). Komponenterna listas i Tabell 2.

![Diagram](image)

Tabell 2 – Komponentlista för ramkonstruktionens och påmonterade komponenter

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Komponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rammodul, kurvmodul</td>
</tr>
<tr>
<td>2</td>
<td>Rammodul, vertikalmodul</td>
</tr>
<tr>
<td>3</td>
<td>Transportbana</td>
</tr>
<tr>
<td>4</td>
<td>Pålastningsplan med hållare</td>
</tr>
<tr>
<td>5</td>
<td>Avlastningsplan med hållare</td>
</tr>
<tr>
<td>6</td>
<td>Drivhjul</td>
</tr>
<tr>
<td>7</td>
<td>Nedre hjul (odrivet)</td>
</tr>
<tr>
<td>8</td>
<td>Elmotor</td>
</tr>
</tbody>
</table>

Figur 24 - Ramkonstruktion med komponenter
3.4.2 Prestanda
Detta avsnitt beskriver resultatet av konstruktionsprocessen och den slutgiltiga prototypen som växte fram under arbetets gång.

Tabell 3 - Prototypprestanda

<table>
<thead>
<tr>
<th>Hämthöjd över golv [mm]</th>
<th>Avlämningshöjd över golv [mm]</th>
<th>Transporthastighet [m/s]</th>
<th>Lastkapacitet [kg]</th>
<th>Lastdimensioner (lxbxh) [mm]</th>
<th>Motoreffekt [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>3490</td>
<td>0,5</td>
<td>20</td>
<td>400x400x300</td>
<td>0,55</td>
</tr>
</tbody>
</table>

Tabell 4 - Prototypdimensioner

<table>
<thead>
<tr>
<th>Längd [mm]</th>
<th>Bredd [mm]</th>
<th>Golvarea [m²]</th>
<th>Höjd [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1560</td>
<td>1560</td>
<td>2,43</td>
<td>4500</td>
</tr>
</tbody>
</table>

Ett antal bilder av CAD-modell av prototypen visas i figuren nedan (se Figur 25). Prototypen är en vertikaltransportör som drivs av en elmotor som har en effekt på 0,55 kW. Elmotorn driver ett hjul som utrustats med klor, klorna greppar axlar som är monterade på klossar som färdas runt i en bana. Klossarna är förbundna med kedjor som löper mellan kedjahjul som monterats på axlar som är fästa i klossarna.

Figur 25 - CAD-modell över prototypen, diverse vyer

3.4.3 Skillnader mellan prototyp och det valda konceptet
Rammodulerna är kvar, dock har vertikalmodulen ändrats och består numera endast av en modul oavsett längd. Istället för att bestämma lyft höjden genom antal vertikala rammoduler görs istället en vertikal rammodul som är tillräckligt hög för att åstadkomma den önskade lyft höjden. Detta val gjordes pga. att produktionsvolymen inte kommer att vara tillräckligt stor för att användandet av flera vertikala moduler ska vara fördelaktigt.

Transportbanan består endast av två raka vertikala delar. Banan delas inte per rammodul som i konceptbeskrivningen utan görs istället i ett stycke, på så sätt undviks skarvar mellan olika avsnitt av transportbanan och installationen underlättas då inpassningsproblem undviks.

Plastklossarna behövde inte längre tillverkas i plast då de lyfts från den ena vertikala banan till den andra, och tillverkas istället av bockad plåt som utrustas med glidlister och hjul.

3.4.4 In-/utmatning av gods
Ett antal olika typer av på-/-avlastningsplan togs fram för att vertikaltransportören ska kunna anpassas efter den typ av gods som transporteras samt för att kunna hantera olika in- och utmatningsriktningar.

3.4.5 Funktionsbeskrivning för en godstransport i vertikaltransportörsprototypen
Den prototyp som tagits fram fungerar enligt följande beskrivning av hur godset hanteras:

1. Godset kommer in på ett anslutande transportband (se Figur 26).

Figur 26 - Inkommande gods från transportband

2. Godset skjuts på pålastningsplanet. Påljudningen sker genom att transportbandet skjuter på godset på pålastningsplanet, planet består av antingen rullar eller hjul, dessa har lågfriktion och godsets rörelseenergi används för att föra det fram till rätt position (se Figur 27).
3. En kloss med fastmonterat transportplan passerar pålastningsplanet. Transportplanets gafflar passerar genom pålastningsplanet och lyfter då med sig godset (se Figur 28).

5. Drivhjulets klor greppar lagrade delar av klossens axel och lyfter klossen och godset över till den andra vertikala transportbanan. Kedjorna mellan klossarna förhindrar att transportplanet förlorar sin horisontella orientering och de lagrade delarna på axlarna förhindrar att hög friktion uppstår från kontakten med klorna (se Figur 30).
6. Klossen med gods placeras i den andra vertikala transportbanan och börjar röra sig nedåt (se Figur 31).

7. Klossen med gods passerar avlastningsplanet, transportplanets gafflar passerar genom avlastningsplanet och godset kommer då i kontakt med avlastningsplanet och lastas av från klossen, godset stannar då klossen och transportplanet fortsätter nedåt (se Figur 32).

8. Utmätning av godset sker och det matas ut med hjälp av den typ av avlastningsplan som använts. I Figur 33 sker avskjutningen genom att avlastningsplanet utrustats med drivna rullar som roterar och på så sätt skjuter av godset när det lastas av på avlastningsplanet.
Figur 33 - Godset skjuts av

9. Godset fortsätter att transporteras på efterkommande transportband.
4 Slutsatser
I följande kapitel presenteras delar av den utvärderingsfasen. De resterande delarna presenteras i diskussionskapitlet. För att utvärdera om prototypen levtt upp till målen jämförs dess prestanda med kraven ställda i konstruktionsskrivelistan.

__Godsdimension och vikt__
Prototypen är dimensionerad för att klara av kraven på godstorlek i form av dimensions- och viktkrav (dimensioner samt vikt från konstruktionsskriverlisten: 400x400x200 mm respektive 20 kg). I och med att endast vartannat plan lastas kan godset vara högre än de 200 mm som definierades i konstruktionsskrivelistan.

__Transporter per minut samt lyfthastighet__
Antalet transporter per minut beräknas enligt den tid det tar att lasta godset. Tiden för lastning \(t_{lastning} \) beräknas enligt: \(t_{lastning} = \frac{s}{v} \), där \(s \) är avståndet mellan två lastplan och \(v \) är transportplanens hastighet. Transportplanet färdas med den önskade hastigheten \(v = 0,5 \frac{m}{s} \).

Avståndet mellan två lastplan är: \(s = 2 \cdot D_k = 2 \cdot 0,380 = 0,760 \frac{m}{s} \), där \(D_k \) är avståndet mellan två krossar.

Tiden för att lasta blir då: \(t_{lastning} = \frac{s}{v} = \frac{0,760}{0,5} = 1,52 \frac{s}{s} \) vilket resulterar i att antalet transporter per minut kan beräknas enligt: \(n_{last} = \frac{60}{1,52} = 39,5 \frac{transporter}{min} \) vilket är högre än önskemålet på 30 transporter/min.

För att uppnå kravet på 30 transporter/min (varje lastning tar då \(t_{lastning} = 2 \frac{s}{s} \)) måste transportastastigheten minst vara: \(v_{min} = \frac{s}{t_{lastning}} = \frac{0,760}{2} = 0,38 \frac{m}{s} \).

__Lyfthöjd__
I det utförande som prototypen designats så är den maximala lyfthöjden:

\[L_{lyft} = 3490 - 800 = 2690 \text{ mm} \]

Denna lyfthöjd är mindre än det ställda kravet på lyftintervall mellan 1000 och 3000 mm. Dock kan 3000 mm lyft uppnås genom att den vertikala rammodulen förlängs samt att transportbanorna görs i två delar som skarvas samman. Den maximala längden som en del i transportbanan kan tillverkas i är 3000 mm.

__Möjliga in- och utmatningsmöjligheter__
Gods kan matas in från två riktningar och kan matas ut i två riktningar vilket får ses som ett tillfredsställande resultat.

__Bibehållen godsdireccion__
Då transportplanet är horisontellt under hela transportrörelsen så bibehåll en godset den orientation haft då det lastas på lastningsplanet.

__Säkerhetscertifiering__
Som det nämndes i avgränsningsstycket så säkerhetscertifieras inte maskinen. En del modificationer kan bli aktuella för att framtida certifiering ska kunna ske.
Inga synkroniserade kedjor

Monteringsvänlighet
Under konstruktionsfasen har hänsyn tagits till monteringsvänligheten och monteringsutrustningen i Rotabs verkstad. Detta har resulterat i att skruvförband ersatt svetsar i många fall pga. att skruvförbanden monteras lättare. Detta har även en annan positiv bieffekt, nämligen att demontering underlättas.

Modulbaserad konstruktion
Prototypen har gjorts modulbaserad för att produkten skall kunna anpassas efter kundbehov på exempelvis lyfthöjd. Med två likadana kurvmoduler hålls även antalet artiklar så lågt som möjligt.

Konstruktion av lagerförda komponenter
Konstruktionen använder sig inte i någon större utsträckning av lagerförda komponenter. Detta på grund av att konstruktionslösningen skiljer sig från företagets övriga produkter. Lagerförda produkter är hjul, skruvförband samt drivna och odrivna rullar.

Förbruka liten golvyta
Prototypen kräver 2,43 m², vilket får anses vara relativt lite för en vertikaltransportör som kan hantera över 30 transporter/min och utföra lyft över 2500 mm.

Möjlig att tillverka i befintlig verkstad
Prototypen är utformad för att nyttja monterings- och tillverkningsutrustning i verkstaden. Ett fåtal komponenter köps in, i övrigt tillverkas de flesta komponenterna genom bockning och vattenskärning i verkstaden.

Lättransporterad, lättinstallerad samt färdigmonterbar hos kund
Prototypen har utformats för att rammodulerna ska kunna ha så många komponenter påmonterade som möjligt innan transport till kund sker. Hos kunden monteras rammodulerna ihop och på dessa monteras sedan transportbanor och klossar och kedjor. Eftersom dessa montage kräver att rammodulerna är samman monterade. Denna lösning har valts för att rammoduler som monterats ihop med varandra blir svåra att transporter på grund av sin storlek.
5 Diskussion
I följande kapitel presenteras delar av den utvärderingsfasen. De resterande delarna presenteras i slutsatskapitlet.

Syfte och mål:

Prototypens lösning är baserad på den ursprungliga konceptidén som företaget utvecklat och använder sig av den princip som beskrivs av konceptidén för att transporterar gods.

Det framtagna materialet ska vara tillräckligt för att en framtidig produkt ska kunna baseras på det. Det finns utrymme för mycket förfinning och det finns många oförutsedda såväl som förutsedda problem som måste lösas innan den är redo för en marknadsinsläsning.

Metodkritik:

I vissa fall har anpassningar gjorts till de metoder som beskrivs i litteraturen, i vissa fall har metoderna valts bort. Anpassningarna och valet att exkludera metoder har gjorts för att metoderna bättre ska lämpa sig för examensarbetet.
Problemet:
De huvudsakliga problemen som vertikaltransportören konstruerades för var att klara av en god transportkapacitet utan att ta en stor golvyta i anspårs samt att detta skulle ske utan att synkroniserade kedjor brukades. Jämfört med många av de produkter som presenteras i konkurrentanalysen så löser prototypen problemen på ett tillfredsställande sätt.

Koncept:
Det är möjligt att vidareutveckla, förbättra och förfina koncepten ytterligare samt att hitta andra helt annorlunda lösningar till problemet. Dock måste man i egenskap av konstruktör avgöra när man anser att det koncept man valt ut är tillräckligt bra för att gå vidare med och fortsätta dess utveckling och väga detta mot den tid man har tillgänglig i projektet. Den ursprungliga idén som togs fram på företaget influerade troligtvis konceptgenereringen mycket.

Resultatet:
Utvecklingen av vertikaltransportören blev tillfredsställande då transportören i teorin uppfyller de huvudsakliga kraven som ställdes. Det fanns förhoppningar om att en fysisk prototyp skulle konstrueras innan examensarbetets slutförande. En fysisk prototyp konstruerades ej, detta beror till stor del på brist på erfarenhet inom konstruktionsarbete och att kunskaper om tillverkningsmetoder saknades. Detta ledde till att konstruktionsfasen blev längre och krövde mer arbete än vad som antogs under planeringen där konstruktionen av en fysisk prototyp var inkluderad. Ytterligare en faktor som påverkade tidsplaneringen var iterationer under konstruktionsarbetet som resulterade i att konstruktionsfasen blev än mer tidskrävande. Om en fysisk prototyp presterar som konstruktionen är utformad att prestera så kan detta resultera i en attraktiv produkt.

Det är möjligt att många delar i konstruktionen kunnat förbättras, vilket skulle ha kunnat resultera i ett bättre resultat. Dock har arbetet utförts på så sätt att den bästa lösningen, utifrån givna förutsättningar och erfarenheter, tagits fram i varje skede.

Möjliga problem:
Det går med ganska stor säkerhet att anta att en konstruktion av en fysisk prototyp skulle ha belyst ytterligare problem som inte upptäckts under konstruktionsfasen. Förhoppningsvis är dessa av mindre karaktär som går att åtgärda utan alltför stora ansträngningar.

Vidare arbete:
Prototypen kan förmodligen utvecklas och optimeras till en bättre produkt. Optimering av komponenters storlek och materialmängd kan dock enbart mindre besparingar göras då produkten inte kommer tillverkas i stora volymer.

Kvar att utvecklas är styrning av pålastningen, den nuvarande konstruktionen fungerar genom att godset anländer med samma intervall som transportplanen passerar pålastningsplanet. Genom att tillämpa ett stopp så kan pålastningen ske utan att det inkommande transportbandets hastighet har samma påverkan på lastningssekvensen. Stoppet kan ske med exempelvis en mekanisk lösning som
öppnar stoppet då ett transportplan passerat. Alternativt kan det ske med hjälp av sensorer som känner av när pålastningsplanet är tomt.

Ur säkerhetssynpunkt är det önskvärt att uppfylla de krav som ställs av arbetsmiljöverket för att produkten ska kunna säkerhetscertifieras. Det är även önskvärt att utveckla någon form av detektion av läsning av maskinen som då kan stoppa maskinen. Detta för att förhindra att maskinen havererar i den händelse att exempelvis ett transportplan fastnar i ett på-/avlastningsplan.

Transportbanornas ändar bör utrustas med trattliknande ändar. Trattarna är tänkta att användas till att styra in klossarna i banorna. Tanken är att på så sätt undviks kollisioner mellan banan och klossarna.
6 Referenser

Ramströms Transmission AB. (2012). Teknisk information Sektion A.

Ramströms Transmission AB. (2012). Teknisk information Sektion F.

Ramströms Transmission AB. (2012). Teknisk information Sektion J.

7 Appendix

7.1 Appendix 1 – Konceptpresentation

Följande avsnitt beskriver de koncept som togs fram under konceptutvecklingen. Det avslutas med konceptval samt utförligare beskrivning av det slutgiltiga konceptet.

7.1.1 Konceptpresentation: Förflytta paket

Koncept 1 a-c: Stag

Konceptet utgörs av en ram som är väsentligt högre än dess bredd och längd. I ramen monteras en bana (visas i svart i Figur 34) i vilken en kedja löper. På kedjan fästs ett eller flera stag, på så sätt att då kedjan roterar så följer staget med kedjan. Staget fästs så att det är riktat i kedjebanans normalriktning utmed hela rörelsen. I den änden av staget som inte är fäst i kedjan fästs ett transportplan som är ledat kring infästningspunkten och därmed fritt att röra sig i stagets och kedjebanans plan. Ursprungskonceptet presenteras som koncept 1a, utöver det har två andra koncept (1b och 1c) utvecklats som lösningar till problemet att bevara transportplanets horisontella orientering.

Transportplanet ska hållas horisontellt under hela lyfrörelsen. I koncept 1a åstadkoms detta genom att ett eller flera hjul fästs på transportplanet (se Figur 35). Hjulet löper sedan i en bana som liknar kedjebanan. Banan förhindrar att transportplanet roterar relativt horisontalplanet genom hjulens kontakt.

I koncept 1b (se Figur 36) fästs istället en kedjas ändar i transportplanets ändar. Kedjan sätts fast i ett kedjahjul som fästs på staget. Genom att kedjahjulet roteras relativt stagets vinkel kan transportplanets horisontella orientering bibehållas under rörelsen.

Koncept 1c (se Figur 37) använder sig av en kloss i ett spår (av den typ som beskrivs i koncept 5). Klossens spåret utformas så att klossen är för stor för att kunna rotera i spåret men tillräckligt liten för att kunna färdas genom spåret. Då spåret hindrar klossen att rotera kan den även genom styv förbindelse med transportplanet hålla detta horisontellt under hela rörelsen.
Fördelar:

- Kan eventuellt utvecklas till att göra mer avancerade förflytningar, i form av avancerade banor i tre dimensioner.
- Kan lasta av i översta läget i flera riktningar beroende på vald utmatningslösning.

Nackdelar:

- Eventuella stabilitetsproblem om stöden inte är robusta.
- Risk för att konstruktionen havererar om hjul eller klossar fastnar i spårbanorna.
- Kräver låga toleranser på spårbanorna.
- Koncept 1b: svårt att kontrollera kedjehjulets rotation och bromsning då hjulet ska fixeras.

Koncept 2: Hängande transportplan

Konceptet använder sig av samma typ av ramkonstruktion och kedjebana som koncept 1. Skillnaden mellan koncepten består i att staget och transportplanet som används i koncept 1 ersatts med en U-formad vagnkonstruktion (se Figur 38). Det innebär att U:ets ändar kommer att peka i banans normalriktning under hela rörelsen. I de uppstckande armarna hängs en vagg med transportplan. Tanken är att vaggans plan med hjälp av gravitationen hålls horisontellt under transporthöjden. För att försäkra sig om att planet befinner sig i rätt läge under kritiska ögonblick såsom på- och avlastning kan styrande skenor användas som styr in vaggan i rätt läge.

Fördelar:

- Kan eventuellt utvecklas till att göra mer avancerade förflytningar, i form av avancerade banor i tre dimensioner.

Nackdelar:

- Eventuellt instabil transport beroende på last och transporthastighet.
- Endast en in- och avlastningsriktning.
Koncept 3: Länkarmar

Konceptet använder sig även det av samma typ av ramkonstruktion och kedjebana som ovan nämnda koncept. Transportplanet fästs i kedjan och drives på såsätt runt längs kedjebanan. Transportplanet hålls horisontalt genom att en länkarm fäst i transportplanet och kedjan (se Figur 39). Länkarmen förhindrar att transportplanet roterar.

Fördelar:
- Kräver eventuellt endast en bana.
- Klarar flera in- och utmatningsriktningar.

Nackdelar:
- Länkarmens längd beror på många faktorer och blir därför komplicerad att anpassa till olika storlekar.
- Snäva toleranser för länkarmens längd.

Koncept 4: Plan med stadgande hjul

Fördelar:
- Klarar flera in- och utmatningsriktningar.

Nackdelar:
- Påminner om konkurrerande produkter.
- Riskerar lösning vid bristande passning mellan hjulspår och kedjebana.
Koncept 5 a-c: Kedja av klossar

En kedja av klossar med rundade hörn placeras i en bana. Klossarna länkas samman och bildar på så sätt en kedja (klosskedja). Banan har samma bredd som klossarna och formen hindrar därmed att de roterar. Vid banans hörn är bredden lika stor som klossarnas diagonal, detta leder till att de inte kan rotera och behåller sin orientering under hela rörelsen genom banan (se Figur 42). Detta koncept kan tillämpas genom att klossarna används för att behålla transportplanets orientering som i tidigare koncept (koncept 1c). En annan lösning erhålls eftersom transportplan kan fästas direkt i klossarna (koncept 5b), detta leder till att transportplanen följer hela kedjebanan och är horisontella under hela rörelsen (Figur 43). Genom att klossarna på något sätt drives runt i banan rör sig då transportplanen längs med banan.

Drivning sker antingen med kedjedrift kopplad till transportplan eller att klosskedjan drivs direkt.

Fördelar:

- Koncept 5b kan resultera i en kompakt lösning då banan kan utformas i många olika former. Vilket skulle kunna resultera i en bana med bredden av två transportplan.
- Klossarna och kedjorna fungerar som en större klosskedja tillsammans, därför behövs ej ytterligare kedjor.
- Ingen ytterligare mekanism för att försäkra horisontalt transportplan.

Nackdelar:

- Banorna måste konstrueras noggrant efter klossarnas dimensioner för att garantera att klossarnas orientering inte skiftar då banan svänger, detta gäller ej koncept 5 c.
- Klossarnas kontakt med banan ger uppophov till friktion.

Koncept 6: Spiral

Fördelar:

- Klarar flera utmatningsriktningar.

Nackdelar:

- Endast en inmatningsriktning.
- Kräver omställning för att kunna hantera olika dimensioner.
- Svårt att tillverka spiralen.
- Svårt att verifiera att konstruktionen kommer att fungera som tänkt.

7.1.2 **Konceptpresentation: In-/utmatning av gods**

Vilken lösningen för in- och utmatning av gods som är bäst lämpad är beroende av vald lösning för förflyttning av gods.

Rullband/transportband

In- och utmaningen sker genom att en transportör tillämpas för att förflytta godset till lastningsläge och från avlastningsläget. Några exempel på möjliga tekniker för att förflytta godset är rullband, kedjetransportör, drivna rullar. I den mån det är möjligt kan det inkommande/utkommande transportbandet användas vid in- och utmatning.

Cylindermatning

Inmatning och utmatning sker genom att en cylinder skjuter godset till lastningsläge eller från avlastningsläge. Cylinder kan drivas pneumatiskt eller hydrauliskt.

Lutande plan

7.1.3 Konceptutvärdering och val
Konceptutvärderingen gjordes i samråd med handledare för att utnyttja den kunskap och mångåriga erfarenhet som finns på företaget. Utvärdering gick till på så sätt att konceptens fördelar och nackdelar belystes, koncepten jämfördes därefter innan ett koncept valdes för vidareutveckling.

Koncept 5 c valdes för vidareutveckling då detta koncept bedömdes ha högst potential samt hög genomförbarhet. En god egenskap är att konstruktionen i sig erbjuder en lösning för att transportplanen är horisontellt utmed hela förflyttningen. Endast en bana används vilket leder till att problematik med skillnader i banorna undviks. Ingen synkroniserad kedjedrivning krävs, därmed undviks problem med höga underhållskrav som sker då kedjor töjts olika mycket.

Koncept 1 a-c förkastades på grund av problematik med att anpassa två banor till varandra (kedjebanan och banan som styr stödet) då skillnader i banorna kan leda till att lösning uppstår. Risken att konstruktionen låser sig och därmed havererar bedömdes som tillräckligt stor för att koncepten skulle förkastas.

Koncept 2 förkastades på grund av att konstruktionens stabilitet bedömdes vara otillräckligt. Detta ansågs speciellt ske vid höga transporthastigheter där konstruktionens beteende påverkas på grund av att transportplanen förlitar sig på stabilisering med hjälp av gravitation.

Koncept 3:s funktion ansågs vara tveksam då preliminära beräkningar pekade på att längden på länkarmarna behöver variera beroende på var i kurvan transportplanen befinner sig. Eventuellt skulle detta kunna lösas genom att tillämpa en kurva med varierande radie.

Koncept 4 bedömdes vara alltför likt konkurrerande produkter och patent.

Koncept 5 a & b förkastades då alla deras fördelar även gäller för koncept 5 c.

Koncept 6 förkastades på grund av att det endast klarar av att hantera en godsstorlek i taget samt att spiralen ansågs vara svår att tillverka.

Val av in- och utmatningsmetod görs då konstruktionen har utvecklats ytterligare. Då matningsfunktionen bör anpassas till att fungera väl med den valda funktionen för vertikaltransportering.

7.1.4 Vidareutveckling av valt koncept
Den kvarstående problematik för konceptet som ska vidareutvecklas innan det slutgiltiga konceptet är etablerat och prototypkonstruktionsfasen kan påbörjas är följande:

- Drivning av klosskedjan
- Utformning av klossar och kedjor
- Transportplanets utformning
- Banans utformning
- Ramkonstruktionens utformning
- Modularisering
Drivning

- **Klosskedjan drivs av ett roterande hjul med tänder/klor som greppar en eller flera klossar och drar med klosskedjan i banan.** Hjulet placeras med fördel i toppen av kedjebanan samt konstrueras med samma radie som banans kurva, hjulet drar då klosskedjan genom hela kurvan och klosskedjan spänns då dels av hjulet och dels av gravitationen.

- **En rem, tandad på båda sidor drivs mellan två eller flera kedjehjul där ett kedjehjul är drivet av den elektriska motorn.** Remmen placeras så att en plan sida är placerad i den rätta delen av kedjebanan där klosskedjan färdas nedåt. På den sida av klossarna som anlöper mot remmen placeras en tandad kam, när den kommer i kontakt med remmen driver remmen klosskedjan. Ett alternativ till remdriften nämnd ovan ersätts remmen av kedjehjul som driver klosskedjan.

- **Klosskedjan kan även drivas av en kedja som monteras likt remmen som nämndes tidigare.** På kedjan monteras stag som pekar ut i kedjans normalriktning. Stagen kommer i kontakt med klossarna och då kedjan roterar så dras klosskedjan med runt sin bana.

Utformning av klossar och kedjor

Klossarna ska utformas så att de behåller sin orientering, kan färdas runt hela banan utan hög friktion, förhindra att transportplanet ändrar sin orientering samt klara av belastningen från transportplanet och lastat gods. Friktionen som uppstår mellan bana och klossarna kan sänkas genom att klossarna utrustas med hjul. Klossarna måste göras tillräckligt robusta för att kunna hantera de aktuella lasterna. Det får ej finnas risk för att en byrålådseffekt uppstår, vilket innebär att klossarna inte får ha möjlighet att fastna i transportbanan.

Kedjorna som sammanländer klossarna måste dimensioneras för att klara de laster som de kommer att utsättas för. Kedjornas uttjänning och hur detta påverkar konstruktionen i stort måste tas i beaktande.

Transportplanets utformning

Transportplanets huvudfunktion är att transporterera godset, ursprungskonceptet bygger på att planet är en gaffelkonstruktion. Gaffelkonstruktionen medför stora fördelar, rörelsen behöver inte stanna för att lasta på/av nytt gods, på-/avlastning kan ske i två olika riktningar.
Banans utformning
Banans utformning är såt att klossarna förhindras från att rotera då de färdas rakt i vertikal riktning. Banan bör ge ytterligare stöd i form av att transportplanen förhindras från att röra sig i annat än banans plan.

Ramkonstruktionens utformning

Modularisering
Modularisering sker förslagsvis genom att kurvmoduler kan passas ihop med vertikalmoduler. På så sätt kan samma kurvmodul användas till vertikalmoduler av olika längd och höjden kan då anpassas efter önskemål.
7.2 Appendix 2 - Konstruktionsfas

I konstruktionsfasen utvecklas det slutgiltiga konceptet genom att komponenter dimensioneras och väljs ut. Befintliga komponenter och materialval görs utifrån komponenter och material tillgängliga hos Rotab i den mån det är möjligt.

7.2.1 Klossar och kedjor

Då klossarna är centrala för funktionen så påbörjas konstruktionsfasen med utformning av dessa. Klossarna ska kunna färdas runt i transportbanan och bibehålla sin orientering och bringa med sig transportplan och gods. Detta sker med hjälp av transportbanan och kedjorna. Kedjorna måste klara av belastningarna från de klossar och det gods som hänger i dem.

Funktionskrav för klossarna:

- Låg friktion mot transportbana
- Undvikar läsning mot transportbana
- Möjlighet att bära upp och fixera transportplan
- Fixerade kedjehjul
- Fixerad axel

Hjulval

Klossen dimensioneras utifrån hjulens dimensioner, för att göra detta måste ett lämpligt hjul väljas ut. Hjulet ska klara av att hantera normalkrafterna \(N \) från kontakten med transportbanan som uppstår då lasterna från gods \(F_L \) och kedjor \(F_{ku}, F_{kn} \) vriden klossen. Den högsta möjliga belastningen på hjulen och kedjorna uppkommer precis innan drivhjulet greppar klossen och lyfter den genom den övre kurvan. I det ögonblicket belastas klossen med laster från alla de lastade planen som hänger i den. För att uppskatta belastningen på hjulen utfördes följande beräkning, kedjornas massa försummades. Friktionsskraftens \(F_f \) påverkan ses som försumbar.

![Figur 46 – Friläggning för hjullastberäkning](image)
\[L_h, \text{ avstånd från hjulcentrum till axelcentrum.} \]
\[L_{kn}, \text{ avstånd från O till kedjehjulet där den nedåtriktade kedjelasten verkar.} \]
\[L_{ku}, \text{ avstånd från O till kedjehjulet där den uppåtriktade kedjelasten verkar.} \]
\[L_{lp}, \text{ avstånd från O till där lasten från gods och transportplan verkar.} \]

\[
\sum F_x = m \cdot a_x \\
\uparrow z: F_{kui} - F_{kni} - F_L - m_{kloss} \cdot g = 0, \text{ty } a_z = 0 \quad (1)
\]

\[
M_O = \sum F \cdot d_\perp = I \dot{\omega}
\]

\[\uparrow O: -2L_h N + RF_f + L_{kn} F_{kn} - L_{ku} F_{ku} + L_{lp} F_L = 0 \quad (2)
\]

\[F_f = \mu N \approx 0 \text{ N} \]

\[F_{kui} = F_{kni} + F_L + m_{kloss} \cdot g + 2F_f = F_{kni} + F_L + m_{kloss} \cdot g \]

\[F_{kni} = F_{ku(i-1)} \]

\[F_{kui} = F_L + m_{kloss} \cdot g + \sum_{i=1}^{n-1} F_{kni} = n \cdot (F_L + m_{kloss} \cdot g) \]

\[n = 10 \rightarrow F_{kui10} = 10 \cdot (F_L + m_{kloss} \cdot g) \]

\[F_L = (m_{lp} + m_{gods}) \cdot g \]

Godsets massa sätts till den maximala godsvikten som vertikaltransportören skall kunna hantera: \(m_{gods} = 20 \text{ kg} \), massan för lastplanet \((m_{lp}) \) uppskattas till \(2 \text{ kg} \). Massan för klossen \((m_{kloss}) \) uppskattas till ca \(4 \text{ kg} \).

\[F_L = (m_{lp} + m_{gods}) \cdot g = 235,68 \text{ N} \approx 236 \text{ N} \]

\[F_{kui10} = 10 \cdot g \cdot (m_{lp} + m_{gods} + m_{kloss}) = 2,553 \text{ kN} \rightarrow F_{kn10} = F_{kui10} - F_L = 2,317 \text{ kN} \]

\[-2L_h N + L_{kn} F_{kn} - L_{ku} F_{ku} + L_{lp} F_L = 0 \]

\[N = \frac{1}{2L_h} (L_{kn} F_{kn} - L_{ku} F_{ku} + L_{lp} F_L) \]

Rimliga längder uppskattades till \(L_h \approx 0,08 \text{ m}, L_{kn} \approx 0,10 \text{ m}, L_{ku} \approx 0,12 \text{ m}, L_{lp} \approx 0,50 \text{ m}. \)

\[N = \frac{1}{2 \cdot 0,08} (0,10 \cdot F_{kn} - 0,12 \cdot F_{ku} + 0,50 \cdot F_L) = 270,9 \text{ N} \]

I de fall då den kedja som drar klossen upåt är fäst i kedjehjulet närmast klossen byter \(L_{kn} \) och \(L_{ku} \) värden.

\[N = \frac{1}{2 \cdot 0,08} (0,12 \cdot F_{kn} - 0,10 \cdot F_{ku} + 0,50 \cdot F_L) = 879,6 \text{ N} \]
\[N_{\text{per hjul}} = \frac{879.6}{2} = 439.8 \text{ N} \]

ger behov av ett hjul som är dimensionerat för att kunna hantera belastning av minst \[\frac{439.8}{9.82} = 44.79 \text{ kg} \].

I kurvorna kommer klossarna förflytta sig i sidled vilket innebär att hjulen måste glida i sidled. Detta leder till slitage pga. den friktion som uppstår. Det är önskvärt att minimera slitage, detta kan förslagsvis göras genom att minska normalkraften som verkar på hjulen eller genom att välja en hjulkonfiguration som minskar friktionen.

Problemet med friktion och slitage på hjulen löses genom att drivhjulets tänder ersätts med klor, detta resulterar i ett bättre grepp om axeln. Istället för att klossen tar stöd mot banan så lyfts klossen och axeln av drivhjulets klor och transporteras på så sätt från den ena vertikala banan till den andra. För att förhindra att klossen tippar används två klor, klorna greppar axeln på båda sidorna om kedjehjulet.

Eftersom friktionen i kurvan eliminerats är valet av hjul inte lika känsligt. Det kvarstående kravet är att hjulet klarar av en belastning av 439,8 N. Ett hjul av typen Elesa RE.F8-065-RBL (se Figur 47) väljs då man på företaget har dessa hjul i lager. Hjulet är tillverkat i polyamid baserat teknopolymer och har egenskaper enligt Tabell 5.

![Figur 47 - Hjul, Elesa RE.F8-065-RBL](http://example.com/image)

Tabell 5 - Elesa RE.F8-065-RBL(Elesa)

<table>
<thead>
<tr>
<th>Hjultyp</th>
<th>Hjul diameter [mm]</th>
<th>Axel diameter [mm]</th>
<th>Hjulbredd [mm]</th>
<th>Navbredd [mm]</th>
<th>Dynamisk lastkapacitet [N]</th>
<th>Vikt [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE.F8-065-RBL</td>
<td>65</td>
<td>12</td>
<td>30</td>
<td>34</td>
<td>1200</td>
<td>60</td>
</tr>
</tbody>
</table>

Klossrekonstruktion

Beslutet att lyfta klossen med hjälp av klor i den svängda delen av banan leder till att funktionskraven för klossen ändras. Detta på grund av att klossen hänger i klorna då den lyfts och klossens utformning påverkar inte funktionen under rörelsen i kurvan. Innan klorna infördes behövde klossens alla sidor ha låg friktion mot banan. Efter införandet behöver endast de sidor av klossen som är i kontakt med banan, vilket är den vertikala delen av banan vara friktionsdämpade. Detta eftersom klossen endast behöver förhindra vridning genom kontakt med banan då den befinner sig i den vertikala delen.

För att minska friktionen mot banan så utrustas två av sidorna med hjul (precis som innan rekonstruktionen), de andra sidorna utrustas med glidlager i form av glidskenor. Då glidskenor ger en låg friktion och lätt kan bytas ut då de är utslitna. Det är önskvärt med hänsyn till Rotabs tillverkningsutrustning och materiallager att tillverka klossen i 2 mm plåt som vattenskärs och lockas om möjligt.
Nya tilläggskrav på klossens utformning:

- Rätta sidor som kan komma i kontakt med banan. Kontaktns frktion minskas med hjul och glidlister.
- Tillverkad i 2 mm plåt som skärs ut med vattenskärare och formas genom bockning om möjligt.

I båda plåtarna skärs ett nyckelhål ut där axeln kan föras in, nyckelhålets form förhindrar att axeln roterar (nyckelhålet ses i mitten av båda plåtarna i Figur 48 och Figur 49). För att fixera axeln i plåtarna borras och gängas ett hål i axeln. En skruv och en bricka används för att dra plåtarna mot axeln och därmed fixeras axeln även i axiellriktning. Skruvförbandet fungerar även som en lösning mellan de båda plåtarna.

Hjulaxeln består av en rörstång och två skruvar. Hjulen monteras genom att en stång placeras mellan hjulaxelhålen i huvudplåten, stången gängas invändigt i båda ändarna (se Figur 51). På en delvis gängad skruv monteras hjulet och skruven träs igenom hålet i huvudplåten och skruvas in i stången, den ogängade delen av skruven fungerar som hjulaxel, den gångade delen fixerar hjulaxeln.
Figur 51 – Hjulaxel, gångad stång utan och med två skruvar (båda i genomkärning)

Hjulaxeln och hjulen monteras på huvudplåten och resultatet visas i Figur 52.

Figur 52 - Huvudplåt, stödplåt, hjulaxlar samt hjul ihop monterade

Dimensionering av axel, kedja samt kedjehjul

Axel dimensionering

Axeln dimensioneras genom att en hållfasthetsberäkning utförs av det värsta tänkbara lastfallet. Det är önskvärt att tillverka axeln i form av en solid stålcylinder med en standarddiameter då detta leder till mindre behov av bearbetning och därmed även lägre kostnad.

Den största belastningen uppnås precis innan axeln greppas av drivhjulets klor eftersom maximalt antal lastade plan då bärs upp av kedjorna och axeln. Axeln betraktas som fastinspänd i klossen och den belastas av två kedjekrafter (F_{ku} som är uppråtverkande kedjekraft samt F_{kn} som är den nedåtverkande kedjekraften) samt lasten från det egna lastplanet och det gods som lyfts. Enbart varannan kloss är utrustad med transportplan och är godsbärande. Detta för att det ska finnas tid att lasta godset på pålastningsplanet innan transportplanet kommer för att hämta det.

Maximalt antal plan (x) på lastsidan under 3 meters lyft med varannan kloss utrustad med lastplan där avstånd mellan axelcentrum (D_k) är uppskattningvis 400 mm: $x = \frac{3000}{2 \cdot D_k} = \frac{3000}{2 \cdot 400} = 3,75$ då n måste vara ett heltal sätts $x = 4$. Antal klossar blir då $x \cdot 2 = 8$.

Massuppskattnings enligt tidigare: $m_{kloss} = 4 \text{ kg}, m_{lp} = 2 \text{ kg}, m_{gods} = 20 \text{ kg}$

\[F_L = g \cdot (m_{gods} + m_{lp}) = 216 N \]
\[F_{kn} = g \cdot (7 \cdot m_{kloss} + 3 \cdot (m_{gods} + m_{lp})) = 923 N \]
\[F_{ku} = F_{kn} + F_L + g \cdot m_{kloss} = g \cdot (8 \cdot m_{kloss} + 4 \cdot (m_{gods} + m_{lp})) = 1178 N \]
Axeln ses som en fast inspänd konsolbalk. Lastfallen delas upp i tre elementarfall där axeln ses som en konsolbalk belastad med en last per fall, elementarfallen kan sedan superpositioneras för att beräkna den totala spänningen i axeln.

\[\sigma_{\text{max}} = \frac{|M_{\text{tot}}|}{W_b} = \frac{(M_1 + M_2 + M_3) \cdot z}{I_y} = \frac{(M_1 + M_2 + M_3) \cdot 64 \cdot D^2}{\pi D^4} = \frac{96,43 \cdot 32}{\pi D^3} \]

Säkerhetsfaktor \(sf = 3 \) ger axelns maximala tillåtna spänning: \(\sigma_{\text{max tillåten}} = \frac{\sigma_s}{sf} = \frac{210 \cdot 10^6}{3} = 70 \text{ MPa} \)
Lösning med avseende på axeldiameter: \[D = \frac{\sqrt[3]{9643 \cdot 32}}{\pi \cdot \sigma_{\text{max}} \text{ till åten}} = 0,024 \text{ mm} \]

Det är önskvärt att använda \(D = 30 \text{ mm} \) p.g.a. standardmått från leverantör på rundstång i stål.

\[D = 30 \text{ mm} \rightarrow \sigma_{\text{max}} = \frac{96,43 \cdot 32}{\pi \cdot 0,030^3} = 36,4 \text{ MPa} < 70 \text{ MPa} \]

Beräkningen visar att axeln är dimensionerad med god marginal för att kunna hantera de aktuella lasterna.

Axelns längd dimensioneras efter de komponenter som monteras på den.

Kedjehjul

Axeldiameter styr valet av kedjehjul samt anordning för kedjehjulslösning. För att fixera kedjehjulet väljs ett axel-navförband av typ ETP-CLASSIC 30 (se Figur 54). Förbandet för 30 mm axeldiameter är 52 mm långt och kräver att kedjehjulets innerdiameter är 41 mm, data ses i Tabell 6. Axelnavförbandet är tvådelat och fungerar genom att den ena delen är fylld med en hydraulisk vätska. Den andra delen skruvas in i den andra vilket leder till att trycket i vätskan ökar. Förbandet klämmer då åt kring axeln samt expanderar utåt mot navet som monterats på förbandet (i detta fall är navet kedjehjulets nav) och fixerar på så sätt axeln och navet.

![Figur 54 - Axel-navförband - ETP-CLASSIC 30](image)

Tabell 6 - ETP-CLASSIC 30 (ETP)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>41</td>
<td>57</td>
<td>52</td>
<td>420</td>
<td>28</td>
<td>14,7</td>
<td>0,30</td>
</tr>
</tbody>
</table>

![Figur 55 - Kedjehjul, ISO 2-108-20](image)

Tabell 7 - Kedjehjul ISO 2-108-20

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>81,19</td>
<td>86,0</td>
<td>41</td>
<td>93</td>
<td>38</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Kedja

Valet av kedjehjul bestämmer typ av kedja: Kedjehjulet ISO 2-108-20 är tillverkat för ISO 08 B-1 rullkedjor (data ses i Tabell 8). Kedjans maximala dynamiska belastning är 18 kN vilket är högre än det aktuella kravet på 2,6 kN.

Tabell 8 - Rullkedja ISO 08 B-1

<table>
<thead>
<tr>
<th>Delning [mm]</th>
<th>Total bredd [mm]</th>
<th>Höjd [mm]</th>
<th>Brottbelastning [N]</th>
<th>Vikt [kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,70</td>
<td>19,0</td>
<td>11,6</td>
<td>18 000</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Kedjelängden bestäms av kedjehjuletts diameter \(D_{kh} \) samt avståndet mellan två axelcentrum \(D_k \), vilket är samma avstånd som det mellan två kloccentrum på drivhjulet. Avståndet är beroende av drivhjulets radie \(R_h \) som i sin tur är beroende av den lägsta hämthöjden.

Avstånd mellan klossaxel centrum: \(D_k = R_h \cdot 2 \sin \frac{45°}{2} \) där \(R_h \approx 500 \) mm.

Kedjelängd: \(L_k = 2 \cdot D_k + 2\pi \cdot D_{kh} = 4 \cdot R_h \cdot \sin \frac{45°}{2} + 2\pi \cdot D_{kh} = 1275,5 \) mm

Antal länkar: \(n = \frac{L_k}{p} = \frac{1275,5}{12,70} = 100,433, n = heltal \rightarrow n = 100 \)

\(L_k = n \cdot p = 100 \cdot 12,70 = 1270 \) mm
Nytt R_h:

$$R_h = \frac{np-2\pi D_{kl}}{4 \sin \frac{45^\circ}{2}} = 496,41 \text{ mm} \approx 496 \text{ mm}$$

$$D_k = R_h \cdot 2 \sin \frac{45^\circ}{2} = 379,9 \text{ mm} \approx 380 \text{ mm}$$

Avståndet mellan två axelcentrum (D_k) blir då 380 mm.

Kedjans massa beräknas enligt: $m_{kedja} = 0,70 \cdot L_k = 0,89 \text{ kg}$

Kedjan blir därför av typ ISO 08 B-1, 100 länkar, 1270 mm lång och väger 0,89 kg.

Klolager

Klorna greppar två lager i form av ringar i lágfruktionsplast som monteras på axeln. Lagren positioneras på varsin sida om kedjehjulen. På så sätt erhålls ett billig lager mellan klo och lager som är slitstarkt och lätt att montera och byta ut då det slitits.

Lagret dimensioneras efter standard kullagerstorlek, på så sätt kan lagret ersättas med ett kullager vid behov. Ringarna tillverkas genom att rundstång med rätt ytterdiameter kapas i önskad längd varefter ett hål görs för axeln.

Tabell 9 - Klolager dimensioner (Kullager.se)

<table>
<thead>
<tr>
<th>D_{kl}</th>
<th>D_{axel}</th>
<th>D_{kly}</th>
<th>B_{kl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klolagrets inre diameter: [mm]</td>
<td>Klolagrets yttre diameter: [mm]</td>
<td>Klolagrets bredd: [mm]</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>62</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Figur 56 - Klolager

Fixering av klolager

För att fixera klolagren används spårringar av typ SGA (se Figur 57) anpassad för 30 mm:s axel diameter. Spårringarna placeras så att de tillsammans med kedjejulets förband hindrar klolagren från axiella rörelser. För att montera spårringarna behövs ett stick görs i axeln. Sticket ska vara 1,6 mm brett och minska axeldiametern till 28,6 mm. Data för spårringen ses i Tabell 10.
Axellängd
Axelns längd bestäms av längden på fasningen för montering i klossen \((L_{fas} = 28 \text{ mm})\) samt ett avstånd för att försäkra att komponenterna inte kommer i kontakt med banan detta inkluderar även sticket där en SGA spårring placeras \((L_{dists} = 30 \text{ mm})\). Mellan spårringarna ska två kloolager samt förbandet monteras, varje kloolagren kräver \(B_r = 16 \text{ mm}\), förbandet kräver \(L_2 = 52 \text{ mm}\), till detta tillförs ytterligare distanser (1 mm mellan komponenterna, sammanlagt 4 mm) för att underlätta vid montering och öka toleransen för felmontering och fel på komponenterna. Dessutom tillförs ytterligare en distans \((L_{dists} = 8 \text{ mm})\) från den andra SGA spårringens stick till en likadan fasning som den som förs in i klossen, denna fasning är dock kortare \((L_{fas} = 10 \text{ mm})\) och används till att montera transportplanet på axeln.

Axelns längdbehov blir därför:

\[
L_{axel} = L_{fas1} + L_{dists1} + 2B_r + L_2 + 4 + L_{dists2} + L_{fas2} = 164 \text{ mm}
\]

Axeln konstrueras som en 182 mm lång stålcyliner med 30 mm:s diameter. I vardera änden görs en 5 mm djup fasning av axeln som tillsammans med klossens och transportplanets utformning förhindrar att dessa roterar relativt varandra. Utöver fasningen av ändarna så borras och gängas ett hål med M12-gånga i vardera änden. Hållet används till montering i klossen och montering av transportplanet på axeln och ett skruvförband förhindrar rörelse i axiell riktning. På axeln görs dessutom två stick för att fixera de SGA spårringar som ska positionera de lager som klorna ska greppa axeln i. Axeln med komponenter monterade kan ses i Figur 58 och Figur 59.
Figur 58 - Axel med komponenter

Figur 59 - Axel med komponenter i genomskärning
7.2.2 Transportplans konstruktion

Transportplanet består av en gaffelkonstruktion som skall kunna monteras på klossens axel, följande krav ställs på konstruktionen av transportplanet:

- Monterbar på axeln. Montage som förhindrar glapp och glidning.
- Måste kunna monteras på axel efter att klossen monterats på resten av konstruktionen.
- Måste kunna transportera godset.
- Måste kunna passera genom på-/avlastningsplan och i samband med detta lasta på/av gods.

Transportplanet består av tre eller flera gafflar, antalet kan varieras beroende på utformningen av det gods som skall transporteras). Gafflarna är fästa i en plåt som i sin tur fästs på klossens axel. Gaffelklorna utformas som rätblock (se Figur 61) där två hål borras och gängas med M4-gängor i den ena änden för att möjliggöra att de skruvas fast mot plåten. Gaffelklornas längd är 400 mm, de är 6 mm breda och 20 mm höga. Plåten (se Figur 60) tillverkas i vattenskuren 10 mm plåt, med hål borrade för att gaffelklorna ska kunna monteras på plåten.

Monterbarheten på axeln åstadkoms genom att den nyckelhålslösning som användes för att fixera axeln i klossen återanvänds. Ett liknande nyckelhål skärs ut i den plåt som gaffelklorna fästs i, plåten kan då träs på axeln. För att förhindra rotation borras och gängas ett hål över fasningen i nyckelhålet. Genom hålet skruvas en skruv som drar plåten mot axeln och på så sätt motverkar rotation och glapp. Rörelser längs axeln förhindras genom att en bricka dras åt av en skruv som dras in i det gängade hålet på axeln. Skruven och brickan drar då plåten mot axeln (se Figur 63) och fixerar transportplanet.
7.2.3 Drivhjuls konstruktion

Drivhjulet ska utformas så att två klor på drivhjulet kan greppa klossaxeln och lyfta klossen från den vertikala banan på ena sidan och sedan runt kurvan och därefter placera den i den andra vertikala banan. Drivhjulet utrustas med åtta klopar som placeras med jämna mellanrum. Åtta klopar ger ett lagom avstånd mellan transportplanen om varannan kloss utrustas med ett transportplan.

Drivhjulets radie styrs av kravet på lägsta hämthöjd. Lyften ska kunna ske från 800 mm ovanför golvnivån. Detta leder till att R < 800 mm. Dessutom måste det finnas möjlighet att förflytta det nedre drivhjulet vertikalt för att på så sätt spänna kedjan av klossar. Storlekskravet på drivhjulet beräknades under kedjedimensioneringen. Då bestämdes radien(R_b) till 496 mm och avståndet mellan klocentrum (D_k) till 380 mm.

För att utnyttja produktionsutrustningen och materiallagret på bästa sätt är det önskvärt att konstruera drivhjulet i en form som är möjlig att skära ut i vattenskärare. Att skära ut detaljen i vattenskäraren leder till att endast ett bearbetningsmoment krävs. Dessutom blir monteringsbehovet litet och resultatet blir exakta än en detalj som består av flera delkomponenter som fogas samman.

För att erhålla två klor som greppar axeln samtidigt så monteras två utskurna drivhjul ihop. Som distanser mellan drivhulen används samma artikel som för hjulaxlarna på klossen. Denna distans leder till att kedjehjul och kedjor plats mellan klorna på de två drivhulen då de greppar axelns klolar (se Figur 64).

Figur 64 - Drivhjulsklor greppar axel

Infästning av drivhjul

Drivhjulet skruvas fast på ett svängkranslager av typ INA VLA20 0414 N. Svängkranslagret är ett lager där båda ringarna är utrustade med hål. Den ena ringen är utrustad med kuggar, i denna ring fästs drivhjulet, dess hål är M12-gängade. Den andra ringen monteras på en plåt somfästs i ramen med hjälp av distanser för att förskjuta drivhjulet från kugghjulen, hålen på denna ring saknar gänga.

Då svängkranslagret är kuggat så sker drivning genom att en elmotor driver ett kugghjul som roterar lagret och därmed även drivhjulet.
Tabell 11 - INA VLA20 0414 N (INA)

<table>
<thead>
<tr>
<th>Massa [kg]</th>
<th>Ytterdiameter [mm]</th>
<th>Modul</th>
<th>Z</th>
<th>Diameter till yttre hål [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29,5</td>
<td>503,3</td>
<td>5</td>
<td>99</td>
<td>455</td>
</tr>
</tbody>
</table>

Figur 65 - Svängkranslager, INA VLA20 0414

Dimensionering av drivhjulsklor

Drivhjuletets klor kan liknas vid kuggar på ett kedjehjul. Klorna dimensioneras efter samma formler och anpassas för den maximala tandluckan för att på så sätt att kompensera för framtida kedjetöjning och öka toleransen. Tandluckans radie styrs av klolagrets diameter \(D_{kly} = 62 \text{ mm} \), antalet tänder är \(Z = 8 \). Den maximala tandluckan beräknas enligt formler hämtade från Teknisk information sektion J från 2006 av Ramströms Transmission AB.

\[
d_1 = D_{kly} = 62 \text{ mm}
\]

\[
r_{1max} = 0,505 \cdot d_1 + 0,069 \cdot \frac{3}{\sqrt{d_1}} = 31,58 \text{ mm}
\]

\[
\gamma_{min} = 120^\circ - \frac{90^\circ}{Z} = 1,898
\]

\[
r_{2max} = 0,008 \cdot d_1 \cdot (Z^2 + 180) = 121,02 \text{ mm}
\]

Klorna utformas efter de beräknade radierna (se Figur 66).

Figur 66 - Klo, radier
Dimensionering av drivhjulsekra

Ekrarna dimensioneras för att ta kunna bära upp lasten från krosskedjan. Det är önskvärt att tillverka hjulet i plåt med maximal godstjocklek på 3 mm.

Två ihop monterade drivhjul skall kunna bära upp den maximala belastningen som beräknades under axeldimensioneringen \((F_{\text{last}} = F_{\text{ku}} = 1178 N)\). Varje drivhjul skall då klara av att belastas med \(F = \frac{F_{\text{last}}}{2} = \frac{1178}{2} = 589 N\). Ekern ses som fast inspänd vid svängkranslagret. Längden på ekern bestäms då av skillnaden mellan drivhjulet radie och infästning i svängkranslagret.

\[L_{\text{eker}} = 496 - \frac{455}{2} = 268,5 mm \]

För att avlasta ekrarna skapas en typ av fälg genom att ekrarna sammankopplas nära klorna. Avståndet till centrum av där fälgen möter ekern är:

\[L_{\text{fålg}} = L_{\text{eker}} - 90 = 268,5 - 90 = 178,5 mm \]

Förlagsvis görs ekern i form av en balk med rektangulärt tvärsnitt. Bredden sätts till 70 mm för att erhålla god stabilitet. Den maximala spänningen i ekern (utan fälg) beräknas med en förenklad hållfasthets beräkning, där ekern ses som fast inspänd i svängkranslagret.

\[M = L_{\text{eker}} \cdot F = 0,2685 \cdot 589 = 158,1 N \]

\[\sigma_{\text{max}} = \frac{|M_{\text{tot}}|}{W_{b}} = \frac{M_z}{I_y} = \frac{12 \cdot M_z}{b h^3} = \frac{12 \cdot 158,1 \cdot 0,035}{0,003 \cdot 0,07^3} = 64,6 M Pa \]

64,6 MPa < 70 MPa, vilket tyder på att ekrarna kommer att hålla för belastningen. Fälgen mellan ekrarna gör drivhjulet ännu bättre rustat för belastning.

Fälgen görs 37 mm bred och löper mellan ekrarna, strax bakom klorna på varje eker och gör drivhjulet styvare och stabilare.
7.2.4 Motor och växellåda

För att beräkna motoreffektbehovet för att lyfta godset friläggs drivhjulet för att belysa vilka laster som påverkar drivhjulet (se Figur 68). Pålastningssidan påverkas av det maxima antalet lastade plan \((F_{ku}) \). På avlastningssidan belastas drivhjulet av de avlastade planen \((F_{OL}) \). Dessa krafter motverkar varandra och det är därför deras differens \((F_L = F_{ku} - F_{OL}) \) som är av intresse för motordimensioneringen.

\[
\begin{align*}
\text{Figur 68 - Friläggning av drivhjul}
\end{align*}
\]

Maximalt antal plan \((x) \) på lastsidan under 3 meters lyft med varannan kloss utrustad med lastplan:
\[
x = \frac{3000}{2 - D_k} = \frac{3000}{2 - 380} = 3,95 \text{ då } n \text{ måste vara ett heltal sätts } x = 4
\]

\[
F_{ku} = g \cdot \left(2x \cdot m_{kloss} + x \cdot (m_{gods} + m_{lp}) \right) = 1178 N \text{ enligt tidigare beräkningar.}
\]

\[
F_{OL} = g \cdot \left(2x \cdot m_{kloss} + x \cdot m_{lp} \right) = 392,8 N
\]

\[
F_L = F_{ku} - F_{OL} = g \cdot x \cdot m_{gods} = 785,6 N
\]

Momentkrav:
\[
M = F_L \cdot R_h = 391,2 Nm
\]

Effektkrav:
\[
P = M \cdot \omega = F_L \cdot R_h \cdot \frac{v}{R_h} = F_L \cdot v = 392,8 W
\]

Lämplig motoreffekt \(P_{motor} = 0,55 kW \) kompenserar för effektförluster.

Momentkravet är stort, detta ger ett behov av en transmission för att en motor med lägre moment ska kunna användas. Detta är önskvärt då motorer med lägre moment med växlar är både billigare och mindre än motorer med stor momentkapacitet. Transmissionen utformas enligt nedan (se Figur 69).

\[
\begin{align*}
\text{Figur 69 – Transmission för drivhjul}
\end{align*}
\]
Nedväxling av moment sker med hjälp av svängkranslager av typ INA VLA20 0414 N som har följande egenskaper: $z_3 = 99, m = 5$

Mot svängkranslagrets kugg monteras ett kugghjul från Ramströms Transmission AB (se Tabell 12) med 12 tänder, $z_2 = 12, m = 5$. Kugghjulet väljs för att växla ner momentbehovet maximalt.

Tabell 12 – Kugghjul M5Z12

<table>
<thead>
<tr>
<th>Modul</th>
<th>Antal tänder</th>
<th>Ytterdiam. [mm]</th>
<th>Delningsdiam. [mm]</th>
<th>Navdiam. [mm]</th>
<th>Axelhåldiam. [mm]</th>
<th>Tandbredd [mm]</th>
<th>Navbredd [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>70</td>
<td>60</td>
<td>45</td>
<td>20</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

\[M_3 = M, \quad n_3 = \frac{30 \cdot \omega}{\pi} = \frac{30 \cdot v}{\pi \cdot R_h} = 9,6 \text{ rpm} \]

\[M_2 = i_2 \cdot M_3, \quad n_2 = n_3 \cdot i_2 \]

\[i_2 = \frac{z_3}{z_2} = 8,25 \]

Detta leder till att den elektriska kuggväxelmotorn har följande prestandakrav:

\[P = 392,8 \text{ W}, \quad M_2 = 47,2 \text{ Nm}, \quad n_2 = 79,4 \text{ rpm} \]

En lämplig rak kuggväxelmotor väljs ut. R07DRS71M4 (se Figur 70) från SEW Eurodrive vars egenskaper presenteras nedan (se Tabell 13).

Tabell 13 – SEW R07DRS71M4 (SEW Eurodrive, 2012)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R07DRS71M4</td>
<td>0,55</td>
<td>81</td>
<td>65</td>
<td>16,99</td>
<td>1,3</td>
<td>1380</td>
<td>11</td>
</tr>
</tbody>
</table>

Figur 70 - Kuggväxelmotor, R07DRS71M4

Servicefaktor

Med kontinuerlig drift (inga starter/stopp under dagen) och drift i 8 h/dag erhålls krav på en driftsfaktor på 0,8 vilket motorn är dimensionerad för att klara.

Motorinfästning

Motorn monteras genom att en adapterplatta svetsas fast på ramen, i adapterplattan borras en hålbild som stämmer överens med motorns.
7.2.5 Transportbana

Transportbanans konstruktion ska uppfylla följande krav.

- Banan ska utformas så att klossarnas axel kan rotera kring sin egen axel.
- Klossarna måste kunna snedställas så att hjulen endast är i kontakt med den främre eller bakre väggen.
- Den främre delen av banan ska vara delad för att axel skall kunna sticka ut.
- Banan måste vara monterbar på ramen.
- Banan ska vara justerbar i sidled för att på så sätt tillåta anpassningen mot övriga komponenter och då öka konstruktionens tolerans.

Figur 71 - Transportbanans tvärsnitt med kloss, vy från ovan

Plåten som utgör banans inre sida (den av de främre plåtarna som är närmast drivhjulet) görs kortare än den plåt som utgör banans yttre del. På så sätt får klossen stöd av banan ända till dess axel greppas av drivhjulets klor (se Figur 72).

Figur 72 – Transportbana (lila), övre ände

Transportbanans längd bestäms av höjden på lyftet som maskinen ska utföra. Den längsta plåten som företagets utrustning klarar av att skära ut och bocka är 3000 mm, vilket också är den maximala lyfthöjden.
7.2.6 Ramkonstruktion

Ramkonstruktionen ska bära upp konstruktionen och tillåta att komponenter monteras på den. Ramen tillverkas i tre moduler, två kurvmoduler och en rak modul (se Figur 73). Där kurvmodulerna är likadana oavsett lyfthöjd, den raka modulens längd kan ändras vid behov av olika lyfthöjder. Längdändringen sker i intervall av axelavståndet mellan två klossar, detta för att kedjorna ska vara spända.

Figur 73 - Rammoduler, kurvmodul till vänster, rak modul till höger

Båda modultyperna består av fyra vertikala stålrör med fyrkantsprofil (40x40 mm med 2 mm godstjocklek). Mellan de vertikala rören svetsas horisontella stålrör med fyrkantsprofil (30x30 mm med 2 mm godstjocklek). Rammodulerna görs styvare genom att snedställda stag (fyrkantsprofil, 20x20 mm 2 mm godstjocklek) adderas till modulerna.

För att sammanföra modulerna till en komplett produkt har ett gemensamt gränssnitt för montering tagits fram. På modulernas ramändar svetsas likadana kvadratiska stålplattor (80x80 mm med 3 mm godstjocklek) fast. I varje platta borras fyra hål för att rammodulerna ska kunna bultas ihop med hjälp av skruvförband. För att öka toleransen för hålbilden görs hålen på den ena sidans plattor avlånga. På så sätt kan eventuella tillverkningsfel kompenseras (se Figur 74).

Figur 74 - Gränssnitt för rammodulmontering, cirkulära hål till vänster, avlånga hål till höger
Montering av övriga komponenter på ramen sker genom att adapterplattor (liknande de plattor som användes som gränssnitt för att montera ihop rammodulerna) svetsas på ramen och möjliggör att komponenterna skruvas fast mot ramen.

Ramstabilisering
Ramen utrustas med en form av fötter för att stabilisera konstruktionen. Ett 1520 mm lång balk med fyrkantsprofil (60x60 mm, 6 mm godstjocklek) placeras horisontellt och på detta svetsas tre 65 mm långa rör med samma profil samt två plattor för infästning av den understa rammodulen som sedan svetsas på den horisontella balken (se Figur 76). Ytterligare stabilitet erhålls genom att stag (balk med fyrkantsprofil 40x40 mm, godstjocklek 2 mm) svetsas mellan fotbalken och rammodulen.
7.2.7 På- och avlastningsplan
En rad olika på- och avlastningsplan tas fram för att kunna anpassa funktionen bättre till godsets utformning samt för att erhålla önskad in-/utmatningsriktning. Gemensamt för lösningarna är att lastplanet ska kunna passera igenom på-/avlastningsplanet och därmed lasta på eller av gods.

På- och avlastningsriktningar
Konstruktionen har möjlighet att mata in och ut gods i två olika riktningar, in och ut från sidorna samt in och ut från framsidan (se Figur 77).

Sidomatning
Nedan presenteras två lösningar för på-/avlastningsplanets utformning vid sidomatning. Samtliga lösningar fästs med skruvförband.

Rullar (drivna samt odrivna)
Rullarna är cylindrar som är infästa i ena änden och lagrade så att de roterar kring sin egen axel utan stora friktionsförluster. Rullarna är även tillgängliga i form av eldrivna rullar, de är då utrustade med en elmotor inuti rullen. Elmotorn roterar rullen och gör det då möjligt för den att förflytta gods. Vid inmatning skjuts godset in av det anslutande transportbandet och det kan då vara användbart med odrivna rullar med ett kompletterande stop som ser till att godset stannar på planet. Vid utmatning erhålls avskjutning till det anslutande transportbandet genom att drivna rullar används för att skjuta av godset då det lastats på avlastningsplanet. Se Figur 78 för illustration.

Lutande plan
På och avlastning kan även ske genom att planet görs lutande, på så sätt sker på- och avlastning med hjälp av gravitationen. Det kan antingen ske genom att rullarna monteras snedställt eller att de ersätts av axlar utrustade med hjul (se Figur 79). Hjulen är samma typ som används till klossen.

Figur 77 - Bild med möjliga inmatningsriktningar (röda) och utmatningsriktningar (blåa)

Figur 78 - På-/avlastningsplan med rullar

Figur 79 - På och avlastningsplan med snedrullar
Frontmatning

Nedan presenteras lösningar för på-/avlastningsplanets utformning vid frontmatning. Samtliga lösningar fästs med skruvförband.

Plant hjulplan för inmatning

Genom att hjulen placeras i frontmatningsriktningen åstadkoms ett pålastningsplan som tillåter frontmatning. För att undvika att godset rullar för långt placeras stopp i änden av planet. Hjulen är samma typ som används till klossen.

Lutande hjulplan för utmatning

Ett plan som åstadkommer utmatning i frontriktningen erhålls genom att hjulen placeras i form av ett lutande plan så att godset matas ut med hjälp av gravitationen (se Figur 81). Hjulen är samma typ som används till klossen.
Fäste för på-/avlastningsplan på ramen

Lastplanslösningarna monteras med skruvförband på en plåt (495x200x2 mm). En likadan plåt används för att skapa ett klämförband, genom att plåternas hörn bultas ihop och de kan då klämma åt runt den ställning som skall bära upp på- och avlastningsplanen (se Figur 82, på bilden visas ej hålbilden för på-/avlastningsplanen då de olika lösningarna kräver olika hålbild). Användandet av ett klämförband gör att planens placering kan justeras i sideled.

![Figur 82 - Monteringsplåt med klämförbandsfunktion](image)

För att kunna placera på-/avlastningsplanen på rätt position behövs någon form av ställning som gör det möjligt att montera planen på ramen. Detta åstadkoms genom en ställning som förbinder planen med ramen.

Ställningen kopplas till ramen genom att fästplåtar (100x760x2 mm) svetsas på sidorna av ramkonstruktionen. I fästplåtarna borras hål med jämna mellanrum för att på så sätt göra ställningen justerbar i höjdled och på så sätt anpassningsbar till höjden av transportbanden.

![Figur 83 - Fästplåtar och vinkelstål](image)

På fästplåtarna på varje sida av ramen monteras vinkelstål med skruvförband, även vinkelstålen kan utrustas med flera hål för att på så sätt styra hur lång förskjutningen av på- och avlastningsplanen är från ramen. Olika längder åstadkoms då genom ett val av vilka hål som används till skruvförbandet.

Mellan vinkelstålen placeras två fyrkantsrörs, dessa fyrkantsrörs erbjuder ytor för montering av på-/avlastningsplanets klämförband och justering av planen kan ske genom att klämförbandet förflyttas.
längs fyrkantsröret. En hållare för fyrkantsröret skruvas mot ovansidan av vinkelstålet. Fyrkantsröret skruvas fast i hållaren.

7.2.8 Säkerhet
För att undvika eventuella personskador kapslas konstruktionen in i med galler som skruvas fast på ställningen som används till att montera på- och avlastningsplanen. På så sätt kan inte personer som vistas i närheten av konstruktionen komma i kontakt med några rörliga delar.

En ytterligare säkerhetsanordning installeras i form av en nödstoppknapp. På så sätt kan maskinens funktion avbrytas enkelt vid behov.