Alternative separation of exchange and correlation in density-functional theory

Rickard Armiento and Ann E. Mattsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
http://dx.doi.org/10.1103/PhysRevB.68.245120
Copyright: American Physical Society
http://www.aps.org/

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-86300
Alternative separation of exchange and correlation in density-functional theory

R. Armiento*
Department of Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden

A. E. Mattsson†
Computational Materials and Molecular Biology, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

(Received 15 August 2003; published 30 December 2003)

It has recently been shown that local values of the conventional exchange energy per particle cannot be described by an analytic expansion in the density variation. Yet, it is known that the total exchange-correlation (XC) energy per particle does not show any corresponding nonanalyticity. Indeed, the nonanalyticity is here shown to be an effect of the separation into conventional exchange and correlation. We construct an alternative separation in which the exchange part is made well behaved by screening its long-ranged contributions, and the correlation part is adjusted accordingly. This alternative separation is as valid as the conventional one, and introduces no new approximations to the total XC energy. We demonstrate functional development based on this approach by creating and deploying a local-density-approximation-type XC functional. Hence, this work includes both the theory and the practical calculations needed to provide a starting point for an alternative approach towards improved approximations of the total XC energy.

Kohn-Sham (KS) density-functional theory\(^1\) (DFT) is a successful scheme for electron energy calculations. The long term goal is chemical accuracy for chemical and material properties without the need of a careful problem analysis prior to the calculation. This would enable computerized optimization of chemicals, materials, and compounds to an extent that is not possible today. The accuracy of the KS-DFT scheme is limited by the approximation for the exchange–tent that is not possible today. The accuracy of the KS-DFT prior to the calculation. This would enable computerized properties without the need of a careful problem analysis term goal is chemical accuracy for chemical and material successful scheme for electron energy calculations. The long orbitals of non-interacting electrons, to make that system’s electron density \(n(r)\) consistent refining an effective potential

\[
E_{xc}[n(r)] = \int n(r) \varepsilon_{xc}(r;[n]) \, dr. \tag{1}
\]

An approximation for \(\varepsilon_{xc}(r;[n])\) is referred to as a “DFT functional.” It is common to further separate this quantity as \(\varepsilon_{xc} = \varepsilon_x + \varepsilon_c\), where the separation is defined from the requirement that \(\varepsilon_x\) should give the exchange energy \(E_x\) when integrated in Eq. (1). The quantity \(E_x\) can be implicitly defined through the conventional choice\(^6\) of the exchange energy per particle \(\varepsilon_x^{\text{arch}}\). In rydberg atomic units (a.u.), for a spin-unpolarized system

\[
\varepsilon_x^{\text{arch}} = -2 \int \frac{1}{n(r)|r-r'|} \left| \sum \nu \psi_\nu(r) \psi_\nu^*(r') \right|^2 \, dr'. \tag{2}
\]

Recent work\(^3\) shows that local values of \(\varepsilon_x^{\text{arch}}\) cannot be described by an analytic expansion in the density variation. Yet, it is known that the total XC energy density does not show any corresponding nonanalyticity. Hence, this is not a problem inherent to the underlying physics, but artificially created. In the following we present a solution to this problem by separating the XC energy in an alternative way and show this solution to hold for systems of generic effective potentials. Finally the ideas are placed in the context of functional development through the construction of a LDA-type functional. We perform benchmark calculations using an implementation of this functional. Taken together, these parts provide a complete starting point for an alternative approach towards XC functionals that avoids the deficiency of the traditional separation in exchange and correlation.
If the long-range Coulomb potential is responsible for the nonanalytical behavior of ϵ_{xc}^{irh}, then the insertion of a traditional screening factor of Yukawa type, $e^{-k_Y|\mathbf{r}-\mathbf{r}'|}$, into the integration of Eq. (2), should give a well-behaved quantity $\epsilon_{xc}^{irh}|_{k_Y=\infty}$. This introduces k_Y as the Yukawa wave vector, which effectively is an inverse screening length for the Coulomb potential that may be dependent on \mathbf{r}. A corresponding correlation term $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ is defined by the relation $\epsilon_{xc}^{irh}|_{k_Y=\infty} + \epsilon_{xc}^{irh}|_{k_Y=0} = \epsilon_{xc}^{irh}$. This can be seen as moving a term from correlation to exchange,

$$\epsilon_{xc}^{irh}|_{k_Y=\infty} = 2 \int \frac{1 - e^{-k_Y|\mathbf{r}-\mathbf{r}'|}}{n(\mathbf{r})|\mathbf{r}-\mathbf{r}'|} \left| \sum_r \psi_x(\mathbf{r}) \psi^*_x(\mathbf{r}') \right|^2 d\mathbf{r}',$$

and is an alternative way of partitioning ϵ_{xc}^{irh} without introducing any new approximations. Screened exchange has been used previously. In the Hartree-Fock scheme, exchange is known to have singularities originating from the separation in exchange and correlation. Screening the Hartree-Fock exchange has been shown to remove these singularities. In DFT, several recent functionals and schemes have been constructed based on screened exchange expressions. However, in these works the long-range part has either been thrown away or handled with another approximative scheme. The present approach is fundamentally different in that the screening of the exchange is compensated for by redefining correlation to keep the total ϵ_{xc}^{irh} constant. This alternative separation provides as good a starting point for functional development as the commonly used separation into unscreened exchange, ϵ_{xc}^{irh}, and conventional correlation, ϵ_{xc}^{irh}.

In Eq. (3) the limit $k_Y\rightarrow 0$ approaches the conventional partitioning between exchange and correlation (i.e., $\epsilon_x \rightarrow 0$). In the following we use a scaled k_Y, $\tilde{k}_Y = k_Y/p_F$ with $p_F = \sqrt{\mu - v_{eff}(\mathbf{r})}$, where μ is the chemical potential. Our aim is now to show that this alternative separation removes the found problem for exchange, while not introducing any change in the combined XC energy.

The term of lowest order in density variation of $\epsilon_{xc}^{irh}|_{k_Y=\infty}$, i.e., LDA for the exchangelike term, is obtained from inserting the KS orbitals for the uniform electron gas into $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ [Eq. (4)]. Substituting $p_F = \sqrt{3/2\pi^2n(\mathbf{r})}$ gives

$$\epsilon_{xc}^{LDA}|_{k_Y=\infty}(\mathbf{r}) = \left[-\frac{3}{2\pi^2} \right] \frac{3}{2\pi^2n(\mathbf{r})} \frac{1}{\tilde{k}_Y} I_0(\tilde{k}_Y),$$

$$I_0(\tilde{k}_Y) = \left[24 - 4\tilde{k}_Y^2 + 32\tilde{k}_Y\arctan(2\tilde{k}_Y)
+ \tilde{k}_Y^2(12 + \tilde{k}_Y^2)\ln(4\tilde{k}_Y^2 + 1) \right]/24.$$

For each \mathbf{r} point with density $n(\mathbf{r})$, the value of $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ for a uniform electron gas with the same density is used. In the limit $\tilde{k}_Y \rightarrow 0$, this approaches regular LDA exchange.

We numerically study $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ using the Mathieu gas (MG) family of electron densities. These densities are parametrized by two dimensionless quantities $\tilde{\lambda}$ and $\tilde{\rho}$, and are obtained from a noninteracting system of electrons moving in $v_{eff}(\mathbf{r})$

$= \mu \bar{\lambda} \left[1 - \cos(2\sqrt{\mu \bar{\rho}}) \right]$. The limit of slowly varying densities is found as $\tilde{\lambda}, \tilde{\rho} \rightarrow 0$. To simplify the analysis of numerical data in this two-dimensional limit, the parameters are combined in a nontrivial way into a new parameter α, with the slowly varying limit $1/\alpha \rightarrow 0$. The MG family of densities was also used when demonstrating the nonanalytical behavior of ϵ_{xc}^{irh} in Ref. 3. We use the computer program in that reference, modified for Yukawa screening, to calculate $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ for $1/\alpha \rightarrow 0$ in specific \mathbf{r} points, for several specific \tilde{k}_Y. The results are investigated based on the expansion of $\epsilon_{xc}^{irh}|_{k_Y=\infty}$ in density variation,

$$\epsilon_{xc}^{irh}|_{k_Y=\infty}(\mathbf{r}) = \epsilon_{xc}^{LDA}|_{k_Y=\infty}(\mathbf{r}) + a_{xc}^{irh}|_{k_Y=\infty}(\mathbf{r}) + b_{xc}^{irh}|_{k_Y=\infty}(\mathbf{r}) + \ldots,$$

$$s = \frac{\nabla^2 n(\mathbf{r})}{(3 \pi^2)^{1/3} n^{4/3}(\mathbf{r})}, \quad q = \frac{\nabla^2 n^2(\mathbf{r})}{(3 \pi^2)^{2/3} n^{5/3}(\mathbf{r})}.$$

Figure 1 confirms this expansion for $\tilde{k}_Y > 0$ with the dimensionless scalars $a_{xc}^{irh}|_{k_Y=\infty}(\mathbf{r})$ and $b_{xc}^{irh}|_{k_Y=\infty}(\mathbf{r})$, being functions of the value of \tilde{k}_Y. The behavior is consistent for all investigated values of $\tilde{\lambda}/\tilde{\rho}^2$, i.e., convergence is independent of the path through the two-dimensional MG parameter space. However, for $\tilde{k}_Y = 0$ the expansion of Eq. (7) is not confirmed (this was a major point of Ref. 3).

A derivation of the convergence points for curves with $\tilde{k}_Y > 0$ in Fig. 1 for systems of generic $v_{eff}(\mathbf{r})$ follows. We start from an expansion of the exchange energy per particle in p_F from Refs. 7 and 8 with all spatial integrations done,

$$\epsilon_{xc}^{irh}|_{k_Y=\infty} = -\frac{1}{n} \left[\frac{p_F^4}{2\pi^3} \frac{\nabla^2 p_F^2}{18\pi^3} I_B + \frac{(\nabla p_F^2)^2}{24\pi^2 p_F^4} I_C + \ldots \right],$$

$$I_B = [40 + 12\tilde{k}_Y^2 - 6\tilde{k}_Y^2(4 + \tilde{k}_Y^2)\arctan(2\tilde{k}_Y)
- (4 + \tilde{k}_Y^2)\ln(4\tilde{k}_Y^2 + 1) / (16 + 4\tilde{k}_Y^2)],$$

$$I_C = [\tilde{k}_Y^2(4 + \tilde{k}_Y^2)\arctan(2\tilde{k}_Y) - 4 - 2\tilde{k}_Y^2
- 2(\tilde{k}_Y^2 - 4) / (\tilde{k}_Y^2 + 4)] / (8 + 2\tilde{k}_Y^2).$$

Using the expansion of the density in p_F from Ref. 8, Eq. (9) can be recast into the form of Eq. (7), with general coefficients as functions of \tilde{k}_Y,

$$a_{xc}^{irh}|_{k_Y=\infty}(\tilde{k}_Y) = \frac{8}{27} \left[\frac{3}{4} - \frac{1}{3} + \frac{1}{2} \frac{I_B}{I_0} \right],$$

$$b_{xc}^{irh}|_{k_Y=\infty}(\tilde{k}_Y) = \frac{8}{27} \frac{I_B}{I_0} - \frac{4}{9}.$$

The values extracted from the numerical data from the MG family of densities (see Fig. 1) are in excellent agreement with these derived coefficients. This shows that our numerical data illustrate the behavior of a general system. When the generalized expansion approximation (GEA) gradient coefficient was established,3–5 there was an order of limits prob-
lem between the limit \(\bar{k}_Y \rightarrow 0 \) and the limit of slowly varying electron densities. In contrast, our calculations show that an expansion involving both the gradient and the Laplacian, Eq. (7), cannot describe the alternative separation energy per particle regardless of the order of the limits. The solution is instead to use the alternative separation given by Eq. (4), keeping \(\bar{k}_Y > 0 \).

The alternative separation needs to be substantiated to be useful. In the following we show how to create a LDA-type functional by approximating both the exchange-like and correlation-like terms. The reasons this derivation is important are that (i) it shows how functional development using the alternative separation use very similar methods to conventional functional development; (ii) when deployed, its numerical accuracy shows that the alternative separation indeed provides an alternative approach to conventional functional development; (iii) it provides a starting point for further refined approximations of the \(\epsilon^{(r)}_{(x-r)} \) and \(\epsilon^{(r)}_{(c-r)} \) parts.

The expression for \(\epsilon^{(x+y)}_{(x-y)} \) [Eq. (5)] has one free parameter \(\bar{k}_Y \) for which a natural choice is a scaled Thomas-Fermi wave vector \(\overline{k_{TF}} = k_{TF}/p_{TF} = \sqrt{4\pi r_s/\gamma} \), where \(\gamma = (9\pi/4)^{1/3} \) and \(r_s = \gamma/[3\pi^2 n(r)]^{1/3} \) (a.u.) is a \(r \) dependent density parameter. A generalized choice is

\[
\overline{k_Y} = \sqrt{\alpha r_s}.
\]

The Yukawa exchangelike term, Eq. (5), is expanded around \(r_s = 0 \) and \(\alpha \), giving

\[
\epsilon^{LDA}_{(x-y)} \rightarrow -\frac{3\gamma}{2\pi} \left(\frac{1}{r_s} - 2\pi \sqrt{a} \frac{1}{\sqrt{r_s}} + a \left[\ln 2 - \frac{1}{2} \ln a \right] \right),
\]

where \(a = c_0 - c_4 \), \(d_0 \), and \(d_1 \) are scalars. Setting \(a = c_0/(3\gamma) \) makes the leading logarithmic term compatible with Eq. (15). It is now easy to produce a suitable expression to model \(\epsilon^{LDA}_{(c-y)} \),

\[
\epsilon^{LDA}_{(c-y)} \equiv -\frac{3\gamma}{2\pi} \left(4 \frac{1}{9a} \frac{1}{r_s} - \frac{8}{15a^2 r_s^2} \right).
\]

The expansions for the total XC energy of a uniform electron gas are known. Setting \(r_s = 0 \),

\[
\epsilon^{\text{unif}}_{x-c} = - (3\gamma)/(2\pi r_s) + c_0 \ln r_s - c_1 + c_2 r_s \ln r_s,
\]

\[
\epsilon^{\text{unif}}_{x-c} \rightarrow - (3\gamma)/(2\pi r_s) - d_0 (\ln r_s) + d_1 (\ln r_s)^2,
\]

where \(c_0 - c_4 \), \(d_0 \), and \(d_1 \) are scalars. Setting \(a = c_0(3\gamma) \) makes the leading logarithmic term compatible with Eq. (15). It is now easy to produce a suitable expression to model \(\epsilon^{LDA}_{(c-y)} \),

\[
\epsilon^{LDA}_{(c-y)} = \frac{b_1}{r_s} + \frac{b_2}{r_s^{3/2} + b_3 r_s + b_4 r_s^{3/2}},
\]

where \(b_1 = -1.71478 \), \(b_2 = -7.57697 \), \(b_3 = 5.13452 \), \(b_4 = 10.7168 \). In Table 1 it is compared with the CA data and other XC parametrizations currently in use. In the fitting, YLDA1 uses one fitting parameter less than the other parametrizations but still performs at least as well as Perdew-Zunger correlation (PZ) and approximately as well as Vosko-Wilk-Nusair correlation (VWN).
TABLE I. (a) Correlation from original CA data (in mRy) and from different parametrizations of this data, compared to $\epsilon_{\text{ex}} - \epsilon_{\text{xc}}$ for the YLDA's. (b) Differences between the values in (a), and the CA data, scaled with the errors in the CA data. An absolute value ≤ 1 means that the parametrization is within the error bars of the CA data and can be considered exact.

(a)

<table>
<thead>
<tr>
<th>r_s</th>
<th>CA</th>
<th>PZ</th>
<th>VWN</th>
<th>PW</th>
<th>YLDA1</th>
<th>YLDA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>119.3</td>
<td>120.0</td>
<td>119.5</td>
<td>120.5</td>
<td>120.3</td>
</tr>
<tr>
<td>2</td>
<td>90.2</td>
<td>90.18</td>
<td>89.57</td>
<td>89.52</td>
<td>89.70</td>
<td>90.05</td>
</tr>
<tr>
<td>5</td>
<td>56.3</td>
<td>56.68</td>
<td>56.27</td>
<td>56.43</td>
<td>56.21</td>
<td>56.43</td>
</tr>
<tr>
<td>10</td>
<td>37.22</td>
<td>37.137</td>
<td>37.089</td>
<td>37.145</td>
<td>37.044</td>
<td>37.104</td>
</tr>
<tr>
<td>20</td>
<td>23.00</td>
<td>22.995</td>
<td>23.095</td>
<td>23.060</td>
<td>23.094</td>
<td>23.091</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>r_s</th>
<th>PZ</th>
<th>VWN</th>
<th>PW</th>
<th>YLDA1</th>
<th>YLDA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.31</td>
<td>0.47</td>
<td>-0.02</td>
<td>0.94</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>-0.07</td>
<td>-1.61</td>
<td>-1.73</td>
<td>-1.27</td>
<td>-1.40</td>
</tr>
<tr>
<td>5</td>
<td>3.48</td>
<td>-0.62</td>
<td>1.03</td>
<td>-1.18</td>
<td>1.01</td>
</tr>
<tr>
<td>10</td>
<td>-1.58</td>
<td>-2.54</td>
<td>-1.43</td>
<td>-3.44</td>
<td>-2.23</td>
</tr>
<tr>
<td>20</td>
<td>0.11</td>
<td>3.24</td>
<td>2.06</td>
<td>3.20</td>
<td>3.08</td>
</tr>
<tr>
<td>50</td>
<td>-6.55</td>
<td>0.96</td>
<td>-1.21</td>
<td>2.36</td>
<td>-2.01</td>
</tr>
<tr>
<td>100</td>
<td>-7.15</td>
<td>-1.88</td>
<td>0.66</td>
<td>-1.83</td>
<td>0.84</td>
</tr>
</tbody>
</table>

An improved YLDA is given by the additional requirements of an independent $r_s \ln r_s$ term and a zero coefficient for $\sqrt{r_s}$ in the small r_s limit. This is achieved through extending \bar{k}_Y in Eq. (14) to

$$\bar{k}_Y = \sqrt{a r_s^2 + b r_s^{3/2}}$$

and adding two parameters to the $\epsilon_{\text{LDA}}^{(c-Y)}$ part,

$$\epsilon_{\text{LDA}}^{(c-Y)} = \frac{e_1 r_s + e_2 y r_s + e_3}{r_s^2 + e_4 r_s^{3/2} + e_5 y r_s + e_6 y r_s^{3/2}}.$$ \hspace{1cm} (22)

Hence four parameters are fitted to the CA data. This gives YLDA2 (Ref. 16) with $a = 0.135718$, $b = 0.0426055$, $e_1 = -1.81942$, $e_2 = 2.74122$, $e_3 = -14.4288$, $e_4 = 0.537230$, $e_5 = 1.28184$, $e_6 = 20.4080$. The performance of YLDA2 is comparable with the Perdew-Wang correlation (PW) (Table I).

To make sure that there is no major difference between the YLDA’s and the other LDA XC functionals we have calculated the surface energy of jellium surfaces using self-consistent densities obtained by the PW correlation. Ranging over surface systems with constant bulk $r_s = 2, 2.07, 2.30, 2.66, 3, 3.28, 4, 5, \text{and } 6$, we find no systematic differences. They all differ from each other in the order of 0.1%, with a total error in the order of a few percent.\(^\text{17}\) Furthermore, self-consistent calculations for bulk silicon\(^\text{18}\) give a lattice constant of 5.38 Å, and a bulk modulus between 95.2 and 95.6 GPa, regardless of parameterization; i.e., PZ, VWN, PW, YLDA1, YLDA2 give essentially equal values.

In this paper we have (i) established that the lack of analytical behavior in the slowly varying limit of $\epsilon_{\text{ex}}^{\text{vdW}}$ in the MG model is caused by the long rangedness of the Coulomb potential; (ii) shown that this is a general artifact of the conventional definition of $\epsilon_{\text{ex}}^{\text{vdW}}$, and is not restricted to limits taken through MG densities; (iii) shown that an analytical behavior can be obtained by using a nonconventional separation of exchange and correlation within ϵ_{xc}; (iv) derived and implemented a LDA-type functional based on this alternative separation. This LDA-type functional provides a starting point for further approximate functionals.

We thank Walter Kohn for inspiring discussions. This work was partly funded by the Göran Gustafsson Foundation and the project ATOMICS at the Swedish research council SSF. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.
Since none of the correlation functionals in use today (Ref. 11) use the proper value of c_1 [found as late as 1992 (Ref. 13)], we here give:

$$c_0 = 2 \frac{1 - \ln 2}{\pi^2}, \quad c_1 = \frac{22 + 32 \ln 2 - 24 \ln^2 2 + 9 \zeta(3)}{6 \pi^2} - \frac{1}{2} - \ln 2 + \frac{1}{3} \ln 4 \left(\frac{\pi y}{2} \right) - \frac{1}{2} + (R),$$

where $\zeta(x)$ is the Riemann Zeta function. $\langle R \rangle = \int_{-\infty}^{\infty} R^2(u) \ln R(u) du \int_{-\infty}^{\infty} R^2(u) du$ and $R(u) = 1 - u \arctan(1/u)$. Numerical values to six relevant digits are $c_0 = 0.0621814$, and $c_1 = 0.0938406$ (a.u.).