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Abstract

A novel method to �nd the orientation and position of a triaxial accelerom-

eter mounted on a six degrees-of-freedom industrial robot is proposed and

evaluated on experimental data. The method consists of two consecutive

steps, where the �rst is to estimate the orientation of the sensor data from

static experiments. In the second step the sensor position relative to the

robot base is identi�ed using sensor readings when the sensor moves in a

circular path and where the sensor orientation is kept constant in a path

�xed coordinate system. Once the accelerometer position and orientation

are identi�ed it is possible to use the sensor in robot model parameter identi-

�cation and in advanced control solutions. Compared to previous methods,

the sensor position estimation is completely new, whereas the orientation

is found using an analytical solution to the optimisation problem. Previous

methods use a parameterisation where the optimisation uses an iterative

solver.

Keywords: Robotics, Accelerometer, Estimation



Method to Estimate the Position and Orientation of a Triaxial Accelerometer
Mounted to an Industrial Manipulator

Patrik Axelsson, Mikael Norrlöf

Abstract— A novel method to find the orientation and po-
sition of a triaxial accelerometer mounted on a six degrees-
of-freedom industrial robot is proposed and evaluated on
experimental data. The method consists of two consecutive
steps, where the first is to estimate the orientation of the sensor
data from static experiments. In the second step the sensor
position relative to the robot base is identified using sensor
readings when the sensor moves in a circular path and where
the sensor orientation is kept constant in a path fixed coordinate
system. Once the accelerometer position and orientation are
identified it is possible to use the sensor in robot model
parameter identification and in advanced control solutions.
Compared to previous methods, the sensor position estimation
is completely new, whereas the orientation is found using
an analytical solution to the optimisation problem. Previous
methods use a parameterisation where the optimisation uses
an iterative solver.

I. INTRODUCTION

A novel method to estimate the position and orientation
of a triaxial accelerometer mounted on an industrial robot is
presented. The estimation method uses a two step procedure
where the first step is to identify the orientation of the
sensor using a number of static experiments. It is assumed
that the sensor is mounted in such a way that it can be
arbitrarily oriented using the six degrees-of-freedom (DOF)
robot arm. The desired orientation of the sensor is hence
known while the actual orientation is unknown. In [1] and
[2] the accelerometer calibration is considered and internal
parameters of the accelerometer, such as sensitivity and bias,
but also alignment of each one of the three accelerometer
measurement channels, are identified. The main differences
between the approach presented in the present paper, and [1],
[2], are that the orientation, sensitivity, and bias are found
using an iterative optimisation approach in [1], [2] while
in the approach presented in this paper the solution can be
found in closed form. In addition, the present method also
uses the dynamics of the process to identify the position
of the accelerometer. In [1], [2] it is assumed that the
accelerometer is moved in such a way that only gravity
affects the measurements. In contrast, to identify the position
it is necessary to excite the dynamic acceleration, and it
is presented how this can be achieved by doing a number
of measurements using the motion capabilities of the robot
while keeping the accelerometer in different orientations with
respect to the path coordinate system. Finally, the proposed
method is evaluated on experimental data.

All authors are with the Department of Electrical Engineering,
Linköping University, SE-58183 Linköping, Sweden {axelsson,
mino}@isy.liu.se.

The estimation problem is formulated in Section II. In
Section III, the method to find the orientation of the sensor is
described, and the method to estimate the mounting position
is described in Section IV. The orientation and position
estimation is evaluated on experimental data in Section V
and Section VI concludes the results.

II. PROBLEM FORMULATION

Assume that the accelerometer is mounted on the robot
according to Figure 1(a) where the sensor is assumed to
be rigidly attached to the robot tool. Given a definition of
the tool coordinate system the estimation method presented
in this paper finds the relative orientation and position of
the triaxial sensor. The orientation of the desired coordinate
system can be seen in Figure 1(b). Let ρa be an accelerom-
eter measurement vector in the sensor coordinate system
Oxayaza of the accelerometer and ρs an acceleration vector
in the desired coordinate system Oxsyszs, describing the
acceleration in m/s2. The relation between ρa and ρs is given
by,

ρs = κRρa + ρ0, (1)

where R is the rotation matrix R from Oxayaza to Oxsyszs,
κ is the accelerometer sensitivity and ρ0 the bias. It is
assumed that the same sensitivity value κ can be used for
all three sensors in the triaxial accelerometer. The sensitivity
and bias is chosen such that the units in Oxsyszs are m/s2.
When the unknown parameters in (1) have been found the
position of the accelerometer is identified, expressed relative
to the tool coordinate system. To solve for the unknown
parameters ρa is measured while ρs is computed from a
model. In the static case ρs is simply the gravity vector,
while in the dynamic case when the sensor is moved the
acceleration will depend on the speed and orientation of the
sensor. To be able to divide the estimation problem in two
distinct problems the orientation is estimated using static
measurements only while the position of the sensor is found
by moving the accelerometer along a known path with known
speed. Using the known orientation of the accelerometer it
is possible to numerically cancel the effect of gravity and
only measure the dynamic acceleration, with constant speed
in a circular path, perpendicular to the gravity field. The
orientation of the accelerometer is kept fixed with respect to
the path coordinates during the motion. This means that the
acceleration originating from the movement can be isolated
from the gravity component. A special case is when Oxsyszs
is rotated such that the coordinate system of the accelerom-
eter is directed to give gravity measurements along one
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(a) The accelerometer and its actual
coordinate system Oxayaza.
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(b) The accelerometer and the de-
sired coordinate system Oxsyszs.

Fig. 1. The accelerometer mounted on the robot. The yellow rectangle
represents the tool or a weight and the black square on the yellow rectangle
is the accelerometer. The base coordinate system Oxbybzb of the robot is
also shown.

coordinate axis only. The two other axes of the accelerometer
directly gives the dynamic acceleration component which can
be used to estimate the position.

III. IDENTIFICATION OF ORIENTATION, SENSITIVITY AND
BIAS

To solve for the parameters R, κ and ρ0 in (1), first define
the residual

ek = ρs,k − κRρa,k − ρ0, (2)

where k indicates the sample number. Next, minimise the
sum of the squared norm of the residuals,

minimise
∑N

k=1 ||ek||2
subject to det(R) = 1

RT = R−1

(3)

where the constrains guarantee that R is an orthonormal ma-
trix. There exists a closed form solution to this optimisation
problem [3],

κ =

√√√√ N∑
k=1

||ρ′s,k||2
/

N∑
k=1

||ρ′a,k||2, (4a)

R = M
(
MTM

)−1/2
, (4b)

ρ0 = ρ̄s − κRρ̄a, (4c)

where

ρ̄s =
1

N

N∑
k=1

ρs,k, (5a)

ρ̄a =
1

N

N∑
k=1

ρa,k, (5b)

are the centroids for the measurements in Oxayaza and
Oxsyszs.

ρ′s,i = ρs,i − ρ̄s, (6a)

ρ′a,i = ρa,i − ρ̄a, (6b)

denote new coordinates and

M =

N∑
k=1

ρ′s,k(ρ′a,k)T . (7)

N is the total number of measurements and it has to be
assumed that N ≥ 3. In addition a condition of sufficient ex-
citement has to be fulfilled, such that MTM has full rank. As
an alternative to the formulation above where the rotation is
parameterised by the orthonormal matrix R it is also possible
to find a closed-form solution to (1) using unit quaternions,
see e.g. [4]. Considering the number of operations the matrix
formulation is, however, computationally more efficient.

As indicated in Section II the orientation and the sensor
parameters are found using static measurements, i.e., moving
the tool into a number, NC , of different configurations. The
gravity vector is measured by the accelerometer in each of
the NC configurations, which gives NM,j , j = 1, . . . , NC

measurements for each configuration. Let

{ρa} =
{
{ρ1

a,i}
NM,1

i=1 , . . . , {ρNC
a,i }

NM,NC
i=1

}
(8)

denote the set of all the N =
∑NC

j=1NM,j measurements in
all NC configurations, and let

{ρs} =
{
{ρ1

s}
NM,1

i=1 , . . . , {ρNC
s }

NM,NC
i=1

}
(9)

be the gravity vector from the model in the desired coordinate
system Oxsyszs for each configuration, where ρjs, j =
1, . . . , NC is a constant. Using the measured accelerations
and the model values to solve the optimisation problem in (4)
to (7) the transformation parameters can be computed.

The NC different configurations can be chosen arbitrary
but here we suggest six different configurations according to
Figure 2, which give

ρ1
s =

(
0 0 g

)T
, ρ2

s =
(
0 g 0

)T
,

ρ3
s =

(
0 0 −g

)T
, ρ4

s =
(
0 −g 0

)T
,

ρ5
s =

(
−g 0 0

)T
, ρ6

s =
(
g 0 0

)T
,

(10)

where g = 9.81 m/s2. The sign of g in (10) is opposite the
gravity vector in Figure 2. The explanation for this is that an
accelerometer measures the normal force which is opposite
the gravity vector.

The six configurations in Figure 2 are straightforward to
obtain for a six degree of freedom industrial manipulator [5].
The procedure to estimate the triaxial accelerometer sensor
parameters is summarised in Algorithm 1.

Algorithm 1 Estimation of the sensor parameters

1) Measure the acceleration for the different configura-
tions in Figure 2 to obtain {ρa} according to (8).

2) Construct {ρs} in (9) from (10).
3) Calculate R, κ and ρ0 from (4) to (7).

It is possible to use other configurations than the one in
Figure 2 in Algorithm 1 as long as MTM has full rank1.

1The matrix MTM has always full rank if none of the two sets {ρa}
and {ρs} are coplanar.
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Fig. 2. Six different configurations of the robot tool used in Algorithm 1.
The orientation of the desired coordinate system Oxsyszs is shown for
each configuration. The base coordinate system Oxbybzb and the gravity
vector are also shown.

IV. ESTIMATION OF THE POSITION OF THE
ACCELEROMETER

Using a mathematical model of the robot motion it is
possible to compute the acceleration, parameterised in some
unknown parameters. In the second step of the proposed
orientation and position estimation process a method for
the position estimation is explained for the accelerometer’s
coordinate system Oxsyszs, expressed in a coordinate sys-
tem Oxbfybfzbf fixed to the robot. From Section III the
orientation and sensor parameters are known, hence the
acceleration measured by the accelerometer has a known
orientation.

To simplify the mathematical model for the acceleration
and to make it possible to parameterise the unknown parame-
ters , consider the case when the robot is in the configuration
shown in Figure 3. The figure shows the vector rs, the two
coordinate systems Oxbfybfzbf and Oxsyszs, a world fixed
coordinate system Oxbybzb attached to the base of the robot,
a coordinate system Oxwywzw fixed to the end of the robot
arm, a vector as

∆
= d2

dt2 (rs) describing the acceleration of
Oxsyszs, which we want to find an expression for. The figure
also shows a parameter θ describing the rotation between
Oxbfybfzbf and Oxbybzb, two known parameters L1 and L2

describing the arm lengths and three unknown parameters li,
i = 1, 2, 3 describing the vector rs/w in Oxwywzw.

All the calculations are done in the world fixed coordinate
system in order to obtain an expression for d2

dt2 (rs). In a
body fixed coordinate system Oxbfybfzbf

d2

dt2 (rs) = 0. The
notation [rs]i is used to emphasise that rs is expressed in
coordinate system i.

In Figure (3) we see that rs can be written as a sum of
two vectors,

[rs]bf = [rw]bf + [rs/w]bf , (11)

where

[rs/w]bf =
(
l3 −l2 −l1

)T
, (12)

[rw]bf =
(
L1 0 L2

)T
. (13)

The transformation of rs from Oxbfybfzbf to Oxbybzb can
be expressed as

[rs]b = [Qbf/b]b
(
[rw]bf + [rs/w]bf

)
, (14)
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Fig. 3. The first robot configuration for estimation of the mounting
position. The black cube on the yellow box indicates the sensor, i.e., the
origin of Oxsyszs. The yellow box is attached to the robot in the point(
L1 0 L2

)T expressed in Oxbfybf zbf .

where

[Qbf/b]b =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (15)

is the rotation matrix that relates the coordinate system
Oxbfybfzbf to Oxbybzb. θ = θ(t) is the angle relating
Oxbybzb and Oxbfybfzbf according to Figure 3. Taking the
derivative of [rs]b with respect to time gives

d

dt
([rs]b) =

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
. (16)

From [6] we have that
d

dt

(
[Qbf/b]b

)
= S(ω)[Qbf/b]b, (17)

where ω =
(
0 0 θ̇

)T
and

S(ω) =

0 −θ̇ 0

θ̇ 0 0
0 0 0

 (18)

is a skew symmetric matrix. Hence, the time derivative of
[rs]b can be written

d

dt
([rs]b) = S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
. (19)

The second time derivative of [rs]b becomes

[as]b =
d2

dt2
([rs]b) =

d

dt
(S(ω)) [Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)

d

dt

(
[Qbf/b]b

) (
[rw]bf + [rs/w]bf

)
=S(ω̇)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
+ S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
=S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
, (20)
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Fig. 4. The second robot configuration for estimation of the mounting
position. The black cube on the yellow box indicates the sensor, i.e., the
origin of Oxsyszs. The yellow box is attached to the robot in the point(
L3 0 L4

)T expressed in Oxbfybf zbf .

where ω̇ =
(
0 0 0

)T
follows from the assumption of

constant angular velocity.
It now remains to transform the measured acceleration aMs

from Oxsyszs to Oxbybzb. From Figure 3 we see directly
that

[aMs ]bf =
(
aMs,x aMs,y 0

)T
, (21)

hence
[aMs ]b = [Qbf/b]b[a

M
s ]bf . (22)

Equations (20) and (22) give

[Qbf/b]b[a
M
s ]bf = S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
⇔

[aMs ]bf = [Qbf/b]
T
b S(ω)S(ω)[Qbf/b]b

(
[rw]bf + [rs/w]bf

)
(23)

since [Qbf/b]
T
b = [Qbf/b]

−1
b . Carrying out the matrix multi-

plication in the right hand side expression of (23) gives

[aMs ]bf =

−θ̇2(L1 + l3)

θ̇2l2
0

 , (24)

where (12), (13), (15) and (18) have been used. Equa-
tions (21) and (24) can now be written as a system of
equations where l2 and l3 are unknown,(

0 −θ̇2

θ̇2 0

)(
l2
l3

)
=

(
aMs,x + θ̇2L1

aMs,y

)
. (25)

It is thus possible to find l2 and l3 from (25) but unfortunately
not l1. To find l1, rotate the sensor according to Figure 4
and do the same kind of movement. The same calculations
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Fig. 5. The third robot configuration for estimation of the mounting
position. The black cube on the yellow box indicates the sensor, i.e., the
origin of Oxsyszs. The yellow box is attached to the robot in the point(
L1 0 L2

)T expressed in Oxbfybf zbf .

as before with

[rs/w]bf =
(
−l1 −l2 −l3

)T
, (26)

[rw]bf =
(
L3 0 L4

)T
, (27)

[aMs ]bf =
(
aMs,z aMs,y 0

)T
, (28)

see Figure 4, give

(
θ̇2 0

0 θ̇2

)(
l1
l2

)
=

(
aMs,z + θ̇2L3

aMs,y

)
. (29)

Equations (25) and (29) can now be used to estimate the
unknown parameters. The estimation of li, i = 1, 2, 3
will be more accurate if more data are used with different
configurations. Therefore, one more robot configuration is
used according to Figure 5, which gives

[rs/w]bf =
(
l3 −l1 l2

)T
, (30)

[rw]bf =
(
L1 0 L2

)T
, (31)

[aMs ]bf =
(
aMs,x aMs,z 0

)T
. (32)

From (23) we now get

(
0 −θ̇2

θ̇2 0

)(
l1
l3

)
=

(
aMs,x + θ̇2L1

aMs,z

)
. (33)

Equations (25), (29) and (33) can now be written as one



system of equations according to

0 0 −θ̇2
c1

0 θ̇2
c1 0

θ̇2
c2 0 0

0 θ̇2
c2 0

0 0 −θ̇2
c3

θ̇2
c3 0 0


︸ ︷︷ ︸

A

l1l2
l3


︸ ︷︷ ︸

l

=



aMs,x,c1 + θ̇2
c1L1

aMs,y,c1
aMs,z,c2 + θ̇2

c2L3

aMs,y,c2
aMs,x,c3 + θ̇2

c3L1

aMs,z,c3


︸ ︷︷ ︸

b

, (34)

where index ci, i = 1, 2, 3 indicates from which robot
configuration the measurements come from. Equation (34)
has more rows than unknowns, hence the solution to (34) is
given by the solution to the optimisation problem

arg min
l
||b−Al||22, (35)

which has the analytical solution

l̂ =
(
ATA

)−1
AT b. (36)

There exist better numerical solutions to (34) than (36), e.g.
l=A\b in MATLAB. The procedure to estimate the position
of the accelerometer is summarised in Algorithm 2.

Algorithm 2 Estimation of the mounting position
1) Measure the acceleration of the tool [aMs ]s and the

angular velocity θ̇ for the three different configurations
in Figures 3, 4 and 5 when θ varies from θmin to θmax

with constant angular velocity.
2) Construct A and b in (34).
3) Solve (34) with respect to l, for example according

to (36).

V. EXPERIMENTAL RESULTS

In this section the proposed orientation and position es-
timation method described in the two algorithms in Sec-
tions III and IV is evaluated using experimental data. For
Algorithm 1, the data, i.e., the acceleration values, are
collected during 4 s for each one of the six configurations
in Figure 2 using a sample rate of 2 kHz. For Algorithm 2,
the arm angular velocity θ̇ for joint 1 and the acceleration
measurements are collected when the robot is in the three
different configurations according to Figures 3, 4 and 5. The
arm angular velocity for joint 1 is computed from the motor
angular velocity θ̇m using,

θ̇m = τ θ̇, (37)

where τ is the gear ratio. In the position estimation experi-
ments data are collected during 4 s in each one of the three
configurations, but it is only the constant angular velocity
part of the data that is used. The same sample rate as before is
used, i.e., 2 kHz. The accelerometer used in the experiments
is a triaxial accelerometer from Crossbow Technology, with
a range of ±2 g, and a sensitivity of approximately 1 V/g [7].
The accelerometer is connected to the measurement system
of the robot controller, and hence the acceleration and motor
angular velocity can be synchronised and measured with the
same sampling rate.
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Fig. 6. Orientation for the five mounting positions that were used to
evaluate the two algorithms. The orientation of the base coordinate system
and the desired coordinate system are also shown.

Five different mounting positions and different orienta-
tions of the accelerometer have been used for evaluation of
Algorithms 1 and 2. The actual physical orientation of the
sensor was measured using a protractor, see Figure 6, where
the orientation of the desired sensor coordinate system also
is shown.

Algorithm 1 was applied to the five test cases presented
above and the result R̂, κ̂ and ρ̂0 can be seen in Table I.
From Figure 6 we have that the rotation matrix R in (1)
should resemble

R1 =

 0 −1 0
0 0 1
−1 0 0

 , R2 =

1 0 0
0 0 1
0 −1 0


R3 =

−a3 −b3 0
0 0 1
−c3 d3 0

 , R4 =

 0 0 1
−1 0 0
0 −1 0


R5 =

−a5 b5 0
0 0 −1
−c5 −d5 0

 ,

where a, b, c and d are positive numbers that should be
close to cos(45◦) ≈ 0.7071. The superscript indicates the
test number. A rotational difference between the measured
rotation matrix Ri and the estimated matrix R̂i can be
computed using the corresponding unit quaternions qi and
q̂i. The rotation angle ϑi of qi∆ from qi∆ =

(
qi
)−1 ∗ q̂i,

which should be small, is a good measure of the difference
between Ri and R̂i. See e.g. [5] for a short introduction to
quaternions. The resulting rotation angle ϑi for the five test
cases can be seen i Table II. The difference is small in all
cases but for test 3 and 5 a larger deviation can be seen. One
explanation for this is that it is more difficult to mount the
accelerometer in a configuration not aligned with the robot
tool, as seen in Figure 1.

It is more difficult to obtain true values for the parameters
κ and ρ0. To verify them, the measured acceleration for
all five test cases in configuration 1, in Figure 2, is trans-
formed from Oxayaza to Oxsyszs, which results in three
constant signals aMs,x, aMs,y and aMs,z for the three axes of the
accelerometer. Figure 2 shows that the measured acceleration
in frame Oxsyszs should resemble as,x = 0, as,y = 0 and
as,z = g. Subtracting as,j from the mean of aMs,j , j = x, y, z,
gives an error for the transformed acceleration. A diagram of
the errors for each coordinate axis in Oxsyszs is shown in
Figure 7. The diagram shows the median as the central mark,
the edges of the box are the 25th and 75th percentiles and



TABLE I
ESTIMATED PARAMETERS IN (1) USING ALGORITHM 1 FOR FIVE

DIFFERENT TEST CASES.

Test κ̂ ρ̂0 R̂

1 9.91

 25.05
−23.75
24.26

 −0.0138 −0.9998 −0.0170
−0.0094 −0.0169 0.9998
−0.9999 0.0140 −0.0092


2 9.91

−23.89
−24.03
25.11

  0.9999 −0.0070 −0.0131
0.0129 −0.0276 0.9995
−0.0073 −0.9996 −0.0275


3 9.91

 34.80
−23.73

3.07

 −0.6348 −0.7724 −0.0208
−0.0027 −0.0247 0.9997
−0.7727 0.6347 0.0135


4 9.91

−24.46
24.86
23.74

  0.0169 −0.0139 0.9998
−0.9992 −0.0355 0.0164
0.0353 −0.9993 −0.0145


5 9.92

−3.91
24.95
33.81

 −0.6314 0.7751 0.0209
−0.0269 0.0050 −0.9996
−0.7750 −0.6318 0.0177


TABLE II

THE ROTATION ANGLE ϑ INDICATES HOW CLOSE THE ESTIMATED AND

MEASURED ROTATION MATRICES ARE TO EACH OTHER. THE MATRICES

ARE IDENTICAL IF ϑ = 0◦

Test 1 2 3 4 5
ϑ 1.4◦ 1.8◦ 5.8◦ 2.4◦ 6.0◦

the dashed lines extend to the most extreme error. The errors
are small and, as expected, the errors are larger in x and y
due to the higher sensitivity to orientation errors in these axis
when measuring gravity along the z-axis. The bias in x can
be explained by a systematic error in orientation due to the
robot elasticity and gravitational force acting on the robot in
the evaluation position, see Figure 1.

Algorithm 2 was also applied for the five test cases.
Figure 8 shows how the measured data, i.e., the acceleration
in Oxsyszs and the arm angular velocity, can look like when
the robot is in the configuration according to Figure 3. Note
that it is only the sequence where the angular velocity is
constant, in this case around 3 rad/s, that is used. From
Figure 3 we see that the acceleration in the z-direction only
originate from the gravity which is verified by Figure 8(a).
We also see that the acceleration due to the circular motion
should be in the negative x-direction and in the positive

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

x

y

z

Acceleration [m/s2]

Fig. 7. Diagram of the transformation errors in the x-, y- and z-direction
for (1) in configuration 1 (Figure 2) for all five test cases. The central mark
is the median, the edges of the box are the 25th and 75th percentiles and
the dashed lines extend to the most extreme error.

TABLE III
ESTIMATED POSITIONS l̂ OF THE ACCELEROMETER IN THE COORDINATE

SYSTEM Oxwywzw FOR FIVE DIFFERENT MOUNTING POSITIONS. ∆ IS

THE ERROR RELATIVE THE MEASURED POSITION lM .

Test Estimated position (l) [cm] ∆ = l̂ − lM [cm]

1
(
35.20 6.27 15.50

)T (
0.2 2.3 −1.0

)T
2

(
14.20 5.82 16.85

)T (
−0.3 −1.2 1.8

)T
3

(
36.33 6.29 21.38

)T (
−1.7 2.3 −1.6

)T
4

(
29.19 1.60 5.86

)T (
2.2 1.6 0.4

)T
5

(
34.75 −3.91 16.50

)T (
−0.7 0.1 1.0

)T
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(a) Measured acceleration in
Oxsyszs.
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(b) Measured arm angular velocity.

Fig. 8. Measured data, to be used to estimate the position l, for test 1
when the robot is in the configuration according to Figure 3.

y-direction which is the case in Figure 8(a). Hence, the
transformation from Oxayaza to Oxsyszs, given by the
identified parameters in (1), is correct.

The estimated position l̂ for the five test cases can be
seen in Table III. Note that l̂2 for test five is negative
which comes from the fact that the sensor is placed on the
other side of the weight than was used in the derivation in
Section IV. The table also shows the error ∆ between l̂ and
the measured position lM . The position was always measured
using a tape measure to the centre of the accelerometer, since
the position of the origin of the accelerometer’s coordinate
system inside the sensor is unspecified. Considering the
accuracy of the measurements and the uncertainty of the
origin of the accelerometer coordinate system the result in
Table III is considered as acceptable. The actual requirement
of the result, in terms of position and orientation accuracy,
will depend on the application where the accelerometer is
used. A more detailed investigation of the requirement for the
accuracy in the dynamic position and orientation estimation
of the tool position, such as described in [8], is left as future
work.

VI. CONCLUSIONS

A method to find the position and orientation of a triaxial
accelerometer mounted on a six DOF robot is presented. The
method is divided into two main steps, where in the first step,
the orientation is estimated by finding the transformation
from the actual coordinate system of the accelerometer, with
unknown orientation, to a new coordinate system with known
orientation. It is also possible to find the sensitivity and
the bias parameters. The estimation of the orientation is
based on static measurements of the gravity vector when



the accelerometer is placed in different orientations using
the six DOF robot arm. In the second step of the method,
the mounting position of the accelerometer in a robot fixed
coordinate system is computed using several experiments
where the robot is moving with constant speed. Finally,
the method is evaluated on experimental data. The resulting
position and orientation accuracy are evaluated using mea-
surements on the physical system. The orientation error is in
the range 1 to 6 degrees and the position error up to 2 cm. The
accuracy is sufficient in experiments with dynamic position
and orientation estimation of the tool position using sensor
fusion methods, such as extended Kalman filter and particle
filter.
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