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Abstract. The assessment of image denoising results depends on the
respective application area, i.e. image compression, still-image acquisi-
tion, and medical images require entirely different behavior of the applied
denoising method. In this paper we propose a novel, nonlinear diffusion
scheme that is derived from a linear diffusion process in a value space
determined by the application. We show that application-driven linear
diffusion in the transformed space compares favorably with existing non-
linear diffusion techniques.

1 Introduction

Many image processing techniques such, as denoising algorithms, aim to improve
the quality of images. Naturally, the definition of quality is dependent on the
situation where the images are used. The focus of this work is on denoising
algorithms and our approach concentrates on that noise that actually will be
visible to an observer, rather than data noise in general.

A widely applied denoising technique was introduced by Perona and Malik [1]
who proposed a nonlinear partial differential equation (PDE) diffusion scheme.
It extends the linear diffusion scheme which is based on the image gradient ∇u
with an edge stopping function g(|∇u|) i.e.

∇u → g(|∇u|)∇u
Linear Perona and Malik

where a modification of the diffusion speed is based on the value domain of the
image gradient. Another PDE model which has received much attention in re-
cent years is the tensor-based diffusion scheme of Weickert [2]. These diffusion
models require the determination of parameters often estimated from the input
data. Thus the performance of these methods depend on the accuracy of the
parameter estimation. A particular problem is that image structure of differ-
ent scale can be present within the same value ranges, hence spatially varying
contrast parameters are required.

In this work we show that by the use of an application dependent transfor-
mation to the input data space given by a function m(u), we obtain a nonlinear
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diffusion formulation. The novel formulation modifies the value domain of u
rather than the gradient domain as done in Perona and Malik diffusion i.e.

∇u → ∇m(u)
Linear Targeted diffusion

An energy functional is formulated where the regularization term is expressed
using the mapping function m(u) and the resulting Euler-Lagrange equation
can be interpreted in terms of nonlinear diffusion. The difference between the
edge-stopping function g and the mapping function m is that the former is an
data-driven ad-hoc selection whereas m is application-driven.

Image processing tools that target specific regions of an image are relevant
in many areas of computer vision, and include high dynamic range imaging [3,
4], infrared imaging [5] and medical imaging [6]. One such region based diffusion
filtering method was proposed by Kačur et al. [7] who generalized the Perona
and Malik diffusion. They model the diffusion PDE with an additional nonlin-
ear function on the range domain from which the gradient is computed. This
allows the filtering process to be directed to regions containing particular image
structures. Their framework reduces the filtering process in regions determined
by the user, but the method still requires the determination of a parameter
corresponding to an edge-stopping function within the region of filtering.

In this work our main contributions are

• A novel diffusion scheme is derived by using a mapping function in a varia-
tional formulation of standard image diffusion.

• Necessary and sufficient conditions are derived to determine if the solution
given by the Euler Lagrange equation yield a minimum of the proposed
energy functional.

• We show how the mean and variance of noise present in the signal domain
is transformed by the mapping function.

• In experiments with computed tomography (CT) images of different noise
levels, it is shown that the novel scheme compares favorably to nonlinear
scalar diffusion on a data set of 400 images using the structural similarity
index [8].

2 Image diffusion

2.1 Linear diffusion

The variational approach to isotropic image diffusion is to minimize the energy
functional

E(u) =

∫
Ω

(u− u0)2 dx+ λ

∫
Ω

|∇u|2 dx , (1)

where x ∈ Ω and u0 denotes the observed image. The constant λ is a positive
scalar which determines the effect of the regularization. The domain Ω is a grid

described by the image size in pixels, and ∇ = ∂x =
(
∂x1

, ..., ∂xn

)T
is the
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gradient operator, and dim(∇) = n is the number of dimensions. Other types
of regularization terms have previously been investigated [9, 10]. To minimize
E(u), one finds the stationary point u by computing the Euler-Lagrange (E-L)
equation

Eu(u) = 0 in Ω, ∇u · n = 0 on ∂Ω ,

where n is the normal vector on the boundary ∂Ω. The E-L equation for (1)
reads {

u− u0 − λ∆u = 0 in Ω
∇u · n = 0 on ∂Ω

(2)

where ∆u is the Laplacian operator. We solve (2) by solving an initial value
problem (IVP) and obtain the diffusion equation which has a closed form solu-
tion.

2.2 Nonlinear diffusion

Before deriving the proposed diffusion scheme, we define the nonlinear scalar
diffusion process of Perona and Malik (PM) [1] as{

u− u0 − λ div(g(|∇u|)∇u) = 0 in Ω
∇u · n = 0 on ∂Ω

(3)

where g(s) = (1 + (s/k)2)−1 is a popular choice as the diffusivity function and
k is a contrast parameter fixed to suppress the flux at edges and lines in the
image. It will be seen that the diffusion process introduced in the subsequent
section can be viewed as a nonlinear filter, closely related to PM-diffusion. We
solve (3) by solving an IVP and obtain the diffusion equation.

Tensor-based nonlinear diffusion is achieved defining T = w∗∇u∇uT where ∗
is a convolution operator and w is a Gaussian filter [2, 11, 12]. Then the diffusion
tensor can be computed as D(T ) = OT g(Λ)O where O are the eigenvectors and
Λ the eigenvalues of T [13]. This gives the PDE

u− u0 − λ div(D(T )∇u) = 0 . (4)

3 Targeted iterative filtering

In order to simultaneously consider the signal domain and the application de-
pendent transformation of an image, we express the regularization term of the
energy functional (1) in the transformed domain. Let m(u(x)) be a mapping
function that maps u(x) to its application domain, then define

E(u) =

∫
Ω

(u− u0)2dx+ λ

∫
Ω

|∇m(u)|2dx (5)

where m(u) ∈ C3(Ω) and λ > 0 is a parameter determining the influence of
the regularization term. In the subsequent sections we derive the necessary and
sufficient conditions for the functional E(u) to attain a local minimum (for details
see supplementary material).
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3.1 Necessary conditions for local minimum

The variational derivative of the the regularization term of E(u) is computed
using the Gâteaux derivative

〈∂R, v〉 = lim
ε→0

|∇m(u+ εv)|2 − |∇m(u)|2

ε
,

where v ∈ C1(Ω) is an arbitrary function such that ∂nv|∂Ω = 0. Using the chain
rule ∇m(u) = m′(u)∇u we obtain

〈∂R, v〉 = lim
ε→0

|∇u|2(m′(u+ εv)2 −m′(u)2) +m′(u+ εv)2(ε2∇ut∇v + ε2|∇v|2)

ε

With Green’s identity and Neumann boundary conditions we obtain

〈∂R, v〉 =
(
2|∇u|2m′(u)m′′(u)− 2div(m′(u)2∇ut)

)
v .

Now observe that div(m′(u)2∇u) = 2m′(u)m′′(u)|∇u|2 +m′(u)2∆u. Using this
result, and since v 6= 0, the E-L equation reads{

u− u0 − λ(div(m′(u)2∇u) +m′(u)2∆u) = 0 in Ω
m′(u)2∇u · n = 0 on ∂Ω

(6)

Since m′(u)2 ≥ 0 it is guaranteed that a solution of (6) exists. Compared to
(3), the divergence operator is modulated with the squared steepness of the
mapping function. Also, the Laplacian is weighted with the same factor. If and
only if m is a globally linear function, (6) becomes identical to (2). The difference
to nonlinear diffusion is easiest explained in terms of the Lagrangian: Replacing
g(|∇u|) with m′(u)2 means to replace the robust error function with an intensity
dependent factor.

3.2 Sufficient conditions for local minimum

In this section we derive sufficient conditions for the solution of the E-L equation
to be a minimum of the regularization term in (5). The result is summarized in
the theorem below. We remark that if the mapping function is a strict monotone
function, the regularization term in (5) is obviously convex and the necessary
condition is also a sufficient condition. However, in the general case, m is not
always a strict monotone function, and this is the case we consider here.

Theorem 1. Let u0 be an observed image in a domain Ω ⊂ R2, and denote by
E(u) the functional

E(u) =

∫
Ω

(u− u0)2 dx+ λ

∫
Ω

|∇m(u)|2 dx

where u ∈ C2 and m(u) ∈ C3. Let ε > 0 be arbitrary and consider the set

Bε =
{
h,∇h ∈ L2(Ω) : ||h||2L2(Ω) ≤ ε

2/CM , ||∇h||2L2(Ω) ≥ ε
}
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where

CM = max
x∈Ω

∣∣[m′(u∗(x))m′′′(u∗(x))− 3(m′′(u∗(x)))2]|∇u∗(x)|2
∣∣ .

Then u∗ is a local minimum of E(u) given by the solution of the E-L equation
(6) if there exists ξ ∈ Ω such that

(m′(u∗(ξ)))2||∇h||2L2(Ω) > ε2 , (7)

for every h ∈ Bε.

Proof. In order to find the sufficient condition for a minimum, define the
regularization term in the functional as

J(u) =

∫
Ω

|∇m(u)|2 dx =

∫
Ω

(m′(u))2|∇u|2 dx

Given a function ϕ ∈ C3, a third order Taylor expansion at the point 0 is

ϕ(a)− ϕ(0) = aϕ′(0) +
a2

2
ϕ′′(0) +

a3

6
ϕ′′′(aθ) 0 < θ < 1 .

Let h ∈ C1, then define ϕ(a) = J(u+ah), which determines the first variation
δJ of J(u) as

δJ = lim
a→0

J(u+ ah)− J(u)

a
= lim
a→0

ϕ(a)− ϕ(0)

a
= ϕ′(0)

In the same way the second variation δ2J follows. Since δJ is a linear functional
in h and δ2J is a quadratic form in h define L1(h) = δJ = ϕ′(0) and L2(h, h) =
δ2J = ϕ′′(0). Given that ϕ is differentiable then so is J . If a = 1 then the Taylor
expansion is given by

J(u(x) + h(x))− J(u) = L1(h) + L2(h, h) + ||h||2ρ(h), (8)

where ρ(h)→ 0, as h→ 0.
A necessary condition of u∗ to be a minimum point of the functional J(u) is

ϕ′(0) = L1(h) = 2

∫
Ω

[m′(u∗)m′′(u∗)|∇u∗|2h+ (m′(u∗))2∇u∗ · ∇h] dx = 0 (9)

for every h in a neighborhood of u∗. According to the E-L equation the solution
u∗ must satisfy that

m′(u∗) 6= 0 (10)

otherwise the trivial solution J(u∗) = 0 is obtained. Differentiating ϕ′(a) and
rewriting the E-L equation using condition (10) obtain L2(h, h) as

1

2
L2(h, h) =

∫
Ω

[m′(u∗)m′′′(u∗)−3(m′′(u∗))2]|∇u∗|2h2 dx+

∫
Ω

(m′(u∗))2|∇h|2 dx
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Since L2(h, h) > 0 implies a minimum, we consider the first integral. Assume
m ∈ C3 and u ∈ C1, then there is an upper bound CM > 0 such that

|[m′(u∗)m′′′(u∗)− 3(m′′(u∗))2]|∇u∗|2| ≤ CM .

Let ε > 0 and Bε be a set defined by

Bε =
{
h,∇h ∈ L2(Ω) : ||h||2L2(Ω) ≤ ε

2/CM , ||∇h||2L2(Ω) ≥ ε
}

Given that h ∈ Bε, then the first integral of L2(h, h) reads∫
Ω

[m′(u∗)m′′′(u∗)− 3(m′′(u∗))2]|∇u∗|2h2 dx ≥ −CM
∫
Ω

h2 dx ≥ −ε2.

Since h ∈ Bε we have ∫
Ω

(m′(u∗))2|∇h|2 dx 6= 0 .

By the mean value theorem of calculus there exists a ξ ∈ Ω such thatm′(u∗(ξ)) 6=
0 and ∫

Ω

(m′(u∗))2|∇h|2 dx = m′(u∗(ξ))2||∇h||2L2(Ω)

Hence

L2(h, h) ≥ 2

∫
Ω

(m′(u∗))2|∇h|2 dx− 2ε2 ≥ 2(m′(u∗(ξ)))2||∇h||2L2(Ω) − 2ε2

> 2ε [(m′(u∗(ξ)))2 − ε ] > 0 (11)

since h ∈ Bε and we can always chose ε < (m′(u∗(ξ)))2 which is the sufficient
condition for u∗ to be a local minimum of J(u). And the theorem follows. ut

4 Noise estimation in the transformed domain

Due to the nonlinear mapping function, m, it is of interest to investigate the
transformation of the first and second statistical moments of the input signal.
We assume that the image signal can be described by a linear model

u0 = u0 + η ,

where η ∼ N (µ, σ2) and u0 is the observed signal, u0 is the noise-free signal and
η is a noise component normally distributed with mean µ and variance σ2. The
mean value and the variance are estimated using a second order Taylor series of
the mapping function, then the mean value and variance estimates

µ̂m = m(u0 + µ) +
1

2
m′′(u0 + µ)σ2 (12)

σ̂2
m = Ψ [m](u0 + µ)σ2 (13)
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where
Ψ [m](u0 + µ) = m′(u0)2 −m(u0)m′′(u0)

is the energy operator [14]. This shows that the mean value in the transformed
domain will depend on the curvature of the transformation used, implying that
the mapping will not preserve the average intensity level of the input space. Also
that the noise variance in the signal domain is amplified by the energy operator.
For complete derivations see supplementary material.

5 Application to medical imaging

For the purpose of evaluating the proposed application-driven diffusion scheme
we consider the application of medical visualization. We make no claim on su-
periority over existing techniques in medical visualization, merely we limit our-
selves to diffusion methods. The diffusion methods investigated are, the novel
targeted filtering scheme (TF), linear diffusion (LD), nonlinear diffusion (PM)
and tensor-based image diffusion (AD).

Visualizations in medical imaging are computed by transfer functions, which
usually are piecewise linear [6]. However, sufficiently similar functions produce
visualizations that are visually indistinguishable. We use combinations of sigmoid
functions, see Fig. 1, since they are three times continuously differentiable.

5.1 Selection of mapping function

Let m : R2 → [0, 1] be the visualization mapped using a transfer function m ∈ C3
computed from two user defined thresholds u(x) = u1 to u(x) = u2. We define
a sigmoid function

m(u(x), a, b) = (1 + exp(−(u(x)− b)/a))−1 , (14)

where a = (u2−u1)/4 is the steepness of the sigmoid function and b = (u1+u2)/2
defines the offset. For this choice of mapping function we show that the sufficient
condition in (7) is satisfied. Then the lower bound of (m′(u∗))2 is given by

(m′(u∗))2 =
1

a2
e

2(b−u∗)
a

(1 + e
b−u∗

a )4
≥ 1

a2
e

2(b−1)
a

(e
b
a + e

b
a )4
≥ 1

a216e
2(b+1)

a

thus the condition (11) is replaced with (16a2e
2(b+1)

a )−1 > ε. Details on the
determination of the lower bound can be found in the supplementary material.

0 1000 2000 3000 40000

0.5

1

 

 

logistic
piecewise linear

Fig. 1. Example of mapping function
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5.2 Numerical aspects

The derived E-L equation (6) is solved as an IVP problem discretizised using a
standard forward Euler scheme. A forward and backward finite difference scheme
is used to approximate the image derivatives.

The derivatives of the mapping function, m are computed analytically. How-
ever, before evaluating the derivatives of m(u), the signal u is regularized with a
small Gaussian filter. Also to remedy the fact that different propagation speeds
are obtained for different slopes of the mapping function, derivatives are normal-
ized to attain a global maximum of 1. The implementation is available here [15].

5.3 Experiment setup

For the evaluation, we add zero mean Gaussian noise to a set of computed tomog-
raphy (CT) images. The motivation for using additive noise is due to the projec-
tion data obtained from the CT scanner contains multiplicative noise. In the CT
reconstruction the logarithm of the data is taken, thus multiplicative noise can be
modeled as additive noise. All images were scaled to an 8-bit quantisation repre-
sentation and zero mean Gaussian noise with standard deviation σ = {5, 10, 15}
was added to the test images in the signal domain. According to (13), the noise
levels in the visualization domain is σm = {51.19, 102.38, 153.36} using a map-
ping function with endpoints u1 = 864 and u2 = 1264 where the endpoints are
represented using Hounsfield units.

All diffusion methods were set to iterate the solution until the peak signal to
noise (PSNR) value no longer increases. The steplength was set to 0.05 for all
methods except for the proposed method which utilizes the slope of the mapping
function as its steplength λ = min(1/(u2−u1)), 0.25) where 0.25 is the maximum
steplength to ensure stability in the case of linear diffusion [2].

The PM and AD contrast parameter was set using the estimated noise levels
σest based on [13] and computed according to [16] as k = (e− 1)(e− 2)−1σ2

est.
The peak signal to noise measure (PSNR) and the structural similarity index

(SSIM) [8] was used to evaluate the performance of the proposed algorithm.

5.4 Results

Table 1 shows the SSIM and PSNR values obtained in the visualization domain
for a dataset of 400 CT images. Comparing the filtering methods with respect
to the error measures, then the error values are in favor of the proposed tar-
geted filtering method (TF) higher noise levels. Here it is important to note the
fundamental difference between TF and PM. The performance of PM is deter-
mined based the estimation of a contrast parameter for the nonlinear mapping
function, whereas TF is not. The only parameter required to be determined in
TF (as with all iterative methods) is the stopping time to avoid trivial solu-
tions. Thus, disregarding the stopping time, TF is a non-parametric non-linear
diffusion scheme which behaves similarly to PM diffusion.
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σ σ̂m LD PM TF AD

SSIM
5 51.19 0.89 ± 0.005 0.92 ± 0.004 0.93 ± 0.003 0.94 ± 0.003
10 102.38 0.84 ± 0.004 0.87 ± 0.005 0.89 ± 0.005 0.87 ± 0.006
15 153.56 0.82 ± 0.006 0.83 ± 0.005 0.86 ± 0.006 0.82 ± 0.005

PSNR
5 51.19 28.44 ± 0.37 30.82 ± 0.56 30.76 ± 0.51 32.18 ± 0.72
10 102.38 25.92 ± 0.45 27.68 ± 0.49 28.13 ± 0.53 27.88 ± 0.49
15 153.56 24.81 ± 0.54 25.74 ± 0.53 26.82 ± 0.59 25.38 ± 0.51

Table 1. SSIM and PSNR values. σ̂m was computed according to (13).

Figure 2 and 3 visualize the corresponding images of slices 250 with noise
level σ = 5 and 350 with noise level σ = 10. In addition to the visualizations,
respective details are depicted. Visually, the proposed diffusion scheme produces
superior results close to edges compared to LD and PM diffusion indicated by
the arrows in both figures. LD oversmooths the image and PM simply retains
noise close to edges. AD preserves edges well and produces high PSNR and SSIM
values but approximately homogeneous regions appear oversmoothed. In Fig. 3
it is clear that regions indicated by the arrows have been retained in the proposed
method whereas the other diffusion techniques have removed the structure.

6 Conclusion

The performance of image denoising methods has to be assessed with respect to
the respective application. In our case, we considered the application of denoising
medical images and limit ourselves to diffusion methods. The relevant quality
criteria is the result of the visualization after applying a mapping function. We
have used the mapping function to derive a novel nonlinear diffusion scheme for
targeted iterative diffusion and evaluated the method on a data set of CT images
with different noise levels. The proposed method is non-parametric in the sense
that it is application-driven rather than data-driven.
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Original Noisy Vis. Original Vis. Noisy

LD PM TF AD

Fig. 2. Slice 250. Noise level σ = 5. Details best viewed on monitor
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