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Abstract 
 

 

  
Automotive companies are exposed to tough competition and therefore strive to design 
better products in a cheaper and faster manner. This challenge requires continuous impro-
vements of methods and tools, and simulation models are therefore used to evaluate every 
possible aspect of the product. Optimization has become increasingly popular, but its full 
potential is not yet utilized. The increased demand for accurate simulation results has led 
to detailed simulation models that often are computationally expensive to evaluate. Meta-
model-based design optimization (MBDO) is an attractive approach to relieve the comput-
ational burden during optimization studies. Metamodels are approximations of the detailed 
simulation models that take little time to evaluate and they are therefore especially att-
ractive when many evaluations are needed, as e.g. in multidisciplinary design optimization 
(MDO). 

In this thesis, state-of-the-art methods for metamodel-based design optimization are 
covered and different multidisciplinary design optimization methods are presented. An 
efficient MDO process for large-scale automotive structural applications is developed 
where aspects related to its implementation is considered. The process is described and 
demonstrated in a simple application example. It is found that the process is efficient, 
flexible, and suitable for common structural MDO applications within the automotive 
industry. Furthermore, it fits easily into an existing organization and product development 
process and improved designs can be obtained even when using metamodels with limited 
accuracy. It is therefore concluded that by incorporating the described metamodel-based 
MDO process into the product development, there is a potential for designing better pro-
ducts in a shorter time. 

 

Keywords: metamodel-based design optimization (MBDO); multidisciplinary design 
optimization (MDO); automotive structures  
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 Introduction 
1

 

  
Automotive companies work in a strongly competitive environment and continuously 
strive to design better products in a cheaper and faster manner. This is a challenge that 
requires continuous improvements of methods and processes. Automotive development 
has thus gone from a trial and error approach in a hardware environment to completely 
rely on computer aided engineering (CAE). The number of prototypes is kept to a mini-
mum in order to reduce cost and development time. Instead, every possible aspect of the 
product is evaluated using detailed simulation models. These detailed models are often 
computationally expensive to evaluate, which is a challenge when many evaluations are 
needed, as when performing optimization or robustness studies. One way to ease the com-
putational burden can be to use approximations of the detailed simulation models that take 
little time to evaluate. One approach is to build metamodels, i.e. surrogate models deve-
loped based on a series of simulations using the detailed models. The idea originates from 
fitting a surrogate model to a series of designed physical experiments, see e.g. Myers et al. 
(2008). The methods related to metamodels and their applications have been extensively 
investigated and developed over the years. The use of metamodels during optimization 
studies, so-called metamodel-based design optimization, has been proven to be efficient in 
many cases. However, the topic is still an active area of research. 

Many groups with different responsibilities are involved during the development of a new 
product. These groups need to work concurrently and autonomously for the development 
to be efficient. However, the groups must also cooperate closely to ensure that the product 
meets all the requirements. The term “group” is used here to denote both the admi-
nistrative unit and a team working with a specific task. Traditionally, the goal during 
automotive development has been to find a feasible design, i.e. a design that fulfils all 
defined requirements, not necessarily an optimum one. When optimization has been used, 
it has commonly been applied by one group at a time, requiring the design to be checked 
and adjusted to meet the requirements from other groups. A better strategy would be to 
use multidisciplinary design optimization (MDO), which is a methodology for optimizing 
several disciplines, or performance aspects, simultaneously and taking the interactions 
between the disciplines into account. Since the responsibility for the performance is 
distributed, MDO usually involves several groups. The potential of multidisciplinary 
design optimization have been recognized, but MDO has not yet been integrated within 
automotive product development due to several challenges. It needs to suit the company 
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organization and fit into the product development process, which places restrictions on the 
choice of method. Furthermore, MDO includes evaluations of several different detailed 
simulation models for a large number of variable settings, which requires considerable 
computer resources. 

The VINNOVA/FFI project “Robust and multidisciplinary optimization of automotive 
structures” (Swedish: ”Robust optimering och Multidisciplinär optimering av fordons 
strukturer”) was established to find suitable methods for implementing robust and multi-
disciplinary design optimization in automotive development. The multidisciplinary aspect 
is the focus in this thesis, and the goal has been to develop an efficient MDO process for 
large-scale structural applications. The methodology takes the special characteristics of 
automotive structural applications into account as well as considers aspects related to imp-
lementation within an existing organisation and product development process. 

The presented work is also a part of the SFI/ProViking project ProOpt which aims at de-
veloping methods for optimization-driven design. The objective to find an MDO process 
suitable for automotive structural applications fits perfectly also within the scope of that 
project. 

The chapters following this introduction will introduce important optimization concepts 
and give a short description of automotive product development. Since the use of meta-
models is an essential part of automotive structural optimization, the main part of this 
thesis is devoted to metamodel-based design optimization. After a general description of 
multidisciplinary design optimization methods, a presentation of an MDO process suitable 
for large-scale automotive structural applications is presented and demonstrated in a 
simple example. The thesis is then ended with a discussion regarding the presented MDO 
process, conclusions and an outlook on further needs. 
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 Optimization 
2

 

  
Optimization is a procedure for achieving the best possible solution to a specific problem 
while satisfying certain restrictions. A general optimization problem can be formulated as 

min
ܠ

 (ܠ)݂ 

(2.1) subject	to	 (ܠ)܏ ≤ ૙
(ܠ)ܐ = ૙
௟௢௪௘௥ܠ ≤ ܠ ≤ ௨௣௣௘௥ܠ

	

The goal is to find the design variables x that minimize the objective function f(x). In 
general, the problem is constrained, i.e. there are a number of inequality and equality 
constraints represented by the vectors g(x) and h(x) that should be fulfilled. If the problem 
lacks constraints, the problem is said to be unconstrained. The design variables are 
allowed to vary between an upper and a lower limit, called xupper and xlower respectively, 
which defines the design space. The design variables can be continuous or discrete, 
meaning that they can take any value, or only certain discrete values, between the upper 
and lower limits. Design points that fulfil all the constraints are feasible, while all other 
design points are unfeasible. 

The general formulation in Equation (2.1) can be reorganized into the simpler form 

min
ܠ

 (ܠ)݂ 
(2.2) 

subject	to	 (ܠ)܏ ≤ ૙	

In this formulation, the inequality constraints g(x) contain all three types of constraints in 
the former formulation. Each equality constraint is then replaced by two inequality con-
straints and included, together with the upper and lower limits of the design variables, in 
the constraint vector g(x). Both formulations can be used for maximization problems if 
the objective function f(x) is multiplied with -1. 

The solution to an optimization problem is called the optimum solution and this solution is 
usually found using some numerical technique. An iterative search process that uses 
information from previous iterations is then applied. When the objective and constraint 
functions are evaluated during the solution process, one or several analyzers are used. For 
a vector of design variables x, an analyzer returns a number of responses denoted by y. 
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These responses can be combined into the objective and constraint functions for that 
specific vector of design variables. 

2.1 Structural Optimization 

A structure is a collection of physical components that are arranged to carry loads. 
Optimization of structures is called structural optimization, and the analyzer is often a 
finite element (FE) model. For these cases, the state functions (governing equations) must 
be fulfilled, which can be seen as constraints to the optimization problem. Three types of 
structural optimization can be distinguished: size, shape, and topology optimization. In 
size optimization, the design variables represent structural properties, e.g. sheet thick-
nesses. In shape optimization, the design variables instead represent the shape of material 
boundaries. Topology optimization is the most general form of structural optimization and 
is used to find where material should be placed to be most effective. 

2.2 Metamodel-Based Design Optimization 

The detailed simulation models used for structural optimization are often computationally 
expensive to evaluate. Metamodel-based design optimization, in which metamodels are 
used for the evaluations, can then be an attractive approach to decrease the required com-
putational effort. This is in contrast to direct optimization where the evaluations are done 
using the detailed simulation models directly. 

Metamodels are approximations of the detailed simulation models that take little time to 
evaluate. They are developed based on a series of simulations using the detailed models, 
either iteratively during the course of the optimization process or before the solution of the 
optimization problem starts. Metamodels can be simple and valid only over a small 
portion of the design space. Others are more complex and intended to capture the response 
over the complete design space. Additionally, they can either interpolate or approximate 
the dataset used to develop the model. Interpolating metamodels are intuitively more 
appealing for deterministic simulations. However, interpolating metamodels are not 
necessarily better than approximating ones at predicting the response between the 
simulated points. Further, interpolating metamodels capture the numerical noise, while 
approximating ones can smooth it out. Metamodel-based design optimization is covered in 
more detail in Chapter 4. 

2.3 Multi-Objective Optimization 

The optimization problem defined in Equation (2.2) is a single-objective optimization 
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problem. It has one objective function that should be minimized. Many variants of this 
problem can be found. When solving multi-objective optimization (MOO) problems, two 
or more objective functions should be minimized simultaneously. The simplest approach 
is to convert the problem into a single-objective problem. This can be done by minimizing 
one of the objective functions, usually the most important one, and to treat all the others as 
constraints. Another way is to create a single objective function as a combination of the 
original objectives. Weight coefficients can then be used to mirror the relative importance 
of the original objective functions. The drawback of the aforementioned methods is that 
only one single optimum is found. If the designer wants to modify the relative importance 
of the objective functions in retrospect, the optimization process must be performed again. 
An alternative approach is to find a number of Pareto optimal solutions. A solution is said 
to be Pareto optimal if there exist no other feasible solution yielding a lower value of one 
objective without increasing the value of at least one other objective. The designer will 
then have a set of solutions to choose among, and the trade-off between the different 
objective functions can be performed after the optimization process has been carried out. 

2.4 Probabilistic-Based Design Optimization 

It can be important to deal with uncertainties in the design variables when a product is 
designed. In contrast to deterministic design optimization, these variations are considered 
when performing probabilistic-based design optimization. In robust design optimization, a 
product that performs well and is insensitive to variations in the design variables is sought. 
This can be achieved by making a trade-off between the mean value and the variation of 
the product performance. In reliability-based design optimization on the other hand, the 
probability distribution of the product performance is calculated. The probability of failure 
is typically constrained to be below a certain level. Large variation in the performance of 
the product can thus be allowed as long as the probability of failure is low. 

2.5 Multidisciplinary Design Optimization 

Multidisciplinary design optimization evolved as a new engineering discipline in the area 
of structural optimization, mainly within the aerospace industry (Agte et al., 2010). Multi-
disciplinary design optimization is used to optimize a product taking into account more 
than one discipline simultaneously. If the objective, constraints, or variables are related to 
different disciplines, the problem is consequently multidisciplinary. Giesing and 
Barthelemy (1998) provide the following definition of MDO: “A methodology for the 
design of complex engineering systems and subsystems that coherently exploits the 
synergism of mutually interacting phenomena.” In general, a better design can be found 
when considering the interactions between different aspects of a product than when con-
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sidering them as isolated entities. Different configurations, called loadcases, can be 
considered within each discipline. Each loadcase can be seen as a part of the MDO 
problem, i.e. a subspace. The MDO methodology can just as well be applied to different 
loadcases within one single discipline, and the problem is then not truly multidisciplinary. 
However, the idea of finding a better solution by taking advantage of the interactions 
between subspaces still remains. 

Some of the variables in an MDO problem are related to several subspaces, while others 
are unique to one specific subspace. These variables are called shared and local variables, 
respectively. In the general case, the subspaces are coupled, i.e. output from one subspace 
is needed as input to another subspace. The couplings between subspaces are handled by 
the so-called coupling variables and iterative approach is needed to find a consistent solu-
tion, i.e. a solution in balance. This is referred to as multidisciplinary feasibility by Cramer 
et al. (1994), but since feasibility in an optimization context refers to a solution that fulfils 
the constraints, the term multidisciplinary consistency is used here. 

The disciplines in aerospace MDO problems are generally linked by both shared and 
coupling variables. For example, the slender shapes of aeroplane wings result in structural 
deformations induced by the aerodynamic forces. These deformations in turn affect the 
aerodynamics of the structure and hence the aerodynamic forces. The structural and 
aerodynamic disciplines are thus coupled. Subspaces in MDO studies of automotive struc-
tures are usually linked by shared variables, but there are less common coupling variables 
that must be taken into account. Agte et al. (2010) refer to this as automotive designs are 
created in a multi-attribute environment rather than in a truly multidisciplinary one. This 
difference between aerospace and automotive MDO problems is interesting since many 
MDO methods are developed for aerospace applications. The question regarding the 
suitability of these methods for automotive structures then naturally arises. 

Different approaches can be used to solve MDO problems. Methods suitable for large-
scale problems aim at letting the groups involved work concurrently and autonomously. 
To let groups work concurrently increases efficiency as human and computational re-
sources are used in parallel. Groups that work autonomously are not required to constantly 
share information with other groups. They can also govern the choice of methods and 
tools, and use their expertise to take part in design decisions. Multidisciplinary design 
optimization methods are either single-level or multi-level. The single-level methods have 
a central optimizer making all design decisions, while multi-level methods have a 
distributed optimization process. Multi-level methods were developed when MDO was 
applied to large problems in the aerospace industry involving several groups within a 
company. The intention was to distribute the work over many people and computers to 
compress the calendar time for problems with coupled disciplines (Kodiyalam and 
Sobieszczanski-Sobieski, 2001). However, multi-level methods complicate the solution 
process and to justify their use, the benefits must be greater than the cost. 
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 Automotive Product 
Development 

3
 

  
The development of a new car is a complicated task that requires many experts with 
different skills and responsibilities to cooperate in an organized manner. The product 
development process (PDP) describes what should be done at different stages of the 
development. It starts with initial concepts, which are gradually refined with the final aim 
of fulfilling all predefined targets. Many groups within the company organization are 
involved during the development. Some are responsible for designing a part of the 
product, e.g. the body, the interior, or the chassis system, while others are responsible for a 
performance aspect, e.g. crashworthiness, aerodynamics, or noise, vibration, and harsh-
ness (NVH). The groups work in parallel, and at certain times, the complete design is 
synchronized and evaluated. If the design is found to be satisfactory, the development is 
allowed to progress to the next phase. 

Numerical simulations using finite element methods have been well integrated into the 
PDP for more than two decades, and more or less drive the development of today 
(Duddeck, 2008). Simulations can roughly be divided into two main categories in the 
same way as reflected by the groups within the organization of a company. The first one 
supports certain design areas and the other one evaluates disciplinary performance aspects 
that depends on more than one design area. The former is consequently evaluating many 
different aspects, e.g. stiffness, strength, and durability, for a certain area of the vehicle, 
while the latter focuses on one performance area, which often depends on the complete 
vehicle. One result of the increased focus on simulations is that the number of prototypes 
needed to test and improve different concepts has been reduced, although the amount of 
qualities to be considered during development has increased considerably. Hence, the 
extended use of simulations has resulted in both shortened development times and in 
reduced development costs. However, the increased demand of accuracy on the simulation 
models often results in detailed models that are time-consuming to evaluate. For example, 
it is not unusual that a crash model consists of several million elements and takes many 
hours to run on a high performance computing cluster. 

To improve designs in a systematic way, different optimization methods have gained in 
popularity. Optimization can be used within different stages of the PDP: in the early 
phases to find promising concepts and in the later phases to fine-tune the design. Even if 
optimization has shown to result in better designs, the knowledge and additional resources 
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needed have delayed the use of its full potential. Optimization studies are often performed 
as an occasional effort when considered appropriate, and the time and scope are normally 
not defined in the PDP. This is certainly the case for MDO and it is therefore important to 
find methods that can fit into a modern PDP without jeopardizing its strict time limits. 
Metamodel-based design optimization is an approach that can make it possible to include 
also expensive simulation models in optimization studies. 

3.1 Multidisciplinary Design Optimization of Structures 

A typical MDO problem for automotive structures is to minimize the mass subject to a 
number of performance constraints originating from different disciplines. Other pos-
sibilities include finding the best compromise between conflicting requirements from dif-
ferent disciplines. In the simplest case, the appropriate thicknesses of selected parts are 
sought, but also the most suitable shape or material quality etc. can be found. 

Multidisciplinary design optimization studies with full vehicle models are still rare in the 
automotive industry. Optimization studies with multiple loadcases within the same 
discipline and MDO studies of parts or subsystems are probably more common. However, 
one type of frequently reported full vehicle MDO study is to minimize the mass of the 
vehicle body considering noise, vibration and harshness and crashworthiness. This is a 
problem where the loadcases are coupled through shared variables but not through 
coupling variables. Crashworthiness simulations are computationally expensive. It is 
therefore only in recent years, after high performance computing systems and the pos-
sibility of parallel computing became available, that it has been feasible to include full 
vehicle crashworthiness simulations in MDO studies. Several examples of NVH and 
crashworthiness MDO studies using different approaches are documented in the literature, 
see e.g. Craig et al. (2002), Sobieszczanski-Sobieski et al. (2001), Yang et al. (2001), 
Kodiyalam et al. (2004), Hoppe et al. (2005), Duddeck (2008), and Sheldon et al. (2011). 
The aforementioned studies use single-level methods and cover both metamodel-based 
and direct optimization. It is shown that MDO is successful in finding better designs but it 
is not described how the methods can be implemented into the product development 
process. 
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 Metamodel-Based 
Design Optimization 

4
 

  
A metamodel is an approximation of a detailed simulation model, i.e. a model of a model. 
It is called metamodel-based design optimization (MBDO) when metamodels are used for 
the evaluations during the optimization process. There are several descriptions on MBDO, 
see for example Simpson et al. (2001), Queipo et al. (2005), Wang and Shan (2007), 
Forrester and Keane (2009), Stander et al. (2010), and Ryberg et al (2012). 

A metamodels is a mathematical description created based on a dataset of input and the 
corresponding output from a detailed simulation model, see Figure 4.1. The mathematical 
description, i.e. metamodel type, suitable for the approximation could vary depending on 
the intended use or the underlying physics that the model should capture. Different data-
sets are appropriate for building different metamodels. The process of where to place the 
design points in the design space, i.e. the input settings for the dataset, is called design of 
experiments (DOE). Traditionally, the metamodels have been simple polynomials, but 
other metamodels that are better at capturing complex responses increase in popularity. 
The number of simulations needed to build a metamodel depends largely on the number of 
variables. Variable screening is therefore often used to identify the important variables in 
order to reduce the size of the problem and decrease the required number of detailed simu-
lations. Since metamodels are approximations, it is important to know the accuracy of the 
models, i.e. how well the metamodels represent the detailed simulation model. This can be 
done by studying various error measures, which are obtained using different approaches. 

a) b) c) 

   
Figure 4.1 The concept of building a metamodel of a response depending on two design 
variables: a) design of experiments, b) function evaluations, and c) metamodel. 
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Metamodel-based design optimization can be performed using different strategies. One 
popular approach is the sequential response surface method. Simple polynomial (often 
linear) metamodels are then used for the evaluations during the optimization. The meta-
models are built sequentially over a subregion of the design space, called region of 
interest, which is moved and reduced in size to close in on the optimum point. Another 
approach is to build metamodels that should capture the response over the complete design 
space. The size of the DOE is often gradually increased to achieve sufficiently accurate 
metamodels without spending too much computational effort. When the global meta-
models are found to be adequately accurate, they are used for the evaluations during the 
optimization. This approach requires flexible metamodels that can adjust to an arbitrary 
number of points and capture complex responses.  

Despite its simplicity, the sequential response surface method can work remarkably well 
and outperform the second approach if the global metamodels have insufficient accuracy, 
Duddeck (2008). However, many iterations can be required to find the optimum point for 
complex responses. The approach with global metamodels has the benefit of rendering a 
view of the complete design space. It is also suitable for finding Pareto optimal solutions 
during multi-objective optimization. Moreover, it is inexpensive to rerun optimizations, 
e.g. with changed constraint limits, once the global metamodels are built. One further 
benefit with this approach, when used in multidisciplinary design optimization, is the 
possibility for disciplinary autonomy. The different simulation experts can then be 
responsible for establishing the metamodels for their respective disciplines and loadcases, 
and for the validity of these metamodels. The development of the metamodels can be done 
in parallel, making the work efficient. Concurrency and autonomy are two of the main 
drivers for the various MDO multi-level optimization methods proposed, and the use of 
metamodels could thus have similar positive effects. 

The MDO process proposed for automotive structures and presented in Chapter 6 is based 
on the second approach. The rest of this chapter therefore focuses on concepts related to 
global metamodels, suitable DOEs and optimization algorithms, as well as screening 
methods and metamodel validation that are relevant for such an approach. 

4.1 Design of Experiments 

A metamodel is build based on a dataset of input (design variable settings) and 
corresponding output (response values). The theory on where these design points should 
be placed in the design space in order to get the best possible information from a limited 
sample size is called design of experiments. The theories originate from planning physical 
experiments and focus on reducing the effect of noise. Popular designs include factorial or 
fractional factorial designs, central composite designs, Box-Behnken designs, Plackett-
Burman designs, Koshal designs, and D-optimal designs, see e.g. Myers et al. (2008). 
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Classical DOEs tend to spread the sample points around the border and only put a few 
points in the interior of the design space. They are primarily used for screening purposes 
and to build polynomial metamodels. When the dataset is used to fit more advanced 
metamodels, other experimental designs are preferred. There seem to be a consensus 
among scientists that a proper experimental design for fitting global metamodels depen-
ding on many variables over a large design space should be space-filling. These types of 
DOEs aim at spreading the design points within the complete design space, which is 
desired when the form of the metamodel is unknown and when interesting phenomena can 
be found in any region of the design space. In addition to the different space-filling 
designs, different criteria-based designs can be constructed if certain information about the 
metamodel to be fitted is available a priori, which is not always the case. In an entropy 
design the purpose is to maximize the expected information gained from an experiment, 
while the mean squared error design minimizes the expected mean squared error 
(Koehler and Owen, 1996). 

4.1.1 Latin Hypercube Sampling 
The first space filling design, the Latin hypercube sampling (LHS), was proposed by 
McKay et al. (1979) and is a constrained random design. For each of the k variables the 
range of each variable is divided into n non-overlapping intervals of equal probability. 
One value from each interval is selected at random but with respect to the probability 
density in the interval. The n values of the first variable are then paired randomly with the 
n values of the second variable. These n pairs are combined randomly with the n values of 
the third variable to form n triplets, and so on, until n k-tuplets are formed, see Swiler and 
Wyss (2004) for a detailed description. This result in an n × k sampling plan matrix S, 
where the k columns describe the levels of each variable, and the n rows describe the 
variable settings for each design, as shown in Figure 4.2. A common variant of LHS is the 
median Latin hypercube sampling (MLHS), which has points from the centre of the n 
intervals. 

In order to generate a better space filling design, the LHS can be taken as a starting design 
and the values of each column in the sampling plan matrix permuted to optimize some 
criterion. One approach is to maximize the minimum distance between any two points, i.e. 
any two rows, with the help of an optimization algorithm. Another method is to minimize 
the discrepancy, which is a measure of non-uniformity of the points in the design space. 

Orthogonal arrays (OAs) are highly fractionated factorial designs that also can be used to 
improve the LHS. One example is the randomized orthogonal array (Owen, 1992) in 
which the design space is divided into subspaces and not more than one design point is 
placed in each subspace. Another example is the orthogonal array-based Latin 
hypercubes (Tang, 1993), which is an LHS with the design space divided into subspaces 
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and not more than one design point placed in each subspace. A comparison between the 
LHS and these improved designs is found in Figure 4.3. 

 
Figure 4.2 Latin hypercube sampling for two variables at five levels, one normally 
distributed variable and the other uniformly distributed. 

a)  b)  c)  

   

Figure 4.3 Comparison between different space-filling DOEs with two variables and four 
design points: a) Median Latin hypercube sampling, b) Randomized orthogonal array, and 
c) Orthogonal array-based Latin hypercube sampling. 

variable 1
normal distribution

va
ri

ab
le

 2
un

ifo
rm

 d
is

tri
bu

tio
n

11

S 12

variables at 
levels

Sampling plan 
matrix 

11 12

21 22

31 32

41 42

51 52



CHAPTER 4. METAMODEL-BASED DESIGN OPTIMIZATION 
 

15 

4.1.2 Distance-Based Designs 
In addition to the various LHS methods, several other space-filling methods exist. When n 
points are chosen within the design space so that the minimum distance between them are 
maximized, a maximin or sphere-packing design is obtained (Johnson et al., 1990). For 
small n this will generally result in the points lying on the exterior of the design space and 
that the interior is filled as the number of points becomes larger. Another of the so-called 
distance-based designs is the minimax design, where the maximum distance between any 
design points is minimized. In this case, the designs will generally lie in the interior of the 
design space also for small numbers of n,	as can be observed from Figure 4.4. 

a) b) 

  

Figure 4.4 Comparison of maximin and minimax designs with seven points in two 
variables. a) Maximin, where the design space is filled with spheres with maximum radius 
b) Minimax, where the design space is covered by spheres with minimum radius. 

4.1.3 Low-Discrepancy Sequences 
Hammersley sequence sampling (HSS) (Kalagnanam and Diwekar, 1997) and uniform 
designs (UD) (Fang et al., 2000) belong to a group called low-discrepancy sequences. The 
discrepancy is a measure of the deviation from a uniform distribution and could be 
measured in several ways. While LHS is uniform only in a one-dimensional projection, 
these methods tend to be more uniform in the entire design space. In HSS, the low 
discrepancy sequence of Hammersley points is used to sample the k-dimensional space. 
The UD, on the other hand, has similarities with LHS. In the UD, the points are always 
selected from the centre of cells in the same way as for the MLHS. In addition to the one-
dimensional balance of all levels for each factor in the LHS, the UD also requires k-
dimensional uniformity. The most popular UD, the U UD, could be obtained by selecting 
the design with the smallest discrepancy out of all possible MLHS designs. 
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4.1.4 Sampling Size and Sequential Sampling 
Several factors are important for determining how well the metamodel will fit the true 
response. Two of the important factors are the number of design points used for fitting the 
model and their distribution in the design space. In order to build a polynomial 
metamodel, there is a fixed minimum number of design points required, depending on the 
number of variables. However, it is usually desirable to use a larger sampling size than the 
minimum required, i.e. to use oversampling, to improve the accuracy and have the possi-
bility to estimate how good the metamodel is. For many of the more advanced meta-
models, there is no such minimum sample size, although the accuracy of the metamodel 
will be limited if the sampling size is too small. Also, the more complex response the 
metamodel should capture, the larger sample size it requires. 

Detailed simulation models are often time-consuming to run. The question in practice is 
therefore often how many design points that are needed to fit a reasonably accurate 
metamodel. It has been proposed by Gu and Yang (2006) and Shi et al. (2012) that a 
minimum of 3k sampling points, where k equals the number of variables, are needed to 
build a reasonably accurate metamodel. An initial sampling size of between 3k and 4k 
could therefore be sensible, at least if k is not too large. It is, however, difficult to know 
the appropriate sampling size beforehand. Therefore sequential sampling can be used to 
avoid issues with too many, i.e. unnecessary time-consuming, or too few design points, 
resulting in low metamodel accuracy. A limited number of designs could thus be used as a 
starting point and, if required, additional points could be added later. It has been shown by 
Jin et al. (2002) that the performance of sequential sampling approaches generally is 
comparable to selecting all points at once. 

Many different sequential approaches have been proposed (Jin et al., 2002; Forrester and 
Keane, 2009) and they are typically based on some optimality criteria. When information 
from previously fitted metamodels is used in the sequential sampling, the sampling is said 
to be adaptive. However, not all models provide the necessary estimation of the prediction 
error directly and cross validation can then be used for this estimation (see Section 4.4.2). 
A common alternative sequential sampling technique, which is not adaptive, is the 
maximin distance approach. Given an existing sample set, the idea is to select the new 
sample set so that the minimum distance between any two points in the complete set is 
maximized. 

4.2 Screening 

The number of simulations needed to build a metamodel depends on the number of design 
variables. Eliminating the variables that do not influence the results can therefore substan-
tially reduce the computational cost. The process of studying the importance of different 
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variables, identifying the ones to be included, and eliminating the ones that do not in-
fluence the responses is called variable screening. 

Several screening methods exist, see e.g. Viana et al. (2010). One of the simplest 
screening techniques uses one-factor-at-a-time plans, which evaluate the effect of 
changing one variable at a time. It is a very inexpensive approach but it does not estimate 
the interaction effects between variables. Therefore, variants of this method that account 
for interactions have been proposed. One example is Morris method (Morris, 1991) 
which, at the cost of additional runs, tries to determine whether the variables have effects 
that are (a) negligible, (b) linear and additive, or (c) non-linear or involved in interactions 
with other variables. 

Another category of screening techniques are variance-based. One simple and commonly 
used approach is based on analysis of variance (ANOVA) as described by Myers et al. 
(2008). The idea is to fit a metamodel using regression analysis, e.g. a simple polynomial 
metamodel, and study the coefficients for each term in the model. The importance of a 
variable can then be judged both by the magnitude of the related estimated regression 
coefficients and by the level of confidence that the regression coefficient is non-zero. This 
technique is used to separately identify the main and interaction effects that account for 
most of the variance in the response. 

An alternative variance-based method is Sobol's global sensitivity analysis (GSA), which 
provides the total effect (main and interaction effects) of each variable (Sobol', 2001). The 
method can be used for arbitrary complex metamodels and includes the calculation of 
sensitivity indices. These indices can be used to rank the importance of the design 
variables for a response and thus identify insignificant design variables. It is also possible 
to quantify what amount of the variance that is caused by a single variable. 

4.3 Metamodels 

When running a detailed simulation model, a vector of input (design variable values) 
results in a vector of output (response values). Each element in the response vector 
represents a specific response. For each of these responses, a metamodel can be built to 
approximate the true response. The metamodel is built from a dataset of input design 
points xi = (x1, x2, ... , xk)T and the corresponding output responses	 yi = f(xi),  where k is 
the number of design variables, i = 1, ... , n, and n is the number of designs used to fit the 
model. For an arbitrary design point x, the predicted response ŷ will differ from the true 
response y of the detailed model, i.e. 

ݕ = (ܠ)݂ = ොݕ + ߝ = (ܠ)ݏ +  (4.1) ߝ

Here, f(x) represents the detailed model, s(x) is the mathematical function defining the 
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metamodel, and ε is the approximation error. Several mathematical formulations can be 
used for the metamodels. They all have their unique properties and there is no universal 
model that always is the best choice. Instead, the suitable metamodel depends on the 
problem at hand. It is for example important to decide whether the model should be a 
global or a local approximation. A basic knowledge about the complexity of the response 
the metamodel should capture is useful when choosing between metamodel types. Another 
issue that needs to be considered is whether or not noise is present in the fitting set. An 
interpolating model might be the best choice in the noise-free case, while an approxi-
mating model may be better when noise is present. However, it should be noted that there 
is no guarantee that an interpolating model produces better predictions in unknown points 
compared to an approximating one, even if there is no noise present. 

Many comparative studies have been made over the years to guide the selection of 
metamodel types, see e.g. Jin et al. (2001), Clarke et al. (2005), Kim et al. (2009), and Li 
et al. (2010). Despite this, it is not possible to draw any decisive conclusions regarding the 
superiority of any of the metamodel types. In addition, there are often several parameters 
that must be tuned when a metamodel is built. This means that results can differ con-
siderably depending on how well these parameters are tuned and, consequently, the results 
also depend on the software used to build the metamodel. 

Instead of selecting only the assumed best metamodel, several different metamodels can 
be combined. The idea is that the combined model should perform at least as well as the 
best individual metamodel, but at the same time protect against the worst individual 
metamodel. A weighted average surrogate (WAS) makes a weighted linear combination 
of metamodels in the hope of cancelling out prediction errors through a proper selection of 
the weights. A metamodel that is judged to be more accurate should be assigned a large 
weight, and a less accurate metamodel should be assigned a lower weight resulting in a 
smaller influence on the predictions. The evaluation of the accuracy is done with different 
measures of goodness of fit and could be either global or local. When weights are selected 
based on a global measure, the weights are fixed (Goel et al., 2007) and when the weights 
are based on a local measure, the weights are instead functions of space (Zerpa et al., 
2005). In the latter case, different metamodels can have the largest influence on the pre-
diction in different areas of the design space. 

Another way of combining metamodels can be used if enough samples exist in the fitting 
set. A multi-surrogate approximation (MSA) is created by first classifying the given 
samples into clusters based on their similarities in the design space. Then, a proper local 
metamodel is identified for each cluster and a global metamodel is constructed using these 
local metamodels (Zhao and Xue, 2011). This method is particularly useful when sample 
data from various regions of the design space are of different characteristics, e.g. with and 
without noise. 
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Traditionally, polynomial metamodels have often been used. These models are developed 
using regression, i.e. fitting a regression model y = s(x,β) + ε to a dataset of n variable 
settings xi and corresponding responses yi. The method of least squares chooses the reg-
ression coefficients β so that the quadratic error is minimized. The least square estimators 
of the regression coefficients are denoted b and can be found using matrix algebra (Myers 
et al., 2008) as 

܊ =  (4.2) ܡ்܆ଵି(܆்܆)

where y is the vector of n responses used to fit the model depending on k variables and X 
is the model matrix 
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In this matrix, each row corresponds to one fitting point and each column is related to one 
regression coefficient, i.e. the number of columns depends on the polynomial order and 
how many interactions that are considered. The resulting polynomial metamodel becomes 

(ܠ)ොݕ =  (4.4) ܊(ܠ)்܎

This metamodel will in general not interpolate the fitting data. One exception is when the 
fitting set is so small that there is just enough data to determine all the regression coef-
ficients. However, such small fitting sets are generally not recommended. Low order 
polynomial metamodels will capture the global trends of the detailed simulation model, 
but will in many cases not be a good representation of the complete design space. These 
metamodels are therefore mainly used for screening purposes and in iterative optimization 
procedures. 

Polynomial metamodels can produce large errors for highly non-linear responses but can 
provide good local approximations if the response is less complex. These features are 
taken advantage of in the method of moving least squares (MLS). For a specific value of 
x, a polynomial is fitted according to the least squares method, but the influence of 
surrounding points is weighted depending on the distance to x (Breitkopf et al., 2005). 
Hence, compared to Equation (4.4) for polynomial metamodels, the MLS model has 
coefficients b that depend on the location in the design space, i.e. depend on x. Thus, one 
polynomial fit is not valid over the entire domain as for normal polynomial metamodels. 
Instead, the polynomial is valid only locally around the point x where the fit is made. 
Since b is a function of x, a new MLS model needs to be fitted for each new evaluation. 
Furthermore, in order to construct the metamodel, a certain number of fitting points must 
fall within the domain of influence. The number of influencing fitting designs can be 
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adjusted by changing the weight functions, or rather the radius of the domain of influence. 
The denser the design space is sampled, the smaller the domain of influence can be, and 
the more accurate the metamodel becomes. 

Next, some other metamodels suitable for global approximations and frequently men-
tioned in the literature will be covered in more detail. These metamodels could be possible 
alternatives for the MDO process presented in Chapter 6. 

4.3.1 Kriging 
Kriging is named after D. C. Krige, and this method for building metamodels has been 
used in many engineering applications. Design and analysis of computer experiments 
(DACE) is a statistical framework for dealing with Kriging approximations to complex 
and expensive computer models presented by Sacks et al. (1989). The idea behind Kriging 
is that the deterministic response y(x) can be described as 

(ܠ)ݕ = (ܠ)݂ +  (4.5) (ܠ)ܼ

where f(x) is a known polynomial function of the design variables x and Z(x)  is  a  
stochastic process (random function). This process is assumed to have mean zero, variance 
σ2 and a non-zero covariance. The f(x) term is similar to a polynomial model described in 
the previous section and provides a global model of the design space, while the Z(x) term 
creates local deviations so that the Kriging model interpolates the n sampled data points. 
In many cases, f(x) is simply a constant term and the method is then called ordinary 
Kriging. If f(x) is set to 0, implying that the response y(x) has mean zero, the method is 
called simple Kriging. 

A fitted Kriging model for an unknown point x can be written as 

(ܠ)ොݕ = ܊(ܠ)்܎ + ܡ)ଵି܀(ܠ)்ܚ −  (4.6) (܊܆

where f(x) is a vector corresponding to a row of the model matrix X in the same way as 
for the polynomial models previously described. b is a vector of the estimated regression 
coefficients, r(x) = [R(x, x1), R(x, x2), ... , R(x, xn)]T is a vector of correlation functions 
between the unknown point and the n sample points, R is the matrix of correlation 
functions for the fitting sample, and y is a vector of the observed responses in the fitting 
sample. The term (y - Xb) is a vector of residuals for all fitting points when the stochastic 
term of the model is disregarded. The regression coefficients are found by 

܊ =  (4.7) ܡଵି܀்܆ଵି(܆૚ି܀்܆)

Many different correlation functions could be used, but two commonly applied functions 
are the exponential and the Gaussian correlation functions (Stander et al., 2010), i.e. 
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௜ܠ)ܴ , (௝ܠ = ෑ݁ିఏೝቚ௫೔
ೝି௫ೕ
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 (4.8) 

and 

௜ܠ)ܴ , (௝ܠ = ෑ݁ିఏೝቚ௫೔
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௥ୀଵ

 (4.9) 

respectively. |xir - xjr| is the distance between the ith and jth sample point of variable xr, k is 
the number of variables, and θr is the correlation parameter for variable xr. In general, a 
different θr for each variable is used, which yields a vector θ with k elements. In some 
cases, a single correlation parameter for all variables produces sufficiently good results, 
and the model is then said to be isotropic. The parameter θr is essentially a width 
parameter that affects how far the influence of a sample point extends (Forrester and 
Keane, 2009). A low θr means that all points will have a high correlation R, with Z(xr) 
being similar across the sample, while a high θr means that there is a significant difference 
between the Z(xr) for different sample points. The elements of θ could therefore be used to 
identify the most important variables, provided that a suitable scaling of the design 
variables is used. 

In order to build a Kriging metamodel, the correlation parameters θ must be determined. 
The optimum values of θ can be found by solving the non-linear optimization problem of 
maximizing the log-likelihood function 

max
ી

(ી)ܮ = −
1
2

[݊ ln(ߪොଶ) + ln|܀|]

subject	to ௥ߠ > 0, ݎ = 1, … , ݇
 (4.10) 

where |R| is the determinant of R and the estimate of the variance is given by 

ොଶߪ =
ܡ) − ܡ)ଵି܀்(܊܆ − (܊܆

݊
 (4.11) 

An equivalent problem to problem (4.10) is to minimize ߪොଶ|܀|(ଵ/௡) for θ > 0. These are k-
dimensional optimization problems that can require significant computational time to 
solve if the fitting set is large. Additionally, the correlation matrix can become singular if 
the sample points are too close to each other, or if the sample points are generated from 
particular DOEs. A small adjustment of the R-matrix can avoid ill-conditioning but might 
result in a metamodel that does not interpolate the observed responses exactly. 

When working with noisy data, an interpolating model might not be desirable. Special 
choices of correlation functions can then result in metamodels that approximate the fitting 
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data (Simpson et al., 2001). An interpolating Kriging model can also be modified by 
adding a regularization constant to the diagonal of the correlation matrix so that the model 
does not interpolate the data. The Kriging method is thus flexible and well suited for 
global approximations of the complete design space. Kriging models also provide an 
estimate of the prediction error in an unobserved point directly (Sacks et al., 1989), which 
is a feature that can be used in adaptive sequential sampling approaches. 

4.3.2 Radial Basis Functions 
Radial basis function (RBF) methods for interpolating scattered multivariate (multiple 
variables) data were first studied by R. Hardy and a description could be found in Hardy 
(1990). Radial basis functions depend only on the radial distance from a specific point xi	
such that 

,ܠ)߶ (௜ܠ = ܠ‖)߶ − (‖௜ܠ =  (4.12) (ݎ)߶	

where r is the distance between the points x and xi. The RBFs can be of many forms but 
are always radially symmetric. The Gaussian function and Hardy's multiquadrics are 
commonly used and expressed as 

(ݎ)߶ = ݁ିቀ
௥
௖ቁ

మ

 (4.13) 

and 

(ݎ)߶ = ඥݎଶ + ܿଶ (4.14) 

respectively, where c is a shape parameter that controls the smoothness of the function, 
see Figure 4.5. 

a) b) 

  
Figure 4.5 Examples of radial basis functions: a) Gaussian RBF and b) Hardy’s multi-
quadric RBF. 
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An RBF metamodel consists of a linear combination of radially symmetric functions to 
approximate complex responses and can be expressed as 

(ܠ)ොݕ = ෍ݓ௜

௡

௜ୀଵ

ܠ‖)߶ − (‖௜ܠ =  ૖ (4.15)்ܟ

The metamodel is thus represented by a sum of n RBFs, each associated with a sample 
point xi, representing the centre of the RBF, and weighted by a coefficient wi. The coef-
ficients wi, i.e. the unknown parameters that must be determined when building the meta-
model, can be collected in a vector w. The vector Φ contains the evaluations of the RBF 
for all distances between the studied point x and the sample designs xi. 

Radial basis function metamodels are often interpolating, i.e. the parameters wi are chosen 
such that the approximation matches the responses in the sampled dataset (xi, yi), where 
i = 1, ... , n. This can be obtained if the number of RBFs equals the number of samples in 
the fitting set, resulting in a linear system of equations in	wi 

ܡ =  (4.16) ܟ۰

where y is the vector of responses, w is the vector of unknown coefficients, and B is the 
n × n symmetric interpolation matrix that contain evaluations of the RBF for the distances 
between all the fitting points 

௜௝ܤ = ߶൫ฮܠ௜ −  ௝ฮ൯ (4.17)ܠ

The equation system (4.16) can be solved by standard methods, using matrix decom-
positions, for small n, but special methods have to be applied when n becomes large (Dyn 
et al., 1986), since the interpolation matrix is often full and ill-conditioned. 

When the number of basis functions nRBF is smaller than the sample size ns, the model will 
be approximating. Similarly to the polynomial regression model, the optimal weights in 
the least squares sense is obtained as 

ܟ = (۰்۰)ିଵ۰்(4.18) ܡ 

where B is an ns × nRBF matrix with elements Bij as described in Equation (4.17) for i = 1, 
... , ns and j	= 1, ... , nRBF, and xj represents the centre of the basis functions. 

The shape parameter c in Equations (4.13) and (4.14) plays an important role since it 
affects the conditioning of the problem. When c	→	∞, the elements of the interpolation 
matrix B approach constant values and the problem becomes ill-conditioned. In a physical 
sense, the shape parameter c controls the width of the functions and thereby the influence 
of nearby points. A large value of c gives a wider affected region, i.e. points further away 
from an unknown point will have an effect on the prediction of the response at the un-



CHAPTER 4. METAMODEL-BASED DESIGN OPTIMIZATION 
 

24 

known point. A small value of c, on the other hand, means that only nearby points will 
influence the prediction. Consequently, the selection of c also influences the risk of over-
fitting or underfitting. If the value is chosen too small, overfitting will occur, i.e. every 
sample point will influence only the very close neighbourhood. On the other hand, if the 
value is selected too large, underfitting will appear and the model loses fine details, see 
Figure 4.6. So, while the correct choice of w will ensure that the metamodel can reproduce 
the training data, the correct estimate of c will enable a smaller prediction error in 
unknown points. The prediction error for a RBF metamodel can easily be evaluated at any 
point in the design space (Forrester and Keane, 2009), which is a property that can be 
useful in e.g. sequential sampling. 

a) b) 

Figure 4.6 Examples of models with poor prediction capabilities due to a) overfitting and 
b) underfitting. 

4.3.3 Artificial Neural Networks 
Artificial neural networks are intended to respond to stimulus in a fashion similar to the 
biological nervous systems. One of the attractive features of these structures is their ability 
to learn associations between data. An artificial neural network, or often just neural net-
work (NN), may therefore be used to approximate complex relations between a set of in-
put and output, and can thus serve as a metamodel. 

An NN is composed of small computing elements called neurons, assembled into an 
architecture. Based on the input x = (x1, x2, ... , xk	)T, the output ym from a single neuron m 
is evaluated as 

(ܠ)௠ݕ = ݂ ൭ܾ௠ + ෍ݓ௠௜ݔ௜

௞

௜ୀଵ

൱ = ݂(ܽ) (4.19) 

where f is the transfer or activation function, bm is the bias value, and wmi the weight of 
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the corresponding input xi for neuron m. A schematic description is presented in Figure 
4.7. The input x to the neuron are either variable values or output from previous neurons 
in the network. The connection topology of the architecture, the weights, the bias, and the 
transfer function used determine the form of the neural network. 

 
Figure 4.7 Illustration of neuron m in a neural network, where input is variables or output 
from previous neurons. 

One very common architecture is the multi-layer feedforward neural network (FFNN), 
see Figure 4.8, in which the information only is passed forward in the network and no 
information is fed backward. The transfer function in the hidden layers of an FFNN is 
often a sigmoid function, i.e. 

݂(ܽ) =
1

1 + ݁ି௔
 (4.20) 

which is an S-shaped curve ranging from 0 to 1 and a is defined in Equation (4.19). For 
the input and output layers, a linear transfer f(a) = a is often used with bias added to the 
output layer but not to the input layer. This means that a simple neural network with only 
one hidden layer of M neurons can be of the form 

(ܠ)ොݕ = ܾ + ෍
௠ݓ

1 + ݁ି(௕೘ା∑ ௪೘೔௫೔)ೖ
೔సభ

ெ

௠ୀଵ

 (4.21) 

where b is the bias of the output neuron, wm is the weight on the connection between the 
mth hidden neuron  and the output neuron, bm is the bias in the mth hidden neuron, and wmi 
is the weight on the connection between the ith input	and the mth hidden neuron. 

There are two distinct steps in building a neural network. The first is to choose the 
architecture and the second is to train the network to perform well with respect to the 
training set of input (design variable values) and corresponding output (response values). 
The second step means that the free parameters of the network, i.e. the weights and biases 
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in the case of an FFNN, are determined. This is a non-linear optimization problem in 
which some error measure is minimized. 

 

 

Figure 4.8 Illustration of a feedforward neural network architecture with multiple hidden 
layers. 

If the steepest descent algorithm is used for the optimization, the training is said to be 
done by back-propagation (Rumelhart et al., 1986), which means that the weights are 
adjusted in proportion to 

ܧ߲
௝௜ݓ߲

=
ܧ߲
ݕ߲

ݕ߲
௝௜ݓ߲

 (4.22) 

The studied error measure	 E is the sum of the squared differences between the target 
output and the actual output from the network over all n points in the training set, i.e. 

ܧ = ෍(ݕ௜ − ො௜)ଶݕ
௡

௜ୀଵ

 (4.23) 

The adjustment of the weights starts at the output layer and is thus based on the difference 
between the response from the NN and the target response from the training set. For the 
hidden layers, where there is no specified target value yi, the adjustments of the weights 
are instead determined recursively based on the sum of the changes at the connecting 
nodes multiplied with their respective weights. In this way the adjustments of the weights 
are distributed backwards in the network, and hence the name back-propagation. 

It has been shown by Hornik et al. (1989) that FFNNs with one hidden layer can approxi-
mate any continuous function to any desired degree of accuracy, given a sufficient number 
of neurons in the hidden layer and the correct interconnection weights and biases. In 
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theory, FFNN metamodels thus have the flexibility to approximate very complex func-
tions, and FFNNs are therefore well suited for global approximations of the design space. 

The decision of the appropriate number of neurons in the hidden layer or layers is not 
trivial. Generally, the correct number of neurons in the hidden layer(s) is determined 
experimentally, i.e. a number of candidate networks are constructed and the one judged to 
be the best is selected. Only one hidden layer is often used. Although FFNNs with one 
hidden layer theoretically should be able to approximate any continuous function, only 
one hidden layer is not necessarily optimal. One hidden layer may require many more 
neurons to accurately capture complex functions than a network with two hidden layers, 
since it might be easier to improve an approximation locally without making it worse 
elsewhere in a network with two hidden layers (Chester, 1990). 

Evidently, if the number of free parameters is sufficiently large and the training opti-
mization is run long enough, it is possible to drive the training error as close to zero as 
preferred. However, a too small error is not desirable since it can lead to overfitting 
instead of a model with good prediction capabilities. An overfitted model does not capture 
the underlying function properly. It describes the noise rather than the principal relation-
ship and can result in poor predictions even for noise-free data, see Figure 4.9a. Over-
fitting generally occurs when a model is excessively complex, i.e. when it has too many 
parameters relative to the number of observations in the training set. On the other hand, if 
the network model is not sufficiently complex, the model can also fail in capturing the 
underlying function, leading to underfitting, see Figure 4.9b. Given a fixed amount of 
training data, it is beneficial to reduce the number of weights and biases as well as the size 
of them in order to avoid overfitting. 

a) b) 

Figure 4.9 Examples of models with poor prediction capabilities due to a) overfitting  and 
b) underfitting. 

Regularization means that some constraints are applied to the construction of the NN 
model in order to reduce the prediction error in the final model. For FFNN models, 
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regularization can be done by controlling the number of hidden neurons in the network. 
Another way is to impose penalties on the weights and biases or to use a combination of 
both methods (Stander et al., 2010). A fundamental problem when modelling noisy or 
using very limited data is to balance between the goodness of fit and the choice of how 
strong the constraints forced on the model by regularization should be. 

Another common type of neural network, in addition to the FFNN, is the radial basis 
function neural network (RBFNN), which has activation functions in the form of RBFs. 
An RBFNN has a defined three-layer architecture with the single hidden layer built of 
non-linear radial units, each responding only to a local region of the design space. The 
input layer is linear and the output layer performs a biased weighted sum of the hidden 
layer units and creates an approximation over the entire design space, see Figure 4.10. The 
RBFNN model is sometimes complemented with a linear part corresponding to additional 
direct connections from the input neurons to the output neuron. 

 
Figure 4.10 Illustration of a radial basis function neural network with Gaussian activation 
functions. 

Gaussian functions and Hardy's multiquadrics, respectively, as defined in Equations (4.13) 
and (4.14), are commonly used RBFs. The activation of the mth RBF is determined by the 
Euclidean distance 

ݎ = ඩ෍(ݔ௜ − ௠௜)ଶݓ
௞

௜ୀଵ

 (4.24) 

between the input vector x = (x1, ... , xk)T and the RBF centres wm = (wm1, ... , wmk) in the 
k-dimensional space. For a given input vector x, the output from an RBFNN with k input 
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neurons and a hidden layer consisting of M RBF units (but without a linear part) is given 
by 

ොݕ = ܾ + ෍ w௠݂(ܽ௠)
ெ

௠ୀଵ

 (4.25) 

where, in the case of a Gaussian model, 

݂(ܽ௠) = ݁ି(௥௖)మ = ݁ି௪೘బ∑ (௫೔ି௪೘೔)మೖ
೔సభ  (4.26) 

Thus, the hidden layer parameters wm =  (wm1, ... , wmk) represent the centre of the mth 
radial unit, while wm0 determines its width. The parameters b and w1, ... , wM are the bias 
and weights of the output layer, respectively. All these parameters and the number of 
neurons M must be determined when building the RBFNN metamodel. 

In the same way as a feedforward neural network can approximate any continuous func-
tion to any desired degree of accuracy, an RBFNN with enough hidden neurons can too. 
An important feature of the RBFNNs, which differs from the FFNNs, is that the hidden 
layer parameters, i.e. the parameters governing the RBFs, can be determined by semi-
empirical, unsupervised training techniques. This means that RBFNNs can be trained 
much faster than FFNNs although the RBFNN may require more hidden neurons than a 
comparable FFNN (Stander et al., 2010). 

The training process for RBFNNs are generally done in two steps. First, the hidden layer 
parameters, i.e. the centre and width of the radial units, are set. Then, the bias and weights 
of the linear output layer are optimized, while the basis functions are kept fixed. In 
comparison, all of the parameters of an FFNN are usually determined simultaneously as 
part of a single optimization procedure (training). The optimization in the second step of 
the RBFNN training is done to minimize some performance criterion, e.g. the mean sum 
of squares of the network errors on the training set (MSE), see Equation (4.39). If the 
hidden layer parameters are kept fixed, the MSE performance function is a quadratic 
function of the output layer parameters and its minimum can be found as the solution to a 
set of linear equations. The possibility to avoid time consuming non-linear optimization 
during the training is one of the major advantages of RBFNNs compared to FFNNs. 

Commonly, the number of RBFs are chosen to be equal to the number of samples in the 
training dataset (M = n), the RBF centres are set at the fitting designs (wm = xm, 
m = 1, ... , n), and the widths of the radial units are all selected equal. In general, the 
widths are set to be a multiple sw of the average distance between the RBF centres so that 
they overlap to some degree and hence result in a relatively smooth representation of the 
data. Sometimes the widths are instead individually set to the distance to the nw (<< n) 
closest neighbours so that the widths become smaller in areas with many samples close to 
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each other. This results in a model that preserves fine details in densely populated areas 
and interpolates the data in sparse areas of the design space. 

When building an RBFNN metamodel, the goal is to find a smooth model that captures 
the underlying functional response without fitting potential noise, i.e. avoid overfitting. 
For noisy data, the exact RBFNN that interpolates the training dataset is usually a highly 
oscillatory function, and this needs to be addressed when building the model. Similarly as 
can be done for an FFNN or a Kriging model, regularization can be applied to adjust the 
output layer parameters in the second phase of the training. This will yield a model that no 
longer passes through the fitting points. However, it is probably more effective to properly 
select the hidden layer parameters, i.e. the width and centres of the RBF units, in the first 
step of the training. Regularization in the second step can never compensate for large 
inaccuracies in the model parameters. Another way of constructing an approximating 
model is to reduce the number of RBFs. This could be done by starting with an empty 
subset of basis functions and adding, one at a time, the basis function which reduces some 
error metric the most. The selection is done from the n possible basis functions, which are 
centred around the observed data points xi, and the process is continued until no signi-
ficant decrease in the studied error metric is observed. 

Since the accuracy of the metamodel strongly depends on the hidden layer parameters, it is 
important to estimate them well. Instead of just selecting the values, the widths can be 
found by looping over several trial values of sw or nw and finally selecting the best 
RBFNN. The selection can for example be based on the generalized cross validation error, 
which is a measure of goodness of fit that also takes the model complexity into account, 
see Section 4.4.3. Another approach to find the best possible RBFNN metamodel can be to 
include the widths as adjustable parameters along with the output layer parameters in the 
second step of training. However, this requires a non-linear optimization in combination 
with a sophisticated regularization, and one of the benefits with the RBFNN, the speed of 
training, will be lost. 

4.3.4 Multivariate Adaptive Regression Splines 
Multivariate adaptive regression splines (MARS) is a regression procedure that auto-
matically models non-linearities and interactions but normally not interpolate the fitting 
data (Friedman, 1991). The approximation does not have a predefined form but is con-
structed based on information derived from the fitting data. The MARS procedure builds 
the metamodel from a set of coefficients am and basis functions Bm that are adaptively 
selected through a forward and backward iterative approach. 

A MARS model is built from truncated power functions representing qth order splines 
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ܾ௤ା(ݔ − (ݐ = ݔ)+] − ା[(ݐ
௤ = (max	{0, ݔ) − ௤({(ݐ

ܾ௤ି(ݔ − (ݐ = ݔ)−] − ା[(ݐ
௤ = (max	{0, ݔ)− − ௤({(ݐ = (max	{0, ݐ) − ௤({(ݔ

 (4.27) 

where t is the truncation location, also called knot location, and q is the order of the 
spline. The subscript “+” indicates that the argument, i.e. the value within the squared 
brackets, should be positive, otherwise is the function assumed to be zero. For q > 0, the 
spline is continuous and has q - 1 continuous derivatives. Often q = 1 is recommended and 
the splines then become "hinge functions", see Figure 4.11. The resulting MARS model 
will then have discontinuous derivatives but could be modified to have continuous first 
order derivatives (Friedman, 1991). 

 
Figure 4.11 A mirrored pair of hinge functions with the knot at x = t. 

A MARS metamodel can be written as 

(ܠ)ොݕ = ܽ଴ + ෍ ܽ௠ܤ௠(ܠ)
ெ

௠ୀଵ

 (4.28) 

which could be seen as a weighted sum of basis functions. 

The coefficients am are estimated through least-squares regression of the basis functions 
Bm(x) to the responses yi (i	=1, ... , n) in the fitting set. Each basis function Bm is either a 
one-sided truncated function b as described by Equation (4.27), or a product of two or 
more of these functions 

(ܠ)௠ܤ = ෑൣݏ௝௠ ∙ ௩(௝,௠)ݔ) − ௝௠)൧ݐ
ା

௤
௃೘

௝ୀଵ

 (4.29) 

where	Jm is the number of factors in the mth basis function, i.e. the number of functions b 
in the product. The parameter sjm = ±1 and indicates the "left” or “right” version of the 
function, xv(j,m) denotes the vth variable, where 1 ≤ v(j,m) ≤ k and k is the total number of 
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variables, and tjm is the knot location for each of the corresponding variables. As pre-
viously, q indicates the power of the function. 

Building a MARS metamodel is done in two steps. The first step starts with a0, which is 
the mean of the response values in the fitting set. Basis functions Bm and Bm+1 are then 
added in pairs to the model, choosing the ones that minimize a certain measure of lack of 
fit. Each new pair of basis functions consists of a term already in the model multiplied 
with the “left” and “right” version of a truncated power function b, respectively. The 
functions b are defined by a variable xv and a knot location t. When adding a new pair of 
basis functions, the algorithm must therefore search over all combinations of the existing 
terms of the metamodel (to select the term to be used), all variables (to select the one for 
the new basis function), and all values of each variable (to find the knot location). For 
each of these combinations, the best set of coefficients am is found through a least square 
regression of the model response ŷ to the response from the fitting set y. The process of 
adding terms to the model is continued until a pre-defined maximum number of terms are 
reached or until the improvement in lack of fit is sufficiently small. This so-called forward 
pass usually builds a model that overfits the data. The second step of the model building is 
therefore a backward pass where model terms are removed one by one, deleting the least 
effective term until the best metamodel is obtained. The lack of fit for the models is 
calculated using a modified form of generalized cross validation (see Section 4.4.3), which 
takes both the error and complexity of the model into account. More details can be found 
in Friedman (1991). The backward pass has the advantage that it can choose to delete any 
term except a0. The forward pass can only add pairs of terms at each step, which are based 
on the terms already in the model. 

A lot of searches have to be done during the model building. However, Jin et al. (2001) 
state that one of the advantages of the MARS metamodel, compared to Kriging, is the 
reduction in computational cost associated with building the model. 

4.3.5 Support Vector Regression 
Support vector regression (SVR) comes from the theory of support vector machines 
(SVM), which was developed at AT&T Bell Laboratories in the 1990s, see e.g Smola and 
Schölkopf (2004) for more details. 

When it comes to metamodels, SVR can be seen to have similarities with other methods. 
The SVR metamodel can be described by the typical mathematical formulation 

(ܠ)ොݕ = ܾ + (ܠ)ۿ்ܟ = ܾ + ෍ (ܠ)௠ܳ௠ݓ
ெ

௠ୀଵ

 (4.30) 

Hence, a sum of basis functions Q = [Q1(x), ... , QM(x)]T with weights w = [w1, ... , wM]T 
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added to a base term b.	The parameters b and wm are to be estimated, but in a different 
way than the counterparts in other metamodels. The basis functions Q in the SVR model 
can be seen as a transformation of x into some feature space in which the model is linear, 
see Figure 4.12. 

One of the main ideas with SVR is that a margin ε is given within which a difference 
between the fitting set responses and the metamodel prediction is accepted. This means 
that the fitting points that lie within the ±ε band (called the ε-tube) are ignored, and the 
metamodel is defined entirely by the points, called support vectors, that lie on or outside 
this region, see Figure 4.12. This can be useful when the fitting data has an element of 
random error due to numerical noise etc. A suitable value of ε might be found by a sensi-
tivity study. In practical cases, however, the dataset is often not large enough to afford not 
to use all of the samples when building the metamodel. In addition, the time needed to 
train an SVR model is longer than what is required for many other metamodels. 

Estimating the unknown parameters of an SVR metamodel is an optimization problem. 
The goal is to find a model that has at most a deviation of ε from the observed responses yi 
(i = 1, ... , n) and at the same time minimizes the model complexity, i.e. makes the meta-
model as flat as possible in feature space (Smola and Schölkopf, 2004). Flatness means 
that w should be small, which can be ensured by minimizing the vector norm ‖ܟ‖ଶଶ. Since 
it might be impossible to find a solution that approximates all yi with precision ±ε	and that 
better predictions might be obtained if the possibility of outliers are allowed, slack 
variables ξ	+ and ξ	– can be introduced, see Figure 4.12. The optimization problem can then 
be stated as 

min  
1
2
ଶଶ‖ܟ‖ + ௜ାߦ)෍ܥ + (௜ିߦ

௡

௜ୀଵ

 

(4.31) 
subject	to ݕ௜ ܟ− ∙ (௜ܠ)ۿ − ܾ ≤ ߝ + ௜ାߦ

௜ݕ− + ܟ ∙ (௜ܠ)ۿ + ܾ ≤ ߝ + ௜ିߦ

,௜ାߦ ௜ିߦ ≥ 0
 

This problem is a trade-off between model complexity and the degree to which errors 
larger than ε are tolerated. This trade-off is governed by the user defined constant C > 0, 
and this method of tolerating errors is known as the ε-insensitive loss function, see Figure 
4.12. Other loss functions are also possible. The ε-insensitive loss function means that no 
loss will be associated to the points inside the ε-tube, while points outside will have a loss 
that increases linearly with a rate determined by C. A small constant will lead to a flatter 
prediction, i.e. more emphasis on minimizing ‖ܟ‖ଶଶ, usually with fewer support vectors. A 
larger constant will lead to closer fitting of the data, i.e. more emphasis on minimizing 
∑(ξ	+ + ξ	 –), usually with a larger number of support vectors. Although there might be an 
optimum value of C, the exact choice is not critical according to Forrester and Keane 
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(2009). It is therefore sufficient to try a few values of C of varying orders of magnitude 
and choose the one that provides the lowest error measure. 

 
Figure 4.12 SVR metamodel in one design variable with support vectors marked with 
dark dots and the designs disregarded in the model build marked with light dots. The non-
linear model is reduced to a linear model by the mapping Q from input space into feature 
space and the support vectors contribute to the cost by the ε-insensitive loss function. 

In most cases, the optimization problem described by Equation (4.31) is more easily 
solved in its dual form, and it is therefore written as the minimization of the corresponding 
Lagrangian function L. At optimum, the partial derivatives of L with respect to its primal 
variables w, b, ξ	+, and ξ	– must vanish, which leads to the optimization problem 

max  −
1
2
෍(ߙ௜ା − ௝ାߙ௜ି)൫ߙ − ௜ܠ)௝ି൯݇ߙ , (௝ܠ − ௜ାߙ)෍ߝ + (௜ିߙ + ෍ݕ௜(ߙ௜ା − (௜ିߙ

௡

௜ୀଵ

௡

௜ୀଵ

௡

௜,௝ୀଵ

 

subject	to ෍(ߙ௜ା − (௜ିߙ = 0
௡

௜ୀଵ
௜ାߙ) − (௜ିߙ ∈ [0, [ܥ

 

(4.32) 

where αi
+ and αi

– are dual variables (Lagrange multipliers) and k(xi,xj) = Q(xi) ∙ Q(xj) 
represents the so-called kernel function. This problem can be solved using a quadratic 
programming algorithm to find the optimal choices of the dual variables. The kernel 
functions must have certain properties and possible choices include linear and Gaussian 
functions etc. as seen in Table 4.1 (Smola and Schölkopf, 2004). 

The partial derivative of L with respect to w being zero yields ܟ = ∑ ௜ାߙ) − ௡(௜ܠ)ۿ(௜ିߙ
௜ୀଵ . 

Equation (4.30) can then be rewritten and provide the response in an unknown point x as 

(ܠ)ݕ̂ = ܾ + ܟ ∙ (ܠ)ۿ = ܾ + ෍(ߙ௜ା − (௜ܠ)ۿ(௜ିߙ
௡

௜ୀଵ

∙ (ܠ)ۿ = ܾ + ෍(ߙ௜ା − ௜ܠ)݇	(௜ିߙ , (ܠ
௡

௜ୀଵ

 (4.33) 
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The optimization problem in Equations (4.31) and (4.32) corresponds to finding the 
flattest function in feature space, not in input space. The base term is still unknown but 
could be determined from 

ܾ = ௝ݕ ܟ− ∙ (௝ܠ)ۿ + ߝ = ௝ݕ −෍(ߙ௜ା − ௜ܠ݇൫	௜ି)ߙ , ௝൯ܠ
௡

௜ୀଵ

+ 0	݂݅		ߝ < ௜ିߙ < (4.34) ܥ

ܾ = ௝ݕ ܟ− ∙ ௝൯ܠ൫ۿ − ߝ = ௝ݕ −෍(ߙ௜ା − ௜ܠ݇൫	௜ି)ߙ , ௝൯ܠ
௡

௜ୀଵ

− 0	݂݅		ߝ < ௜ାߙ < (4.35) ܥ

which means that b can be calculated for one or more αi
± that fulfil the conditions. Better 

results are obtained for αi
± not too close to the bounds according to Forrester and Keane 

(2009). The set of equations could also be solved via linear regression. 

It can be seen that SVR methods produce RBF networks with all width parameters set to 
the same value and centres corresponding to the support vectors. The number of basis 
functions, i.e. hidden layer units, M in Equation (4.25), is the number of support vectors. 

Table 4.1 Kernel functions for SVR where c, ϑ, and κ are constants. 

Kernel function Mathematical description 

linear ݇൫ܠ௜ , ௝൯ܠ = ௜ܠ ∙  ௝ܠ
homogeneous polynomial of degree d  ݇൫ܠ௜ , ௝൯ܠ = ௜ܠ) ∙  ௝)ௗܠ
inhomogeneous polynomial of degree d ݇൫ܠ௜ , ௝൯ܠ = ௜ܠ) ∙ ௝ܠ + ܿ)ௗ , ܿ ≥ 0 
Gaussian ݇൫ܠ௜ , ௝൯ܠ = ݁ି(ฮܠ೔ିܠೕฮమ/௖)మ 
Hyperbolic tangent ݇൫ܠ௜ , ௝൯ܠ = tanh	(ߴ + ௜ܠ)ߢ ∙  ((௝ܠ

 

4.4 Metamodel Validation 

The accuracy of a metamodel is influenced by the metamodel type as well as the quality 
and quantity of the dataset from which it is built. The quality of a metamodel cannot be 
described by only one single measure. Instead, there are several measures and methods 
that can be used for assessing the accuracy of a metamodel and comparing it to others. 

4.4.1 Error Measures 
One way to assess the accuracy of a metamodel is to study its residuals, i.e. the difference 
between the simulated value yi and the predicted value from the metamodel ŷi. Small 
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residuals mean that the model reflects the dataset more accurately than if the residuals 
were larger, i.e. the fitting error is smaller. Several different error measures can be 
evaluated based on the residuals, e.g. the maximum absolute error (MAE), the average 
absolute error (AAE), the mean absolute percentage error (MAPE), the mean squared 
error (MSE), and the root mean squared error (RMSE). 

ܧܣܯ = ௜ݕ|ݔܽ݉ − ,|ො௜ݕ ݅ = 1, … , ݊ (4.36) 

ܧܣܣ =
∑ ௜ݕ| − ො௜|௡ݕ
௜ୀଵ

݊
 (4.37) 

ܧܲܣܯ =
∑ ௜ݕ| − |ො௜ݕ

௜ݕ
௡
௜ୀଵ

݊
× 100% (4.38) 

ܧܵܯ =
∑ ௜ݕ) − ො௜)ଶ௡ݕ
௜ୀଵ

݊
 (4.39) 

ܧܵܯܴ = ඨ∑ ௜ݕ) − ො௜)ଶ௡ݕ
௜ୀଵ

݊
 (4.40) 

where n is the number of samples in the fitting set. The smaller these error measures are, 
the smaller the fitting error is. The AAE, MAPE, MSE and RMSE provide a measure of the 
overall accuracy, while the MAE is a measure of the local accuracy of the model. RMSE is 
the most commonly used metric but can be biased as the residuals are not relatively 
measured. If the dataset contains both high and low response values, it might be desirable 
to study a relative error instead, i.e. an error measure that is independent of the magnitude 
of the response. The MAPE measure takes this aspect into consideration. 

Another commonly used statistic is the coefficient of determination R2, which is a 
measure of how well the metamodel is able to capture the variability in the dataset. 

ܴଶ = 1 −
∑ ௜ݕ) − ො௜)ଶ௡ݕ
௜ୀଵ
∑ ௜ݕ) − ത)ଶ௡ݕ
௜ୀଵ

=
∑ ො௜ݕ) − ത)ଶ௡ݕ
௜ୀଵ

∑ ௜ݕ) − ത)ଶ௡ݕ
௜ୀଵ

 (4.41) 

where n is the number of design points and	ȳ, ŷi, and yi represent the mean, the predicted, 
and the actual response as defined in Figure 4.13. R2 Î [0 1], where 1.0 indicates a perfect 
fit. However, a high R2 value can be deceiving if it is due to overfitting, which implies that 
the model will have poor prediction capabilities between the fitting points. Another 
occasion when the R2 value can be misleading is when the response is insensitive to the 
studied variables, i.e. the metamodel equals the mean value of the observed responses. In 
this case R2 will be close to 0 even for a well fitted model. 
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Figure 4.13 Description of definitions used for calculating error measures. 

Some metamodels are interpolating the dataset, which means that there are no residuals 
and that R2 equals 1.0. For the deterministic simulation case without random error or 
numerical noise, this is ideal. However, there is no guarantee that these interpolating meta-
models are predicting the response between the known points better than other models. 
Furthermore, when numerical noise is present, it can be beneficial to filter the response by 
using an approximating model. 

More interesting than studying the fitting error is often to estimate how well the meta-
model can predict responses at unknown design points, i.e. study the prediction error. This 
can be done by evaluating the error measures mentioned above for a set of points that are 
not used to fit the model. It is essential that the validation set is large enough and spread 
over the design domain to provide a reliable picture of the accuracy. It is also important 
that the points in the validation set are not placed too close to the fitting points, since that 
can lead to an over-optimistic evaluation of the metamodel (Iooss et al., 2010). 

4.4.2 Cross Validation 
Another way of assessing the quality of a metamodel and comparing it to other models is 
called cross validation (CV). The methodology makes is possible to compare interpolating 
metamodels with approximating ones. In CV, the same dataset is used for fitting and vali-
dating the model. When the simulation time is long and the available data is limited, it can 
be desirable to use the complete dataset for fitting the metamodels rather than potentially 
lower the accuracy by leaving out a part of the set for validation. 

In p-fold CV, the dataset of n input-output data pairs is split into p different subsets. The 
metamodel is then fitted p times, each time leaving out one of the subsets. The omitted 
subset is used to evaluate the error measures of interest. A variation of the method is the 

leave-k-out CV, in which all possible ቀ݊݇ቁ subsets of size k are left out, and the metamodel 

is fitted to the remaining set. Each time, the relevant error measures are evaluated at the 
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omitted points. This approach is computationally more expensive than the p-fold CV. 
However, for the special case when k	= 1, called leave-one-out CV, an estimation of the 
prediction error can be inexpensively computed for some metamodels, e.g. polynomial 
(Myers et al., 2008), Kriging (Martin and Simpson, 2004), and RBF models (Goel and 
Stander, 2009). The generalization error, i.e. the prediction error, for a leave-one-out 
calculation when the error is described by the MSE is represented by 

஼௏ܧܵܯ =
1
݊
෍݁௜ଶ
௡

௜ୀଵ

=
1
݊
෍ቀݕ௜ − ො௜ݕ

(ି௜)ቁ
ଶ

௡

௜ୀଵ

 (4.42) 

where ŷi
(-i)	 represents the prediction at xi using the metamodel constructed utilizing all 

sample points except (xi, yi), e.g. see Forrester and Keane (2009). 

The vector of leave-one-out errors needed to estimate the prediction error for a Kriging 
model fitted to all n points can be evaluated as 

܍ = ܡଵି܀)ۿ −  (4.43) (܊܆ଵି܀

where R is the correlation matrix, y is the vector of observed responses, b is the vector of 
estimated regression coefficients, X is the model matrix, and Q is a diagonal matrix with 
elements that are the inverse of the diagonal elements of R-1. 

For an RBF metamodel on the form ݕො(ܠ) = ܾ + ∑ ௜ݓ ௜݂(ܠ)௡ೃಳಷ
௜ୀଵ , the vector of leave-one-

out errors can be evaluated as 

܍ = ൫݀݅ܽ݃(۾)൯ିଵ(4.44) ܡ۾ 

where y is the vector of observed responses	 and	 P is the projection matrix, which is 
defined by 

۾ = ۷ − ۴(۴்۴ + ઩)ିଵ۴் (4.45) 

F is the design matrix constructed using the response of the radial functions at the design 
points such that Fi1 = 1, Fij+1 = fj(xi), i = 1, ... , n and j = 1, ... , nRBF. Λ is a diagonal 
matrix, where Λii , i  = 1, ... , nRBF, is the regularization parameter associated with the ith 
weight as briefly mentioned at the end of Section 4.3.3. 

It has been shown by Meckesheimer et al. (2002) that k = 1 in leave-k-out CV, i.e. leave-
one-out, provides a good prediction error estimate for RBF and low-order polynomial 
metamodels. For Kriging models, the recommendation is instead to choose k as a function 
of the sample size, e.g. k = 0.1n or k = √݊. 

The leave-one-out CV is a measure of how sensitive the metamodel is to lost information 
at its data points. An insensitive metamodel is not necessarily accurate and an accurate 
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model is not necessarily insensitive to lost information. Hence, the leave-one-out CV is 
not sufficient to measure metamodel accuracy, and validation with an additional dataset is 
therefore recommended (Lin, 2004). Small fitting sets, which are common in reality, are 
not suitable for CV (Stander et al., 2010). Data distribution could change considerably 
even when a small portion of the dataset is removed and used as a validation set. In 
addition, the CV approach is often expensive since it, in general, involves fitting of several 
metamodels for the same response. Nevertheless, CV could be the only practical way of 
obtaining information regarding the predictive capabilities of the metamodels in cases 
where the simulation budget is restricted and the detailed simulations are very cpu-
expensive. 

4.4.3 Generalized Cross Validation and Akaike’s Final Prediction Error 
Overfitting of a metamodel can lead to a model with a very small fitting error but a large 
prediction error. Overfitting generally occurs when a model is excessively complex, i.e. 
when it has too many parameters relative to the number of observations in the fitting set. 
Some measures of goodness of fit have therefore been developed that take both the 
residual error and the model complexity into account. One of these methods is the 
generalized cross validation (GCV) described by Craven and Wahba (1979), and another 
one is the final prediction error (FPE) defined by Akaike (1970). These error measures 
are evaluated for metamodels of different complexity fitted to the same dataset. The model 
with the lowest value should then be chosen as the one with the appropriate complexity. 
For a metamodel with a mean squared fitting error MSE, the corresponding GCV and FPE 
measures are defined by 

஼௏ீܧܵܯ =
ܧܵܯ

ቀ1 − ߥ
݊ቁ

ଶ (4.46) 

and 

ி௉ாܧܵܯ = ܧܵܯ
1 + ߥ

݊
1 − ߥ

݊
= ܧܵܯ

݊ + ߥ
݊ − ߥ

 (4.47) 

respectively (Stander et al., 2010). n is the number of fitting points, which should be large, 
and ν is the number of (effective) model parameters. In the original forms, valid for linear 
or unbiased models without regularization, ν is the number of model parameters. 
Otherwise, e.g. for neural network models, ν should be the number of effective model 
parameters, which could be estimated in different ways. 
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4.5 Optimization Algorithms 

There are several different algorithms that can be used when solving a specific 
optimization problem. A local optimization algorithm only attempts to find a local 
optimum, and there is no guarantee that this optimum will also be the global one, unless 
very specific conditions are fulfilled. Thus, if the response has several local optima, 
different results can be obtained depending on the starting point. Most local optimization 
algorithms are gradient-based, i.e. they make use of gradient information to find the 
optimum solution, see e.g. Venter (2010). These techniques are popular because they are 
efficient, can solve problems with many design variables, and usually require little 
problem-specific parameter tuning. On the other hand, in addition to only finding local 
optima, they have difficulty solving discrete optimization problems and may be sus-
ceptible to numerical noise. When using a local optimization algorithm, a simple way of 
dealing with multiple local optima in the design space is to use a multi-start approach in 
which multiple local searches are performed from different starting points. 

In most cases, the global optimum is requested, and what is often called a global optimi-
zation algorithm has a better chance of finding the global or near global optimum. Global 
optimization algorithms can be classified into two main categories: deterministic and 
stochastic (or heuristic) algorithms (Younis and Dong, 2010). Deterministic algorithms 
solve an optimization problem by generating a deterministic sequence of points con-
verging to a globally optimal solution. Such algorithms behave predictable and given the 
same input, the algorithm will follow the same sequence of states and give the same result 
every time. The deterministic algorithms quickly converge to the global optimum but 
require the problem to have certain mathematical characteristics that it does not often 
possess. 

The stochastic algorithms are based on a random generation of points that are used for 
non-linear local optimization search procedures. The algorithms are typically inspired by 
some phenomenon from nature, and have the advantage of being robust and well suited for 
discrete optimization problems. Compared to the deterministic algorithms, they usually 
have fewer restrictions on the mathematical characteristics of the problem, can search 
large design spaces, and do not require any gradient information. On the other hand, they 
cannot guarantee that an optimal solution is ever found and they often require many more 
objective function evaluations. Stochastic optimization algorithms are therefore par-
ticularly suitable for MBDO since the evaluations using metamodels take little time. Other 
drawbacks associated with stochastic algorithms include poor constraint-handling abilities, 
problem-specific parameter tuning, and limited problem size (Venter, 2010). Typical 
stochastic optimization algorithms include genetic algorithms, evolutionary strategies, par-
ticle swarm optimization, and simulated annealing. 
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Many of the stochastic optimization algorithms are population-based, i.e. a set of design 
points search for the optimum solution. These algorithms are particularly suitable for 
multi-objective optimization problems since a set of Pareto optimal points can be found in 
one single optimization run. One popular algorithm for solving MOO problems is the non-
dominated sorting genetic algorithm (NSGA-II) developed by Deb et al. (2002). 

Even if the stochastic optimization algorithms are associated with some drawbacks, they 
are often a suitable choice for the MDO process presented in Chapter 6. Some of these 
methods will therefore be presented in more detail in subsequent sections. 

Since the different optimization algorithms have different benefits, hybrid optimization 
algorithms can be used in which the merits of different methods are taken advantage of. 
One example can be to initially use a stochastic optimization algorithm to find the vicinity 
of the global optimum, and then use a gradient-based algorithm to identify the optimum 
with greater accuracy. 

4.5.1 Evolutionary Algorithms 
Evolutionary algorithms (EAs) try to mimic biological evolution and are inspired by 
Darwin's principle of survival of the fittest. During the 1960s, different implementations 
of the basic idea were developed in different places. The algorithms are based on several 
iterations of the principal evolution cycle described in Figure 4.14 (Eiben and Smith, 
2003). The process starts with a random population of candidate designs. The response 
value representing the objective function gives the fitness of each design in the population. 
Based on this fitness, some of the better candidates are chosen to seed the next generation. 
By applying recombination and mutation to these so-called parents, a set of new can-
didates, the offspring, is formed. The offspring then compete, based on their fitness and 
possibly age, with the parents for a place in the next generation. This process can be re-
peated until a candidate with sufficient fitness is found or until a previously defined com-
putational limit is reached. 

 
Figure 4.14 The basic evolution cycle followed by evolutionary algorithms. 
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Different variants of evolutionary algorithms follow the same basic cycle. They differ only 
in details related to a number of components, procedures and operators that must be speci-
fied in order to define a particular EA: 

1. Representation 
The candidate solutions are defined by a set of design variable settings and possibly 
additional information. These, so-called genes, must be represented in some way for 
the EA. This could for example be done by a string of binary code, a string of 
integers, or a string of real numbers. 

2. Fitness function 
The fitness function assigns a quality measure to the candidate solutions. This is nor-
mally the objective function or a simple transformation of it. If penalty functions are 
used to handle constraints the fitness is reduced for unfeasible solutions. 

3. Population 
A set of individuals, or candidate designs, forms a population. The number of indi-
viduals within the population, i.e. the population size, needs to be defined. 

4. Parent selection mechanism 
The role of parent selection is to distinguish among individuals based on their 
quality and to allow the better ones to become parents in the next generation. This 
selection is usually probabilistic so that high-quality individuals have higher chance 
of becoming parents than those with low quality. Nevertheless, low-quality indi-
viduals often still have a small chance of getting selected to avoid the algorithm 
from being trapped in a local optimum. 

5. Variation operators 
The role of variation operators are to create new individuals (offspring) from old 
ones (parents), i.e. generate new candidate designs. Recombination is applied to two 
or more selected candidates and results in one or more new candidates. Mutation is 
applied to one candidate and results in one new candidate. Both operators are 
stochastic and the outcome depends on a series of random choices. Several different 
versions exist for the various representations. 

6. Survivor selection mechanism 
The role of survivor selection is to select, based on their quality, the individuals that 
should form the next generation. Survivor selection is often deterministic, for 
instance ranking the individuals and selecting the top segment from parents and 
offspring (fitness biased) or selecting only from the offspring (age biased). 

J. H. Holland (1992) is considered to be the pioneer of genetic algorithms (GAs), which 
are the most widely known type of evolutionary algorithms. There are several genetic 
algorithms that differ in representation, variation, and selection operators. What can be 
considered a classical GA has a binary representation, fitness proportionate parent 
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Table 4.2 Overview of typical features of genetic algorithms and evolution strategies 
according to Eiben and Smith (2003). 

 Genetic algorithms Evolution strategies 

Typical representation Strings of a finite alphabet Strings of real numbers 
Role of recombination Primary variation operator Secondary variation operator 
Role of mutation Secondary variation operator Primary and sometimes the 

only variation operator 
Parent selection Random, biased by fitness Random, uniform 
Survivor selection All individuals replaced or 

deterministic, biased by fitness 
Deterministic, biased by fitness 

 

Constraints are often enforced by using penalty functions that reduce the fitness of un-
feasible solutions. Preferably, the fitness is reduced in proportion to the number of con-
straints that are violated. A good idea is often also to reduce the fitness in proportion to the 
distance from the feasible region. The penalty functions are sometimes set so large that 
unfeasible solutions will not survive. Occasionally the penalty functions are allowed to 
change over time and even adapt to the progress of the algorithm. There are also other 
techniques to handle constraints. One of them is to use a repair function that modifies an 
unfeasible solution into a feasible one. 

4.5.2 Particle Swarm Optimization 
Swarm algorithms are based on the idea of swarm intelligence, i.e. the collective intel-
ligence that emerges from a group of individuals, and are inspired by the behaviour of 
organisms that live and interact in nature within large groups. One of the most well-known 
algorithms is particle swarm optimization (PSO), which imitates for example a flock of 
birds. Hence, swarm algorithms are population-based algorithms like the evolutionary 
algorithms. 

Particle swarm optimization was introduced by J. Kennedy and R. Eberhart after studying 
the social behaviour of birds (Kennedy and Eberhart, 1995). To search for food, each 
member of a flock of birds determines its velocity based on their personal experience as 
well as information gained through interactions with other members of the flock. The 
same ideas apply to PSO, in which the population, called swarm, converges to the opti-
mum using information gained from each individual, referred to as particle, and from the 
information gained by the swarm as a whole. A basic PSO algorithm has a very simple 
formulation that is easy to implement and modify. The algorithm starts by initializing a 
swarm of particles with randomly chosen velocity and position within the design space. 
The position of each particle is then updated from one iteration to the next using the 
simple formula 



CHAPTER 4. METAMODEL-BASED DESIGN OPTIMIZATION 
 

46 

௜ܠ
௤ାଵ = ௜ܠ

௤ + ௜ܞ
௤∆(4.48) ݐ 

where i refers to the ith particle in the swarm, q to the qth iteration and viq to the velocity. 
The time increment ∆t is usually set to one and the velocity vector is updated in each 
iteration using 
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where w is the inertia parameter, r1 and r2 are random numbers between 0 and 1, c1 and c2 
are the trust parameters, pi is the best point found so far by the ith particle, and pg is the 
best point found by the swarm. Thus, the user needs to select or tune the values of w, c1 
and c2, and decide on the number of particles in the swarm, as well as how many iterations 
that should be performed. The inertia parameter w controls the search behaviour of the 
algorithm. Larger values (around 1.4) result in a more global search, while smaller values 
(around 0.5) result in a more local search (Venter, 2010). The c1 trust parameter indicates 
how much the particle trusts itself, while c2 specifies how much the particle trusts the 
group. Recommended values are c1 = c2 = 2 (Venter, 2010). Finally, pg can be selected to 
represent either the best point in a small subset of particles or the best point in the whole 
swarm. 

The original PSO algorithm has been developed and enhanced, and different versions have 
been applied to different types of optimization problems. Constraints can be handled by 
penalty methods, as described in the previous section. Another simple approach is to use 
strategies that preserve feasibility. Hu et al. (2003) describe a method where each particle 
is initialized repeatedly until it satisfies all the constraints and where the particles then 
search the whole space but only keep the feasible solutions in their memory. 

4.5.3 Simulated Annealing 
Simulated annealing (SA) is a global stochastic optimization algorithm that mimics the 
metallurgical annealing process, i.e. heating and controlled cooling of a metal to increase 
the size of its crystals and reduce their defects. The algorithm was developed by S. 
Kirkpatrick and co-workers, and exploits the analogy with a metal that cools and freezes 
into a minimum energy crystalline structure (Kirkpatrick et al., 1983). In SA, the objective 
function of the optimization problem is seen as the internal energy of the metal during 
annealing. The idea is to start at a high temperature, which is slowly reduced so that the 
system goes through different energy states in the search of the lowest state representing 
the global minimum of the optimization problem. When annealing metals, the initial 
temperature must not be too low and the cooling must be done sufficiently slowly to avoid 
the system from getting stuck in a meta-stable non-crystalline state representing a local 
minimum of energy. The same principles apply to simulated annealing in the process of 
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finding the solution to an optimization problem. 

The strength of the SA algorithm is its ability to deal with highly non-linear, chaotic, and 
noisy objective functions, as well as a large number of constraints. On the other hand, a 
major drawback is the lack of clear trade-off between the quality of a solution and the time 
required to locate the solution, which leads to long computation times (Younis and Dong, 
2010). Different modifications to the original algorithm have been proposed to improve 
the speed of convergence. One of these is the very fast simulated re-annealing algorithm, 
also known as adaptive simulated annealing (ASA) (Ingber, 1996). 

Simulated annealing algorithms can, in general, be described by the following steps 
(Stander et al., 2010): 

1. Initialisation 
The search starts at iteration q = 0 by identifying a starting design, also called 
starting state, x(0) from the set of all possible designs X and calculating the cor-
responding energy E(0) = E(x). The set of checked points X(0) = {x(0)} now includes 
only the starting design. The temperature is initialized at a high value T(0) = Tmax and 
a cooling schedule C, an acceptance function A, and a stopping criterion are defined. 

2. Sampling 
A new sampling point x' Î X is selected using a sampling distribution D(X(q)), and 
the corresponding energy E' = E(x') is calculated. The set of checked points 
X(q+1) = X(q) U {x'} now contains q	+ 2 designs. 

3. Acceptance check 
A random number ζ is sampled from the uniform distribution [0 1] and 

(௤ାଵ)ܠ = ൜		ܠ
ᇱ ߞ	݂݅ ≤ ,ᇱܧ)ܣ ,(௤)ܧ ܶ(௤))

௤ܠ		 ݁ݏ݅ݓݎℎ݁ݐ݋
 (4.50) 

where A is the acceptance function that determines if the new point is accepted. The 
most commonly used acceptance function is the Metropolis criterion 

,ᇱܧ൫ܣ ,(௤)ܧ ܶ(௤)൯ = ݉݅݊ ቄ	1, 	݁
ି(ாᇲିா(೜))

்(೜) ቅ (4.51) 

4. Temperature update 
The cooling schedule T(q+1) = C	 (X(q+1), T(q)) is applied to the temperature. It has 
been proven that a global minimum will be obtained if the cooling is made 
sufficiently slowly (Geman and Geman, 1984). 

5. Convergence check 
The search is ended if the stopping criterion is met, otherwise q = q	+ 1 and the 
search continues at step 2. Usually, the search is stopped when there is no noticeable 
improvement over a number of iterations, when the number of iterations has reached 
a predefined value, or when the temperature has fallen to a desired level. 
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It is obvious that the efficiency of the algorithm depends on the appropriate choices of the 
mechanisms to generate new candidate states D, the cooling schedule C, the acceptance 
criterion A, and the stopping criterion. The choices of D and C are generally the most im-
portant issues in defining an SA algorithm and they are strongly interrelated. The next 
candidate design x' is usually selected randomly in the neighbourhood of the current 
design x, with the same probability for all neighbours. The size of the neighbourhood is 
typically selected based on the idea that the algorithm should have more freedom when the 
current energy is far from the global optimum. Larger step sizes are therefore allowed 
initially. However, a more complicated, non-uniform selection procedure is used in adap-
tive simulated annealing to allow much faster cooling rates (Stander et al., 2010). The 
basic idea of the cooling schedule is to start at a high temperature and then gradually drop 
the temperature to zero. The primary goal is to quickly reach a temperature with low 
energies, but where it is still possible to explore different areas of the design space. 
Thereafter, the SA algorithm lowers the temperature slowly until the system freezes and 
no further changes occur. 

Simulated annealing algorithms generally handle constraints by penalty methods similar to 
the ones described in Section 4.5.1, i.e. the energy for unfeasible solutions is increased so 
that the probability of selecting such designs is reduced. 

Hill-climbing is a very simple local optimization algorithm where new candidate designs 
are iteratively tested in the region of the current design and adopted if they are better. This 
enables the algorithm to climb uphill until a local maximum is found. A similar technique 
could be used to find a local minimum. Simulated annealing differs from these simple 
algorithms in that new candidate solutions can be chosen at a certain probability even if 
they are worse than the previous one, i.e. have higher energy. A new worse solution is 
more likely to be chosen early in the search when the temperature is high and if the dif-
ference in energy is small. Simulated annealing hence goes from being similar to a random 
search initially, with the aim of finding the region of the global optimum, to being very 
similar to "Hill-climbing" in order to locate the minimum more exactly. 



 

49 

 

 Multidisciplinary 
Design Optimization 

5
 

  
Historically, the roots of multidisciplinary design optimization can be found in structural 
optimization, mainly within the aerospace industry (Agte et al., 2010). Disciplines 
strongly interacting with structural parts were first included in the optimization problem, 
making it multidisciplinary. The development has then been heading towards incorpo-
rating whole systems in the MDO studies, i.e. also including design variables important 
for other disciplines than the structural ones. 

The development of MDO can be described in terms of three generations (Kroo and 
Manning, 2000), see Figure 5.1. Initially, when the problem size was limited, all discip-
linary analyses were integrated directly with an optimizer. To be able to perform more 
extensive MDO studies, analyses were distributed in the second generation of MDO 
methods. The first two generations are so-called single-level optimization methods, i.e. 
they rely on a central optimizer to coordinate the optimization and make all design 
decisions. When MDO was applied to even larger problems involving several departments 
within a company, it was found unpractical to rely on a central optimizer as the only 
decision-maker. The third generation of MDO methods therefore consists of the so-called 
multi-level optimization methods, where the optimization process as such is distributed. 
The distribution of decisions more closely resembles the standard product development 
process where different groups are responsible for the development of different parts and 
aspects of the product. 

a) b) c) 

 

 

Figure 5.1 The three generations of MDO methods: a) single-level optimization with 
integrated analyses, b) single-level optimization with distributed analyses, and c) multi-
level optimization. 
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As the first generation of MDO methods are unsuitable for large-scale applications, single-
level methods will refer to the second generation of MDO methods in the following. 

5.1 Single-Level Methods 

Common for single-level optimization methods is a central optimizer that makes all design 
decisions. The most common and basic single-level approach is the multidisciplinary 
feasible (MDF) formulation (Cramer et al., 1994). In the MDF formulation, the optimizer 
requests the values for the objective and constraint functions for different sets of design 
variables from a so-called system analyzer. The system analyzer enforces multi-
disciplinary consistency from the subspace analyzers, i.e. finds a consistent set of coupling 
variables, for each set of design variables. This is usually done iteratively using either 
fixed-point iteration or Newton’s method (Balling and Sobieszczanski-Sobieski, 1994). 
There are a number of drawbacks related to efficiency and robustness associated with the 
MDF formulation (Allison et al., 2005). For example, the parallelism is limited when the 
system analyzer tries to achieve multidisciplinary consistency, and the optimizer may fail 
to find the optimal design if the system analyzer has convergence problems. 

The individual discipline feasible (IDF) formulation is an alternative single-level app-
roach proposed by Cramer et al. (1994) where multidisciplinary consistency is only en-
forced at optimum. Here, the optimizer sends the design variables and estimations of the 
coupling variables directly to the subspace analyzers. The subspace analyzers return up-
dated coupling variables as well as contributions to the global objective and constraint 
functions to the optimizer. An additional constraint is introduced for each coupling vari-
able to drive the optimization process towards multidisciplinary consistency at optimum. 
In this approach, the subspace analyzers are thus decoupled and the iterative process 
needed to find multidisciplinary consistent designs at every call from the optimizer is 
avoided. However, since an additional variable and an extra constraint are introduced for 
each coupling variable, the method is most efficient for problems with few coupling 
variables. 

The MDF and the IDF methods differ in the handling of coupling variables, i.e. how 
multidisciplinary consistency is enforced. However, the two formulations coincide for 
MDO problems lacking coupling variables. 

5.2 Multi-Level Methods 

In multi-level optimization methods, the decision-making process is distributed and a 
system optimizer communicates with a number of subspace optimizers. Several multi-
level optimization formulations can be found in the literature and some of the most well-
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known ones are briefly presented here. More detailed descriptions can be found in e.g. 
Ryberg et al. (2012). 

Concurrent subspace optimization (CSSO) was first introduced by J. Sobieszczanski-
Sobieski (1988). It is an iterative approach that starts with finding a multidisciplinary 
consistent solution for the initial design. The main idea is then to distribute each shared 
variable to the subspace whose objective and constraint functions it affects the most. Next, 
all subspaces are optimized with respect to its local variables and a subset of its shared 
variables, while all other variables are held constant. The formulation of each subspace 
optimization problem includes minimization of the objective function subject to one 
combined local constraint and to approximations of the combined constraints from the 
other subspaces. The responsibility for fulfilling the constraints is thus shared between all 
the subspace optimizers, and the distribution of the responsibility is governed by a system 
coordinator. The new design point is simply the combination of optimized variables from 
the different subspaces, and this point is not necessarily feasible (Pan and Diaz, 1989). 
Finally, the system coordinator redistributes the responsibility for the different constraints 
for the next iteration and the process is continued until convergence is reached. 
Unfortunately, the method can experience convergence issues and may fail to solve some 
simple problems (Shankar et al., 1993). 

A more recent version of CSSO was developed by Renaud and Gabriele (1991, 1993, 
1994) in a series of articles, and many subsequent approaches are based on their work. In 
their formulation, the subspace optimizations are followed by the solution of an app-
roximation of the global optimization problem. This approximation is constructed around 
the combination of optimized variables from the different subspaces. The obtained 
optimum is then the design vector input to the next iteration. All variables are conse-
quently dealt with at the system level. This restricts the autonomy of the groups res-
ponsible for each subspace, which is the main motivation for using a multi-level method. 

Bilevel integrated system synthesis (BLISS) was first presented by J. Sobieszczanski-
Sobieski et al. (1998) and the method has some similarities with CSSO. The original 
implementation concerns four coupled subspaces of a supersonic business jet: structures, 
aerodynamics, propulsion, and aircraft range. The method is iterative and optimizes the 
design in two main steps. First, subspace optimizations are performed in parallel with 
respect to the local variables subject to local constraints. Next, the system optimizer finds 
the best design with respect to the shared variables. A linear approximation of the global 
objective function is constructed and split into objectives for the system and subspace 
optimization problems. Normally, the system optimization problem is considered to be an 
unconstrained problem. However, if the constraints in the subspace optimizations depend 
more strongly on the shared and coupling variables than on the local variables, they might 
need to be included in the system optimization, turning the system optimization problem 
into a constrained one. The BLISS procedure separates the optimization with respect to 
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the local and shared variables, and sometimes a different solution can be obtained 
compared to the case when all variables are optimized simultaneously (Kodiyalam and 
Sobieszczanski-Sobieski, 2000). 

A reformulation of the original method, referred to in the literature as BLISS 2000, or 
simply BLISS, was presented by Sobieszczanski-Sobieski et al. (2003). The key concept 
in BLISS 2000 is the use of surrogate models to represent optimized subspaces. To create 
these surrogate models, a DOE is created and a number of subspace optimization prob-
lems are solved with respect to the local variables. In each subspace optimization problem, 
the sum of the coupling variables output from that specific subspace multiplied with 
weighting coefficients is minimized subject to local constraints. The resulting surrogate 
models represent the coupling variables output from each subspace as functions of the 
shared variables, the coupling variables input to that subspace, and the weighting coef-
ficients. Polynomial surrogate models are used in the original version of BLISS 2000, but 
each subspace could, in principle, be given the freedom to choose their own surrogate 
model. The system optimizer uses the surrogate models to minimize the global objective 
subject to consistency constraints. The BLISS 2000 formulation was developed to handle 
coupled subspaces and is not relevant for problems lacking coupling variables since the 
subspace objective functions then no longer exist. 

An early description of Collaborative optimization (CO) was published by Kroo et al. 
(1994), and it was further refined by Braun (1996). Collaborative optimization can handle 
coupling variables and has mainly been used for aerospace applications. In CO, the system 
optimizer is in charge of target values of the shared and coupling variables. The subspaces 
are given local copies of these variables, which they have the freedom to change during 
the optimization process. The local copies converge towards the target values at optimum, 
i.e. a consistent design is obtained. The system optimizer minimizes the global objective 
function subject to constraints that ensure a consistent design. The subspace optimizers 
minimize the deviation from consistency subject to local constraints. There are a number 
of numerical problems associated with CO when used in combination with gradient-based 
algorithms (DeMiguel and Murray, 2000; Alexandrov and Lewis, 2002). These problems 
hinder convergence proofs and have an unfavourable effect on the convergence rate. 

A number of attempts to modify the CO formulation in order to overcome the numerical 
difficulties are documented in the literature. These include the introduction of polynomial 
surrogate models to represent the subspace objective functions (Sobieski and Kroo, 2000), 
modified collaborative optimization (DeMiguel and Murray, 2000), and enhanced colla-
borative optimization (Rooth, 2008). In enhanced collaborative optimization (ECO), the 
goal of the system optimizer is to find a consistent design. There are no constraints at the 
system level, which makes the system optimization problem easy to solve. The objective 
functions of the subspaces contain the global objective in addition to measures of the 
deviation from consistency. It is intuitively more appealing for the subspaces to work 
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towards minimizing a global objective, rather than towards minimizing a deviation from 
consistency as is done in the original CO formulation. The subspaces are subject to local 
constraints as well as to linearized versions of the constraints in the other subspaces. The 
inclusion of the latter constraints provides a direct understanding of the preferences of the 
other subspaces, unlike CO, where this knowledge is only obtained indirectly from the 
system optimizer. However, the complexity of ECO is a major drawback. 

Analytical target cascading (ATC) was developed for automotive applications (Kim, 
2001). It was originally intended as a product development tool for propagating targets, 
i.e. convert targets on the overall system to targets on smaller parts of the system. How-
ever, it can also be used for optimization if the targets are unattainable. Analytical target 
cascading was established for an arbitrary number of levels, but a formulation with two 
levels, as in the previously presented methods, is also possible. The objective functions of 
the optimization problems on all levels consist of terms that minimize the unattainability 
of the target and terms that ensure consistency (Michalek and Papalambros, 2005b). In 
each of these problems, there are local variables and local constraints. Shared and 
coupling variables are handled in a fashion similar to CO, i.e. an upper level optimizer has 
target values and the lower level optimizers have local copies of these variables. 
Normally, consistency is obtained by including the square of the L2-norm of the deviation 
from consistency multiplied by penalty weights in the objective functions. In this for-
mulation, it is important to choose the penalty weights appropriately (Michalek and 
Papalambros, 2005a). Too small weights can yield solutions far from the solution of the 
original problem, and too large weights can cause numerical problems. Other types of 
penalty functions have therefore been proposed in the literature, see e.g. Tosserams et al. 
(2006). 

5.3 Suitable Methods for Automotive Structures 

To be able to implement MDO into an automotive product development process and use it 
for large-scale applications, the groups involved need to work concurrently and autono-
mously. This is not different compared to the situation in the aerospace industry, and the 
development of multi-level MDO methods have therefore aimed at distributing the design 
process. However, most multi-level methods were initially developed for direct optimi-
zation of coupled disciplines, and the gain in concurrency and autonomy was obtained at 
the cost of added complexity. These methods can be complicated both to implement and to 
use. A multi-level MDO problem can also become less transparent than the corresponding 
single-level problem. One example is when the local objective functions do not mirror the 
global objective function, which makes it difficult for the individual groups to grasp the 
global goal of the optimization process. Some of the methods are also associated with 
numerical problems when used in combination with gradient-based optimization algo-
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rithms. Furthermore, it is not unusual that multi-level MDO methods require more com-
putational resources than single-level methods. 

When performing optimization of automotive structures, it is often considered necessary 
to use metamodels to reduce the required computational effort. It is possible to use meta-
models in both single-level and multi-level MDO methods. However, the effects are more 
interesting and important when metamodels are used in combination with single-level 
methods. In both cases, the effect from computational efficiency is obtained, but in 
addition, the drawback of limited autonomy and concurrency associated with single-level 
methods can be relieved by the introduction of metamodels. In metamodel-based design 
optimization, the main computational effort is spent on building the metamodels. During 
this process, the groups involved can work concurrently and autonomously using their pre-
ferred methods and tools. The issue of not participating in design decisions when using 
single-level methods can also partly be compensated by involving the different groups in 
the setup of the optimization problem and in the assessment of the results. However, since 
the optimization is done on a system level, the individual groups cannot govern the choice 
of optimization methods and tools. In addition, groups that have inexpensive simulations 
either have to create metamodels and introduce an unnecessary source of error, or let the 
central optimizer call their analyzers directly and give up more of their autonomy. Despite 
these drawbacks, a single-level method in combination with the use of metamodels is 
often the most convenient way to solve MDO problems for automotive structural 
applications that involve computationally expensive simulations. The complexity of the 
multi-level methods and lack of readily available software make them a less attractive 
alternative. 
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Multidisciplinary design optimization is not yet a standard methodology for automotive 
structures, but there are obvious benefits if this could be achieved. In order to implement 
MDO into the product development process, there are a number of aspects that need to be 
considered, both related to the characteristics of the problems and the implementation of 
the MDO method itself. An MBDO approach based on global metamodels turns out to be 
an appropriate methodology for MDO of automotive structures. Its suitability and 
efficiency for general automotive structural problems can clearly be demonstrated in a test 
problem, which resembles a typical MDO problem from the automotive industry.  

6.1 Requirements 

To solve a large-scale automotive MDO problem generally involves several groups within 
a company. A process that fits the company organization and product development 
process is therefore needed for MDO to be a part of the daily work. It is also important to 
make use of the existing expertise within the company, i.e. let the experts take part in the 
design decisions and let them use their own methods and tools. In addition, MDO studies 
must be realized in a reasonable time in order to fit the product development process. 
Altogether, this can be summarized in 

Requirement 1: The different groups need to work concurrently and 
autonomously. 

The MDO process also needs to be computationally efficient. It is important to limit the 
time needed for the study and not exceed the available computer resources. Multi-
disciplinary design optimization requires evaluations of many different variable settings 
for all the included loadcases, and the detailed simulation models are commonly 
computationally expensive to evaluate. Consequently, is it often efficient to use meta-
models in the optimization process in order to reduce the required computational 
resources. Hence, 

Requirement 2: The process must be able to incorporate metamodels. 



CHAPTER 6. AN MDO PROCESS FOR AUTOMOTIVE STRUCTURES 
 

56 

To solve an MDO problem that involves coupling variables is significantly more comp-
licated than if only shared variables are considered. Since coupling variables are rare when 
solving MDO problems for automotive structures they can be neglected in the proposed 
process. Consequently, 

Requirement 3: Coupling variables need not to be considered. 

The nature of MDO studies can differ substantially, e.g. be extensive or limited depending 
on the number of variables and loadcases, and have one or several objectives. Variations 
are always present in reality, and there is an interest to consider uncertainties in the design 
also during optimization. It is important that the process can handle as many of these 
variants as possible. Thus, 

Requirement 4: The process must be flexible and able to consider multiple 
objectives and robustness. 

The main driver for implementing a multi-level optimization method is to distribute the 
design process (Kroo and Manning, 2000). However, multi-level methods complicate the 
solution process and to justify their use, the advantages must be greater than the cost. It 
was concluded in Section 5.3 that a single-level method in combination with the use of 
metamodels is the most straightforward way of solving automotive MDO problems with-
out coupling variables. The drawback of not making design decisions can be relieved by 
involving the different groups in the setup of the optimization problem and in the assess-
ment of the results. The benefits of a multi-level method are thus not considered to com-
pensate for the drawbacks. Hence, 

Requirement 5: A single-level MDO method should be used. 

6.2 Process description 

A metamodel-based design optimization approach based on global metamodels, which 
aim at capturing the responses over the complete design space, fulfils the requirements 
outlined in the previous section. The process is illustrated in Figure 6.1 and can be used 
for both optimization of characteristics from one discipline and for multidisciplinary 
design optimization. The process has six distinctive steps, which are described in more 
detail below. However, the solution of an optimization problem is not only an execution of 
these steps in sequence. If the results from one step are found to be unsatisfactory, it is 
often necessary to go back and improve one of the previous steps, resulting in an iterative 
workflow. 
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This can be done using a limited number of detailed simulations and 
one of several available screening methods. 

Step 3: Design of experiments 
Next, a suitable DOE needs to be selected and the simulations with 
the detailed models must be run. Afterwards, the relevant responses 
can be extracted resulting in a database of input (variable settings) 
and output (response values). During the screening, different sets of 
variables are identified as important for different loadcases. For each 
loadcase, only the important variables are included in the DOE, and 
all the other variables are held constant. 

Step 4: Metamodel creation 
The metamodels can now be built from the available dataset and their 
accuracy should be carefully checked. It is often useful to build more 
than one metamodel for each response. Since it can be hard to com-
pare the accuracy between different metamodel types and identify the 
most accurate metamodels, it can also be beneficial to use different 
sets of metamodels in the next step. 

Step 5: Optimization 
When the metamodels are found to be satisfactory, the optimization 
can be performed. In general, optimization algorithms cannot guaran-
tee that the global optimum is obtained. It is therefore preferable to 
use more than one optimization algorithms for each set of meta-
models. Several design proposals are then obtained and can be 
studied further. 

Step 6: Verification 
Based on the optimization results, one or several potential designs can 
be selected and verified using the detailed simulation models. 
Differences between results from the optimization study and results 
from the verification simulations are caused by inaccurate meta-
models or improper selection of variables during the screening. 
Sometimes, there are large constraint margins or no feasible design is 
found. Then, manual adjustments of the design proposals based on 
information from the metamodels and the screening can improve the 
results. However, if the discrepancies are large, it might be necessary 
to go back and improve the step causing the issues. 
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When the described process is followed, there are many choices that must be made, e.g. 
related to software, screening methods, DOEs, metamodels, and optimization algorithms. 
The example presented here is only an illustration of the proposed process and the selec-
tion of methods for other studies should be related to the nature of the considered problem, 
rather than a copy of the methods used here. The execution and results for the different 
steps are briefly described below, and a more detailed description can be found in Paper II. 

The screening is performed using a simple technique in which one variable at a time is set 
to the lowest value, while the other variables are left at their nominal values. It is then 
possible to identify the variables that influence the different responses by comparing the 
obtained results with the results from the nominal design. Here, the selection is done based 
on a global sensitivity analysis (see Section 4.2) and a criterion that the difference in result 
compared to the nominal design must not be too large. In this way, the number of 
variables is reduced from the original 25 to 15, 7, 11, and 12, respectively, for the four dif-
ferent loadcases. It is noted that three of the variables are not considered to be important 
for any loadcase and these variables are therefore set to their minimum values for the rest 
of the study. 

Among the different space-filling algorithms available, a maximin design is chosen, (see 
Section 4.1). The sample size is initially set to 3ni, where i represents the different load-
cases and ni is the number of variables for loadcase i. Based on the estimated accuracy of 
the metamodels, it is judged whether or not a larger DOE sample size is needed for the 
different loadcases. Additional design points are then added sequentially in groups of ni, 
up to a maximum of 6ni design points for loadcase i. The final number of simulations for 
the different loadcases is presented in Table 6.1. The variables not included in the 
different DOEs are seen as constants and set to their nominal values. 

Table 6.1 Final DOE sizes for the different loadcases. 

Loadcase Number of variables, ni DOE size Number of simulations 

Front impact 15 6ni 90 
Side impact 7 6ni 42 
Roof crush 11 5ni 55 
Modal analysis 12 4ni 48 
 

Many different metamodel types can be used to approximate the detailed FE models (see 
Section 4.3). First, radial basis function neural networks are chosen. An attractive feature 
of these metamodels is that they can easily provide an estimation of the prediction error 
(see Section 4.4.2). One metamodel is built for each response with variables selected 
according to the screening. The metamodel for the mass is built with all the variables in-
cluded, i.e. from the sum of the initial datasets from all the loadcases. In order to deter-
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mine the DOE sample sizes and judge the quality of the metamodels, the fitting error 
represented by R2 and the prediction error represented by RMSECV are studied. The target 
is to reach R2 > 0.95 and RMSECV < 5% of the mean value. The mass is a linear function 
of the variables and a perfect fit is therefore obtained. As can be seen in Figure 6.3, the 
error measure targets are achieved for the responses in the roof crush and the modal 
analysis loadcases, but not for the other two loadcases. In the hope of improving the 
accuracy, feedforward neural networks are also fitted to the same datasets. This 
metamodel type often results in a closer fit to the simulated responses, but it provides no 
direct information about the prediction error. 

 
Figure 6.3 Error measures for the RBFNN metamodels representing the constraints. 

Several different global optimization algorithms suitable for optimization of complex 
responses are available (see Section 4.5). In this study, an adaptive simulated annealing 
algorithm is used for the optimization on both the RBFNN and FFNN metamodels. When 
the optimization problem is solved with the two sets of metamodels, two different design 
proposals are found. The design obtained using the FFNN metamodels has a mass reduc-
tion of 12.0% of the variable mass, and the design obtained using the RBFNN metamodels 
has a mass reduction of 7.9%. The design proposals are presented in Table 6.2. 
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Table 6.2 Design proposals from optimization studies using RBFNN and FFNN meta-
models. (+) indicates an increased thickness and (-) a decreased thickness. Results from 
both metamodels and verification simulations are presented.  

Variable 
Thickness (mm) 

Min. Nom. Max. RBFNN FFNN 

t_1001	 0.70 1.00 1.30 0.80   (-) 0.85   (-) 
t_1002	 0.70 1.00 1.30 0.75   (-) 0.85   (-) 
t_1003	 0.70 1.00 1.30 1.20   (+) 0.80   (-) 
t_1004	 0.70 1.00 1.30 0.80   (-) 0.70   (-) 
t_1005	 0.70 1.00 1.30 0.70   (-) 0.70   (-) 
t_1006	 0.70 1.00 1.30 0.75   (-) 1.05   (+) 
t_1007	 0.70 1.00 1.30 0.70   (-) 0.70   (-) 
t_1008	 0.70 1.00 1.30 1.15   (+) 0.70   (-) 
t_2010	 1.40 2.00 2.60 2.60   (+) 2.25   (+) 
t_2011	 1.40 2.00 2.60 1.40   (-) 1.55   (-) 
t_2012	 1.40 2.00 2.60 1.75   (-) 2.25   (+) 
t_2013	 1.40 2.00 2.60 2.20   (+) 2.15   (+) 
t_2014	 1.90 2.50 3.10 3.05   (+) 1.90   (-) 
t_2015	 1.40 2.00 2.60 2.20   (+) 2.15   (+) 
t_3016	 1.40 2.00 2.60 1.40   (-) 1.40   (-) 
t_3017	 1.90 2.50 3.10 2.95   (+) 2.95   (+) 
t_3018	 1.40 2.00 2.60 1.40   (-) 2.40   (+) 
t_4019	 1.40 2.00 2.60 1.40   (-) 1.40   (-) 
t_4020	 1.40 2.00 2.60 1.40   (-) 1.40   (-) 
t_4021	 1.40 2.00 2.60 1.40   (-) 1.40   (-) 
t_4022	 1.40 2.00 2.60 2.00   (-) 2.40   (+) 
t_4023	 1.40 2.00 2.60 1.80   (-) 2.15   (+) 
t_4024	 1.40 2.00 2.60 2.60   (+) 1.45   (-) 
t_4025	 1.40 2.00 2.60 2.55   (+) 2.50   (+) 
t_4026	 1.40 2.00 2.60 2.60   (+) 2.55   (+) 

Response Unit Nom. Req. 
RBFNN FFNN 

Pred. Calc. Pred. Calc. 

Mass	 kg 56.96 Min. 56.30 56.30 55.95 55.95 
intr_mid_front	 mm 7.74 < 7.8 7.80 5.37 7.77 7.33 
tx05_mid_front	 ms 11.54 > 11.5 11.51 11.33 11.51 11.68 
intr_upper_side	 mm 25.38 < 25.4 25.11 23.54 25.04 24.28 
intr_lower_side	 mm 25.37 < 25.4 24.40 23.83 25.24 24.12 
forc_3_roof	 kN 44.81 > 44.8 49.77 48.78 48.63 46.88 
forc_max_roof	 kN 57.11 > 57.1 57.34 57.86 57.16 58.86 
freq_m1_modal	 Hz 107.5 > 107 113.8 115.7 115.3 109.3 
freq_m2_modal	 Hz 146.5 > 146 146.4 152.7 146.1 148.6 
Mass reduction 7.89% 12.01% 
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The accuracy of the two sets of metamodels cannot be compared since there is no known 
prediction error for the FFNN metamodels. Both design proposals are therefore simulated 
using the detailed FE models. It is found that the design with the largest mass reduction 
fulfils all the constraints, while the other design violates one of the constraints, see Table 
6.2. By studying the deformations and the responses as function of time, it is concluded 
that no undesired behaviour is obtained for the design with 12.0% mass reduction. The 
optimization study can thus be considered successful and the design proposal obtained 
with the FFNN metamodels resulting in a 12.0% mass reduction is seen as the final result. 
No manual adjustments of the design proposal are necessary since all the constraints are 
fulfilled. The satisfactory results indicate that no important variables are omitted in the 
screening process and that the metamodels are reasonably accurate. 
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 Discussion 
7

 

  
Metamodels have been used for several years to approximate detailed and computationally 
expensive simulation models. In particular, it has been an attractive method in opti-
mization studies where many evaluations of different variable settings are required. His-
torically, low-order polynomials, which have the ability to capture the behaviour of a 
limited part of the design space, have often been used in an iterative approach. Today, the 
trend goes towards using more advanced metamodels that can capture the behaviour of the 
complete design space. If the metamodels are sufficiently accurate, the optimization can 
then be performed in a single-stage approach. For these optimization problems, a 
stochastic optimization algorithm is often the best choice in order to find the global opti-
mum. The approach with global metamodels is very attractive since it is flexible and can 
be used for different kind of optimization studies. There is in principle no difference to 
perform multidisciplinary design optimization compared to perform optimization taking 
into account responses from only one single loadcase. 

Metamodel-based MDO has been investigated by the automotive industry, but has not yet 
been implemented within the product development process. According to Duddeck 
(2008), the difficulties so far have mainly been related to insufficient computational re-
sources and inadequate metamodel accuracy. However, new metamodels are being deve-
loped and computer capacity is constantly increasing. Therefore, Agte et al. (2010) claim 
that the late introduction of MDO is more related to organizational and cultural issues than 
to technical barriers. An MDO process as straight-forward as the one proposed in this 
thesis is therefore appealing, since it works well in an existing organizational structure and 
leaves much of the work and part of the decision freedom to the disciplinary experts. 

The success of the defined process depends on the accuracy of the metamodels. Some res-
ponses from the detailed simulation models are complex and difficult to capture, which 
can result in inaccurate metamodels. As shown by the presented application example, this 
is often the case for responses in front crash loadcases, where phenomena related to axial 
buckling can be hard to model. In situations with limited metamodel accuracy, it is often 
useful to try different metamodels and optimization algorithms in order to obtain several 
different design proposals to choose from. Furthermore, it is shown by the presented 
application example that the results can be satisfactory even when the metamodels do not 
have the desired accuracy. In addition, if constraints are found to be violated in the 
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verification simulations, it is often possible to adjust the results manually to obtain an 
acceptable solution. Although the optimal design will not be obtained in this way, the 
knowledge gained during the process enables balanced design decisions that can improve 
the product performance. 

By studying the number of detailed simulations that are required to find the new design 
proposal for the described application example, it can also be concluded that the proposed 
method is computationally efficient. The total number of simulations with the detailed 
model for the four different loadcases is 347, distributed among 104 for the screening, 235 
for the DOEs, and 8 for the verification. In comparison to the number of simulations 
required to perform direct optimization or to use a sequential response surface method, 
this is a low number. As an example, a genetic algorithm with a population of 30 
individuals for each of the four loadcases would cover only three generations, if a similar 
number of simulations as in the described metamodel-based process should be performed. 
This number is normally too low for the algorithm to find a global optimum. If an SRSM 
with linear metamodels is used, the number of iterations that can be covered with the same 
simulation budget is also very limited and probably too small for the process to converge. 
It should also be noted that the direct optimization and SRSM do not have the same 
benefits of readily fitting into the organization of a large company. These methods require 
instead a separate group to perform the complete optimization study. 

 



 

67 

 

 Conclusion and Outlook 
8

 

  
The aim of this thesis has been to find a suitable method for implementing multi-
disciplinary design optimization in automotive development. The goal has been to develop 
an efficient MDO process for large-scale structural applications where different groups 
need to work concurrently and autonomously using computationally expensive simulation 
models. The presented process can be categorized as a single-level MDO method that uses 
global metamodels to achieve autonomy and concurrency for the groups during the exe-
cution of the most computationally demanding steps of the process. The process has been 
demonstrated in a simple application example and the results show that: 

- The presented process is efficient, flexible, and suitable for common structural 
MDO applications in the automotive industry, such as weight optimization 
with respect to NVH and crashworthiness. 

- The accuracy of metamodels is important, but useful results can also be 
obtained for metamodels with limited accuracy. 

- Although an optimum solution cannot be guaranteed, the method enables 
balanced design decisions that improve the product performance. 

- Several different design proposals can be obtained with a minor additional 
effort. 

- The process can easily fit into an existing organization and product develop-
ment process with different groups developing the metamodels in parallel using 
the tools of their choice. 

- The different groups of disciplinary experts can take part in the design 
decisions by participating in the setup of the problem and in the selection of 
final designs. 

A traditional approach during automotive development has been to find a design that 
meets all requirements, i.e. a design that is feasible but not optimal. By incorporating the 
described metamodel-based process for multidisciplinary design optimization into the 
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product development process, there is a potential for designing better products in a shorter 
time. 

Even if the process is suitable for implementation today, there are several aspects that can 
be studied further. For example would it be interesting to investigate the implications of 
coupled disciplines, i.e. the existence of coupling variables, to broaden the scope of app-
lication. The method is developed to be flexible and have the possibility to incorporate 
robustness considerations and multiple objectives. The use of the process for different 
types of problems and applications is therefore welcomed. 

The success of the proposed method is relying on global metamodels that can represent 
the complete design space accurately. It is therefore appropriate also to investigate ways to 
achieve improved metamodels for complex responses that include e.g. discontinuities. 
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 Review of Appended Papers 
9 

 

  
Paper I 

Multidisciplinary design optimization methods for automotive 
structures 
The aim of the first paper is to find suitable MDO methods for large-scale automotive 
structural applications. The paper includes descriptions and a comparison of a number of 
MDO formulations presented in the literature. The suitability of these methods is then 
assessed in relation to the special characteristics of automotive structural MDO problems. 
It is stated that the method should allow the involved groups to work concurrently and 
autonomously, must allow the use of metamodels, but does not need to handle coupling 
variables. It is found that a single-level method in combination with the use of metamodels 
is often the most convenient way of solving MDO problems for automotive structural 
applications involving computationally expensive simulations. 

Paper II 

A metamodel-based multidisciplinary design optimization process 
for automotive structures 
The aim of the second paper is to describe an MDO process for automotive structures and 
consider aspects related to its implementation. The process is developed to fit a normal 
product development process of a large automotive company and is based on the findings 
from the first paper. The requirements placed on the process are presented, and a process 
meeting these requirements are described. The suitability of the process is then 
demonstrated in a simple application example. It is concluded that the presented process is 
efficient, flexible, and suitable for common structural MDO applications within the 
automotive industry. Furthermore, it fits easily into an existing organization and product 
development process. 
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