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Abstract

The stochastic Galerkin and collocation methods are used to solve an advection-diffusion
equation with uncertain and spatially varying viscosity. We investigate well-posedness,
monotonicity and stability for the extended system resulting from the Galerkin projection of
the advection-diffusion equation onto the stochastic basis functions. High-order summation-
by-parts operators and weak imposition of boundary conditions are used to prove stability
of the semi-discrete system.

It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic
Galerkin system are positive and we investigate conditions for this to hold. When the
viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar
in terms of computational cost, and for some cases the accuracy is higher for stochastic
Galerkin provided that monotonicity requirements are met. We also investigate the total
spatial operator of the semi-discretized system and its impact on the convergence to steady-
state.

Keywords: Polynomial chaos, Stochastic Galerkin, Stochastic collocation, Stability,
Monotonicity, Summation-by-parts operators

1. Introduction

Partial differential equations (PDEs) subject to uncertain inputs require not only accurate
representation of the stochastic input parameters, but also numerical solution methods that
limit the numerical errors and converge to the exact solution. For non-intrusive methods
where the solution statistics are based on multiple runs of deterministic codes, standard
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analysis techniques can be applied sample-wise to prove numerical properties of interest,
such as stability and monotonicity requirements.

Intrusive methods are not based on sampling of deterministic codes, but rather rely
on problem formulations that result in extended systems of equations. For the stochastic
Galerkin method [14], one generally cannot rely directly on results derived for the determin-
istic systems evaluated at sample points in the stochastic space. Instead, numerical analysis
must be applied directly to the stochastic Galerkin systems.

Generalized polynomial chaos (gPC) methods, for instance stochastic Galerkin, have pre-
viously been used in a number of fluid flow problems subject to uncertain viscosity. Ghanem
and Dham [13] considered a lognormal diffusion coefficient in a multiphase porous medium
problem. Le Mâıtre et. al. investigated a set of Navier-Stokes problems, resulting in coupled
sets of advection-diffusion equations with uncertain viscosity [24]. Wan et. al. investi-
gated the advection-diffusion equation in two dimensions with random transport velocity
[41], and the effect of long-term time integration of flow problems with gPC methods [40].
Xiu and Karniadakis studied the Navier-Stokes equations with various stochastic boundary
conditions [47], as well as steady-state problems with random diffusivity [45].

An alternative to gPC methods is the class of stochastic collocation methods, i.e., sam-
pling methods with interpolation in the stochastic space, c.f. [44]. Several investigations
of the relative performance of stochastic Galerkin and collocation methods have been per-
formed, c.f. [26, 3, 38]. The significant size of the stochastic Galerkin system may lead
to inefficient direct implementations compared to collocation methods and preconditioned
iterative Krylov subspace methods. However, the use of suitable techniques for large sys-
tems, such as preconditioners, may result in speedup for the solution of stochastic Galerkin
systems compared to multiple collocation runs [38].

The aim of this paper is to present accurate and stable numerical schemes for the solution
of a class of linear diffusive transport problems. The advection-diffusion equation subject to
uncertain viscosity with known statistical description is represented by a spectral expansion
in the stochastic dimension. The gPC framework and the stochastic Galerkin method are
used to obtain an extended system which is analyzed to find discretization constraints on
monotonicity, stiffness and stability. A comparison of stochastic collocation versus stochastic
Galerkin is not the primary focus of this paper. However, we include a few examples on
relative performance and numerical properties with respect to monotonicity requirements
and convergence to steady-state, to motivate the use of stochastic Galerkin methods.

Special care is exercised to ensure that the stochastic Galerkin projection results in a
system with positive semi-definite viscosity matrix. The sign of the eigenvalues of a pure
advection problem is not a problem as long as the boundary conditions are properly ad-
justed to match the number of ingoing characteristics, as shown in [17]. Unlike the case of
stochastic advection, the sign of the eigenvalues of the viscosity matrix of the advection-
diffusion problem is crucial. A negative eigenvalue leads to the growth of the solution norm
and hence numerical instability. The source of the growth is in the volume term, and no
boundary condition can address that.

For the spatial discretization, we use high-order accurate summation-by-parts (SBP)
operators [23], i.e., central finite differences in the interior of the computational domain
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complemented with boundary stencils chosen to satisfy the summation-by-parts property,
the discrete analogue of integration-by-parts. The SBP operators are combined with weak
imposition of boundary conditions with properties that lead to an energy estimate and
conditions for numerical stability. Thus, we can prove that a certain order of accuracy will
be obtained, provided that the stochastic representation is accurate enough.

The stochastic advection-diffusion equation is presented in Section 2, followed by an
outline of the gPC framework and the Galerkin formulation of advection-diffusion in Section
3. Different basis functions and estimates of the eigenvalues of the viscosity matrix are
given in Section 4. We prove well-posedness of the problem in Section 5 and monotonicity
requirements for the solution are discussed in Section 6. In Section 7, we investigate the
time-step limitations of the numerical schemes using von Neumann analysis for a periodic
case and summation-by-parts operators for the nonperiodic case. We consider a spatially
constant as well as a spatially varying viscosity. Section 7 also includes analysis regarding
the convergence rate of the steady-state problem. Numerical results are then presented in
Section 9.

2. Problem definition

Let (Ω,F ,P) be a suitable probability space with the set of elementary events Ω and
probability measure P defined on the σ-algebra F . Let ξ(ω), ω ∈ Ω, be a random variable
defined on this space. Consider the following mixed hyperbolic-parabolic stochastic PDE
defined on (0, 1)× [0, T ] which holds P-almost surely in Ω,

∂u

∂t
+ v

∂u

∂x
=

∂

∂x

(
µ(x, ξ)

∂u

∂x

)
, (1)

u(0, t, ξ) = g0(t, ξ),

∂u(x, t, ξ)

∂x
|x=1 = g1(t, ξ),

u(x, 0, ξ) = uinit(x, ξ). (2)

Here the velocity v > 0 is a deterministic scalar and the viscosity µ(x, ξ) > µ0 > 0 is
a finite variance random field. As a special case of (1), we consider the case of µ(ξ) being
spatially constant, but with the same initial and boundary conditions.

In what follows, we approximate the stochastic solution u(x, t, ξ) using a gPC expan-
sion in the random space. We use the stochastic Galerkin method and compare with the
stochastic collocation method. Our objective is then to explore the stability, stiffness and
monotonicity requirements associated with the numerical solution of the resulting coupled
system of equations.

2.1. Uncertainty and solution procedure

We will consider the case where µ has a uniform marginal distribution and thus bounded
range, and the case where µ takes a lognormal distribution, a common model in geophysics
applications such as transport in porous media [9]. For other distributions, we assume
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that the viscosity coefficient µ(ξ) has the cumulative distribution function F . One may
parameterize the uncertainty with a uniform random variable ξ, defined on the interval [−1, 1]
with constant probability density 0.5, denoted ξ ∼ U [−1, 1]. Then we get the expression

µ(ξ) = F−1

(
ξ + 1

2

)
, (3)

which holds for general distributions F as far as F−1 is defined. For the cases of interest
here, F−1 is a linear function in the case of a uniform µ. In the case of a lognormal µ, we will
alternatively use a different representation of µ in terms of the Hermite chaos expansion.

3. Generalized polynomial chaos expansion

The polynomial chaos method introduced in [14] and formulated in a generalized (gPC)
framework in [46] is based on the theory developed in [42]. The framework allows for the
representation of any finite-variance random variable f(ξ) as a generalized Fourier expansion.
Specifically, let 〈·, ·〉 denote the inner product weighted by the probability measure of ξ,
defined by

〈f, g〉 =

∫
Ω

f(ξ)g(ξ)dP(ξ)= 〈fg〉, (4)

where 〈·〉 denotes the mathematical expectation operator. The inner product in (4) induces
a weighted L2-norm, denoted by ‖·‖L2(Ω,P). Let {ψk(ξ)}∞k=0 be an orthonormal basis for
L2(Ω,P). Then, for any f(ξ) satisfying ‖f‖L2(Ω,P) <∞, there exists a gPC expansion

f̃(ξ) =
∞∑
k=0

fkψk(ξ), (5)

where the coefficients fk are defined by the projections

fk = 〈f, ψk〉= 〈fψk〉.

In (5), f̃(ξ) converges to f(ξ) in the mean-squares sense by a generalization of the
Cameron-Martin theorem [6] with some additional assumptions, c.f. [11]. For notational
convenience (and with some abuse of notation), we will not distinguish between f and its
gPC expansion f̃ .

In the context of a stochastic Galerkin solution of Eq. (1), we expand the solution
u(x, t, ξ) with respect to a gPC basis {ψk(ξ)}∞k=0. For optimal convergence, under certain
conditions [46], these polynomials are chosen to be orthonormal with respect to the proba-
bility measure P ,

〈ψj, ψk〉 = δjk,

where δjk is the Kronecker δ. Possible choices of bases include Legendre polynomials that are
orthogonal with respect to the uniform measure and Hermite polynomials that are orthogonal
with respect to the Gaussian measure. These two sets of orthogonal polynomials are both
used in the numerical experiments.
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In the computations, we need to use a basis with finite cardinality. Hence, we truncate
the gPC basis {ψk(ξ)}∞k=0 to exactly represent polynomials up to order p,

up(x, t, ξ) =

p∑
k=0

uk(x, t)ψk(ξ), (6)

where {ψk(ξ)}pk=0 is the set of gPC basis functions of maximum order p.

3.1. Stochastic Galerkin projection

The unknown coefficients uk(x, t) are then computed through a Galerkin projection onto
the subspace spanned by the basis {ψk(ξ)}pk=0. Specifically, the truncated series (6) is in-
serted into (1) and multiplied by each one of the basis functions {ψk(ξ)}pk=0. The resulting
expression is integrated with respect to the probability measure P over the stochastic do-
main. This leads to a coupled linear system of deterministic PDE’s of the form

∂uk
∂t

+ v
∂uk
∂x

=

p∑
j=0

∂

∂x

(
〈µψjψk〉

∂uj
∂x

)
, k = 0, . . . , p, (7)

uk(0, t) = (g0)k, k = 0, . . . , p,

∂uk(x, t)

∂x
|x=1 = (g1)k, k = 0, . . . , p,

uk(x, 0) = (uinit)k, k = 0, . . . , p,

where the orthogonality of the basis functions {ψk(ξ)}pk=0 has been used to cancel terms.
Here, (g0)k, (g1)k and (uinit)k are obtained by the projection of the left and right boundary
data and the initial function on basis polynomial ψk(ξ), k = 0, . . . , p. In the sequel we use
a compact notation to represent the system (7). Let u ≡ (u0 u1 . . . up)

T be the vector of
chaos coefficients in (6), then the system (7) can be equivalently written as

∂u

∂t
+ V

∂u

∂x
=

∂

∂x

(
B(x)

∂u

∂x

)
, (8)

u(0, t) = g0(t),

∂u(x, t)

∂x
|x=1 = g1(t),

u(x, 0) = uinit(x), (9)

where V = diag(v) and the matrix B is defined by

[B(x)]jk = 〈µ(x, ·)ψjψk〉 j, k = 0, . . . , p. (10)

We will frequently refer to the case of spatially independent µ(ξ). Then, (8) can be
simplified to

∂u

∂t
+ V

∂u

∂x
= B

∂2u

∂x2
. (11)
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With the gPC expansion of the viscosity, µ =
∑∞

k=0 µkψk(ξ), (10) can be rewritten as

[B]ij = 〈µψiψj〉 =
∞∑
k=0

µk(x) 〈ψiψjψk〉 , i, j = 0, . . . , p. (12)

For the basis functions that will be used in this paper, all triple (inner) products 〈ψiψjψk〉
satisfy

〈ψiψjψk〉 = 0, for k > 2p and i, j ≤ p. (13)

Explicit formulas for 〈ψiψjψk〉 for Hermite and Legendre polynomials can be found in
[1, 39]. Hence, using (13), (12) may be simplified to

[B]ij =

2p∑
k=0

µk(x) 〈ψiψjψk〉 , i, j = 0, . . . , p. (14)

The entries of B can thus be evaluated as finite sums of triple products that can be
computed exactly. Moreover, since [B]ij = 〈µψiψj〉 = 〈µψjψi〉 = [B]ji, it follows that B is
symmetric.

It is essential that the matrix B be always positive definite when it is derived from a
well-defined µ(ξ) > 0. This holds as a consequence of the following proposition. The proof of
the proposition follows closely that of the positive- (negative-) definiteness of the advection
matrix of Theorem 2.1 in [17] and Theorem 3.1 in [48]. However, here we also emphasize the
importance of a suitable polynomial chaos approximation of B, since in this case negative
eigenvalues would lead to instability of the numerical method.

Proposition 1. (Theorem 2.1 in [17] and Theorem 3.1 in [48]). The viscosity matrix B given
by (14) derived from any µ(ξ) satisfying µ(ξ) ≥ 0 P-almost surely in Ω, has non-negative
eigenvalues.

Proof. For any order p of gPC expansion and any vector u ∈ Rp+1,

uTBu =

p∑
i=0

p∑
j=0

uiuj

2p∑
k=0

〈ψiψjψk〉µk =

p∑
i=0

p∑
j=0

uiuj〈ψiψjµ〉 =

=

∫
Ω

(
p∑
i=0

uiψi

)2

µ(ξ)dP(ξ) ≥ 0. (15)

Remark 1: The above proposition does not hold for the order p approximation µ̃(ξ) =∑p
k=0 µkψk(ξ). The second equality of (15) relies on substituting the gPC expansion of µ of

order 2p with the full gPC expansion of µ. This substitution is valid following (13), but it
would not be valid for the order p gPC approximation of µ. In the latter case, the resulting
B may have negative eigenvalues, thus, ruining the stability of the discrete approximation
of (8). Therefore, the 2p order of gPC expansion of µ is crucial. Figure 1 illustrates this for
the case of a lognormal µ(ξ) = exp(ξ) with ξ ∼ N (0, 1).
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Figure 1: Minimum λB for µ = exp(ξ). Here [B(p)]ij =
∑p

k=0〈ψiψjψk〉µk and [B(2p)]ij =
∑2p

k=0〈ψiψjψk〉µk,
respectively, and {ψk(ξ)} are the Hermite polynomials.

3.2. Diagonalization of the stochastic Galerkin system

In order to reduce the computational cost, it is advantageous to diagonalize the stochastic
Galerkin systems whenever possible. If this is indeed the case, exact or numerical diago-
nalization can be done as a preprocessing step, followed by the numerical solution of p + 1
scalar advection-diffusion problems with different, but strictly positive, viscosity µ((λB)j),
where (λB)j are the eigenvalues of B, j = 0, . . . , p. The system (8) can be diagonal-
ized under certain conditions, which we elaborate on next. Assuming, for a moment, that
B(x) = WΛB(x)W T , i.e., that the eigenvectors W of B(x) are not spatially dependent,
then the system (8) can be diagonalized. Multiplying (8) from the left by W T and letting
ũ = W Tu, we get the diagonalized system

∂ũ

∂t
+ V

∂ũ

∂x
=

∂

∂x

(
ΛB(x)

∂ũ

∂x

)
.

When the stochastic and space dependent components of µ(x, ξ) can be factorized or only
occur in separate terms of a sum, B(x) can be diagonalized. That is, for general nonlinear
functions f , g and h, and µ(x, ξ) = f(x)g(ξ) + h(x), we have

B(x) = f(x)WΛgW
T + h(x) = W (f(x)Λg + h(x)I)W T = WΛB(x)W T ,

where ΛB(x) = f(x)Λg + h(x)I, Λg is a diagonal matrix, W is the eigenvector matrix of
the eigenvalue decomposition of [Bg]ij = 〈gψiψj〉, and I is the identity matrix. The only
requirement on f, g, and h is that the resulting µ(x, ξ) is positive for all ξ, and bounded in
the L2(Ω,P) norm.

Notice that the form µ(x, ξ) = f(x)g(ξ) + h(x) has a given distribution throughout the
domain, but not necessarily with the parameters of the distribution being constant. For
instance, with µ = c1(x) + c2(x) exp(ξ) and ξ ∼ N (0, 1), the viscosity is lognormal for
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all x but with spatially varying statistics and diagonalization. However, for the general
case µ(x, ξ1, . . . , ξd) = exp(G(x, ξ1, . . . , ξd)), with G being a multivariate Gaussian field,
diagonalization is not possible. In Section 8, we will discuss the conditions under which
B(x) can be diagonalized when µ depends on multiple random inputs.

For the general case of any empirical distribution with simultaneous spatial and stochastic
variation diagonalization is not possible. Then we solve the full stochastic Galerkin system
for which we perform analysis in the following sections. We also present results on the
diagonalizable case, since this admits a very direct comparison to the stochastic collocation
techniques, presented next.

3.3. Stochastic collocation

An alternative to the polynomial chaos approach with stochastic Galerkin projection is
to use interpolation of solutions corresponding to some realizations of the stochastic inputs.
Such non-intrusive methods do not require modification of existing codes but rely exclusively
on repeated runs of the deterministic code which make them computationally attractive.
Stochastic collocation takes a set of solutions {u(j)} evaluated at a set {ξ(j)} of values of the
random input ξ, and constructs an interpolating polynomial from these solution realizations
[25, 44, 2].

A common choice of interpolation polynomials is the set of Lagrange polynomials {L(M)
j (ξ)}Mj=1,

defined by M points {ξ(j)}Mj=1, for which the polynomial interpolant becomes

Iu =
M∑
j=1

u(j)Lj(ξ). (16)

The distribution of the grid points {ξ(j)}Mj=1 is implied by the measure P of ξ. For instance,

we choose {ξ(j)} to be the set of Gauss-Legendre quadrature points for the case of uniformly
distributed µ, and the set of Gauss-Hermite quadrature points for the case of lognormal
µ. The integral statistics of interest, such as moments, may then be approximated by the
corresponding quadrature rules. For instance, for some quantity of interest 〈S(u)〉, we have

〈S(u)〉 ≈
M∑
j=1

S(u(j))wj, (17)

where wj is the weight corresponding to the quadrature point ξ(j). The quadrature points
and weights can be computed through the Golub-Welsch algorithm [15]. Note that there is
no need to find the Lagrange polynomials of (16) explicitly since (Iu)(ξ(j)) = u(j) and we
only need the values of Iu at the quadrature points in (17).

Stochastic collocation is similar to other non-intrusive methods such as pseudospectral
projection [32] and stochastic response surfaces (least-squares minimization) [4], in that it re-
lies on evaluating deterministic solutions associated with quadrature points in the stochastic
space. The difference is the postprocessing step where quantities of interest are reconstructed
by different means of numerical quadrature. Specifically, in stochastic collocation, quantities
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of interest are computed directly without representing the solutions as a gPC series. Pseu-
dospectral projection, on the other hand, involves the computation of the polynomial chaos
coefficients of u through numerical quadrature. Quantities of interest are then calculated as
functions of the polynomial chaos coefficients.

We note that properties of monotonicity, stiffness and stability of the PDE’s evaluated
at the quadrature points is independent of the postprocessing step in which the solution
statistics are reconstructed. Therefore, the comparison between stochastic Galerkin and
stochastic collocation should be valid for a larger class of non-intrusive methods, but we
restrict ourselves to stochastic collocation for the numerical experiments.

4. The eigenvalues of the diffusion matrix B

In the analysis of the mathematical properties and the numerical scheme, e.g. well-
posedness, monotonicity, stiffness and stability, we will need estimates of the eigenvalues of
B. We may express

B =
∞∑
k=0

µkCk, (18)

where µk’s are the polynomial chaos coefficients of µ(ξ) and [Ck]ij = 〈ψiψjψk〉.

4.1. General bounds on the eigenvalues of B

Some eigenvalue estimates pertain to all gPC expansions, independent of the actual
choice of stochastic basis functions. For example, in cases where µ(ξ) is bounded within an
interval of the real line, the eigenvalues of the viscosity matrix B can essentially be bounded
from above and below by the upper and lower interval boundaries of possible values of µ,
respectively. More generally, for any countable basis {ψk(ξ)}∞k=0 of L2(Ω,P), by Theorem 2
of [35], it follows that there is a bound on the set {(λB)j}pj=0 of the eigenvalues of B, given
by

(λB)j ∈ conv(spect(µ(ξ))) = [µmin, µmax], (19)

where conv denotes the convex hull, and the spectrum spect of µ(ξ) is the essential range,
i.e., the set of all possible values (measurable) µ can attain. For a more general exposition
and cases where µ is not confined to a convex region or depends on multiple random inputs,
we refer the interested reader to [35]. In this paper, we only consider µ in intervals of finite
or infinite length (convex sets), and do not consider degenerate sets or single point values.
Following (19), for bounded µ such as uniformly distributed viscosity, the eigenvalues (λB)j
will be restricted to an interval for all orders p of gPC expansion. We expect that the order
of chaos expansion has a limited impact on system properties such as monotonicity and
stiffness for these cases, as demonstrated in Section 7.3. For unbounded µ (e.g. lognormal
distribution) there is no upper bound on the eigenvalues of B and the system properties
change with the order of gPC, also shown in Section 7.3.
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4.2. Legendre polynomial representation

When the viscosity µ is given by µ = µ0 + σ̂ξ, ξ ∼ U [−1, 1] and σ̂ is a deterministic
scaling factor, only the first two Legendre polynomials are needed to represent µ exactly,
that is µ = µ0ψ0 + σ̂/

√
3ψ1. Then, the stochastic Galerkin projection yields a matrix B of

the form
[B]jk = 〈µψjψk〉 = µ0I + µ1C1, j, k = 0, . . . , p,

where the eigenvalues of C1 are given by the Gauss-Legendre quadrature nodes scaled by√
3. The scaling factor is due to the normalization performed to obtain unit-valued inner

double products of the Legendre polynomials. This result follows from the fact that the
eigenvalues of the matrix with (i, j) entries defined by 〈ξψiψj〉 are the same as those of
the Jacobi matrix corresponding to the three-term recurrence of the Legendre polynomials.
Thus, they are equal to the Gauss-Legendre quadrature nodes, see e.g. [39, 16] for further
details on this assertion.

The Gauss-Legendre nodes are located in the interval [−1, 1], from which it follows that
(λB)j ∈ [µ0 − σ̂, µ0 + σ̂]. Note that this holds exactly only for a uniformly distributed µ;
for non-uniform µ the polynomial expansion would result in a matrix series representation
of B of the form (18), where the matrices Ck are nonzero also for k > 1.

4.3. Hermite polynomial representation

Representing the uncertainty of the input parameters with an orthogonal polynomial
basis whose weight function does not match the probability measure of the input parameters
may lead to poor convergence rates [47]. However, problems where the inputs are functions
of Gaussian variables may be represented by gPC expansions in the Hermite polynomials
with a weight function matching the Gaussian measure. For instance, lognormal random
processes can effectively be represented by Hermite polynomial chaos expansion, see e.g.,
[12]. Let

µ(ξ) = c1 + c2e
ξ, c1, c2 ≥ 0, ξ ∼ N (0, 1). (20)

Then, the Hermite polynomial chaos coefficients of µ are given by

µj =
c2e

1/2

√
j!
, j ≥ 1. (21)

The inner triple products of Hermite polynomials are given by

〈ψiψjψk〉 =


√
i!j!k!

(s−i)!(s−j)!(s−k)!
s integer, i, j, k ≤ s

0 otherwise,

(22)

with s = (i+ j + k)/2.
Applying Proposition 1 of Section 3.1 to the lognormal µ in (20), it follows that the

eigenvalues of B are bounded below by c1. The largest eigenvalue grows with the order
p of gPC expansion. Since the entries of B are non-negative due to (21) and (22), by
the Gershgorin’s circle theorem, the largest eigenvalue is bounded by the maximum row
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(column) sum of B. This gives an estimate of the stiffness of the problem, where a problem
is loosely defined as stiff when its numerical solution requires an excessively small time-step
for stability.

5. Boundary conditions for well-posedness

A problem is well-posed if a solution exists, is unique and depends continuously on
the problem data. Boundary conditions that lead to a bounded energy are necessary for
well-posedness. For hyperbolic stochastic Galerkin systems, boundary conditions have been
derived in [17] for the linear wave equation, and in [31] for the nonlinear case of Burgers’
equation. Given the setting of (8) we derive the energy equation by multiplying uT with the
first equation in (8) and integrating over the spatial extent of the problem. More specifically,∫ 1

0

uT
∂u

∂t
dx+

∫ 1

0

uTV
∂u

∂x
dx =

∫ 1

0

uT
∂

∂x

(
B(x)

∂u

∂x

)
dx, (23)

which can be compactly written as

∂‖u‖2

∂t
+2

∫ 1

0

∂uT

∂x
B(x)

∂u

∂x
dx =

[
uTV u− 2uTB(x)

∂u

∂x

]
x=0

−
[
uTV u− 2uTB(x)

∂u

∂x

]
x=1

.

(24)

Proposition 2. The problem (8) is well-posed.

Proof. We consider homogeneous boundary conditions, i.e., let g0 = g1 = 0 in (9). Notice
that the right-hand-side of Eq. (24) is negative for the choice of boundary conditions in
(9), hence leading to a bounded energy norm of solution u in time. Uniqueness follows
directly from the energy estimate by replacing the solution by the difference between two
solutions u and v and noticing that the norm of the difference is non-increasing with time,
thus u ≡ v. The problem is parabolic with full-rank B and the correct number of boundary
conditions. This implies the existence of the solution. Therefore, the problem (8) (and also
(1)) is well-posed.

6. Monotonicity of the solution

In this section we use a normal modal analysis technique [18] to derive necessary condi-
tions for the monotonicity of the steady-state solution of the system of equations (11) with
spatially constant, but random, viscosity. We provide these conditions for second and fourth
order discretization operators.

6.1. Second order operators

With standard second order central differences and a uniform grid, the semi-discrete
representation of (11) for the steady-state limit reads

11



V
ui+1 − ui−1

2∆x
= B

ui+1 − 2ui + ui−1

∆x2
, (25)

where ui denotes the value of the vector of solution u at the grid point i in space. This is a
system of difference equations with a solution of the form

ui = yκi, (26)

for some scalar κ and vector y ∈ Rp+1 to be determined. By inserting (26) into (25) we
arrive at the eigen-problem [

∆x(κ2 − 1)

2
V − (κ− 1)2B

]
y = 0 (27)

whose non-trivial solution is obtained by requiring

det

(
∆x(κ2 − 1)

2
V − (κ− 1)2B

)
= 0. (28)

The spectral decomposition of the symmetric positive definite matrix B, i.e., B =
WΛBW

T , inserted into (28) leads to

v∆x(κ2
j − 1)− (λB)j(κj − 1)2 = 0, j = 0, . . . , p. (29)

The solution to (29) is

κj = 1 or
2 + θj
2− θj

, j = 0, . . . , p, (30)

where θj = v∆x
(λB )j

.

For a monotonic solution u, we must have κj ≥ 0 which demands a mesh such that

Remesh = max
j
θj ≤ 2. (31)

In the case of stochastic collocation, each realization will have a different mesh Reynolds
number Remesh based on the value of µ(ξ). In combination with the CFL restriction on the
time-step ∆t, this allows for larger time-steps for simulations corresponding to large values
of µ(ξ), but forces small ones for small µ(ξ).

The importance of the mesh Reynolds number is illustrated in Figure 2. A step function
initially located at x = 0.2 is transported to the right and is increasingly smeared by viscosity
µ ∼ U [0.05, 0.15]. The mean value is monotonically decreasing, but this property is clearly
not preserved by numerical schemes not satisfying the mesh Reynolds number requirement.
It also has the effect of erroneously predicting the location of the variance peaks.

When B can be diagonalized, the solution statistics are functions of linear combinations
of scalar advection-diffusion solutions with viscosity given by the eigenvalues (λB)j. Then
there is a local mesh Reynolds number (Remesh)j = θj for each eigenvalue (λB)j, and a global
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mesh Reynolds number Remesh defined by (31). Remesh is defined also for the cases when
B cannot be diagonalized. If the global mesh Reynolds number for the Galerkin system
Remesh > 2, but the local mesh Reynolds number (Remesh)j < 2 for some instances of the
scalar advection-diffusion equation after diagonalization, the lack of monotonicity may not
be obvious in the statistics, since these are affected by averaging effects from all scalar solu-
tions. Hence, the lack of monotonicity of the mean solution is more obvious if (Remesh)j > 2
for all j = 0, . . . , p. This is shown in Figure 3 with µ ∼ U [0.14, 0.16] for Remesh = 3 (and
(Remesh)j > 2, j = 0, . . . , p) and Remesh = 1, respectively.

Remark 2: The condition on the mesh Reynolds number is no longer present with an
upwind scheme, expressed as a central scheme with a certain amount of artificial dissipation.
To see this, let the diagonalized scheme with artificial dissipation be given by

V
ui+1 − ui−1

2∆x
−ΛB

ui+1 − 2ui + ui−1

∆x2
= α(ui+1 − 2ui + ui−1).

The choice α = v/(2∆x) leads to upwinding. With the ansatz (26), we get κj = 1 or
κj = 1 + v∆x/(λB)j for j = 0, . . . . , p. This shows that the solution is oscillation free
independent of the mesh Reynolds number. However, the upwinding adversely affects the
accuracy of the solution.

6.2. Fourth order operators

With fourth order central differences, the semi-discrete representation of (11) for the
steady-state limit is given by

V
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
= B

−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12∆x2
. (32)

Following the procedure of monotonicity analysis used for the second order operators with
the ansatz ui = yκi inserted in (32), we arrive at the eigen-problem[

(−κ4 + 8κ3 − 8κ+ 1)∆xV − (−κ4 + 16κ3 − 30κ2 + 16κ− 1)B
]
y = 0. (33)

One may verify that κ = 1 is a root of (33), just as in the case of second order central
differences. Using the spectral decomposition of B and factoring out (κ− 1), we obtain the
third order equation

(1− θj)κ3
j − (15− 7θj)κ

2
j + (15 + 7θj)κj − (1 + θj) = 0, (34)

for j = 0, . . . , p. By Descartes’ rule of signs, (34) has only positive roots κj > 0 for 0 < θj < 1.
For θj > 1, (34) has as at least one negative root. For θj = 1, (34) reduces to a second order
equation with two positive roots. Hence, the monotonicity condition κj ≥ 0 for the fourth
order operators is equivalent to the mesh Reynolds number bound

Remesh = max
j
θj ≤ 1. (35)
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(b) m = 40, Remesh = 14.
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(c) m = 300, Remesh = 1.9.
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(d) m = 300, Remesh = 1.9.

Figure 2: Solution statistics at t = 0.01 using stochastic Galerkin with p = 4 for diffusion of a moving

step function, u(x, t, ξ) = ρ0erfc
(

(x− (x0 + v(t+ τ)))/
√

(4µ(ξ)(t+ τ))
)

, µ(ξ) ∼ U [0.05, 0.15], ρ0 = 0.1,

τ = 0.005, x0 = 0.2, and v = 1. Here, m denotes the number of spatial grid points.
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(b) Remesh = 1, m = 200.

Figure 3: Mean solution at t = 0.001 for diffusion of a moving step function, p = 4.

Remark 3: The monotonicity analysis for sixth order operators can be performed by fol-
lowing the method used for the fourth order ones. The mesh Reynolds number monotonicity
condition for sixth order operators is Remesh ≤ 2

3
.

Figure 4 depicts an initial step function after 40 time steps, solved with second, fourth
and sixth order operators, respectively. The undershoots of the solutions tend to increase
with the order of the scheme which is in-line with the restriction on Remesh that becomes
more severe for higher order operators.

7. Stability of the semi-discretized problem

A numerical scheme is stable if the semi-discrete problem with homogeneous boundary
conditions leads to a bounded energy norm. A stable and consistent scheme converges by the
Lax equivalence theorem. Our primary interest is the general case of non-periodic boundary
conditions, but the well-known periodic case with spatially constant viscosity µ(ξ) is also
included for comparison.

7.1. The initial value problem: von Neumann analysis

We consider the cases of second and fourth order accurate periodic versions of the central
finite difference operators in [28], and show that the amplification factors have negative real
parts, describing ellipses in the negative half-plane of the complex plane. The generalization
to higher order operators is straightforward.
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Figure 4: Mean solution for diffusion of a moving step function after 40 time steps, p = 4, µ ∼
U [0.0095, 0.0195], m = 61 spatial points and two different Remesh. The undershoot grows with the order
of the operators.

7.1.1. Second order operators

Assuming spatially constant µ and diagonalizing (11), and using the standard central
difference discretization, for all k = 0, . . . , p, we get

∂ũj
∂t

+ v
ũj+1 − ũj−1

2∆x
= λk

ũj+1 − 2ũj + ũj−1

(∆x)2
. (36)

We assume periodic boundary conditions and use the Fourier ansatz ũj = ûeiα∆xj, where α
is the Fourier parameter. Then, with θk = v∆x/(2(λB)k), (36) becomes

∂û

∂t
= −i v

∆x

eiα∆x − e−iα∆x

2i
û+ λk

eiα∆x − 2 + e−iα∆x

(∆x)2
û =

= − v

∆x

[
sin(α∆x)i+

2

θk
(1− cos(α∆x))

]
û. (37)

The coefficient of û in the right hand side of (37) is an expression of the form f(ω) =
c1 cos(ω) + ic2 sin(ω) + c3, i.e., the parametrization of an ellipse in the complex plane. The
real part is always non-positive due to the additive constant, so the spectrum is an ellipse
in the negative half-plane.

7.1.2. Fourth order operators

The fourth order semi-discretization is given by

∂ũj
∂t

+v
−ũj+2 + 8ũj+1 − 8ũj−1 + ũj−1

12∆x
= λk

−ũj+2 + 16ũj+1 − 30ũj + 16ũj−1 − ũj−2

12(∆x)2
. (38)
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(b) Fourth order operators.

Figure 5: Eigenvalues for order p = 3 Legendre polynomial chaos with 200 grid points, µ(ξ) ∼ U [0, 0.1],
v = 1.

Again using the Fourier ansatz, we have

∂û

∂t
= i

v

6∆x

[
ei2α∆x − e−i2α∆x

2i
− 8

eiα∆x − e−iα∆x

2i

]
û+

+
λk

6(∆x)2

[
−e

i2α∆x + e−i2α∆x

2
+ 16

eiα∆x + e−iα∆x

2
− 15

]
û =

=

[
i
v

6∆x
[sin(2α∆x)− 8 sin(α∆x)]− λk

3(∆x)2

[
cos2(2α∆x) + 8(1− cos(α∆x))

]]
û, (39)

which again is an ellipse in the negative half-plane. This is illustrated in Figure 5, showing the
eigenvalues of the second and fourth order periodic spatial discretization matricesDper. Since
Dper is applied to periodic functions, no special boundary treatment is needed. Therefore, the
entries of Dper are completely determined by the first and second derivative approximations
of (36) and (38), respectively. In Figure 5, the real part of the eigenvalues is denoted by <,
and the complex part by =. Each of the eigenvalues (λB)k, k = 0, 1, 2, 3, of B corresponds
to one of the ellipses. For uniformly distributed µ, the range of the eigenvalues is bounded,
and increasing the order of gPC does not increase the maximal eigenvalue significantly.
Therefore, the order of gPC expansion has a negligible impact on the time-step restriction
in this case.

7.2. The initial boundary value problem

In order to obtain stability of the semi-discretized problem for various orders of accuracy
and non-periodic boundary conditions, we use discrete operators satisfying a summation-by-
parts (SBP) property [23].
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Boundary conditions are imposed weakly through penalty terms, where the penalty pa-
rameters are chosen such that the numerical method is stable. Operators of order 2n, n ∈ N,
in the interior of the domain are combined with boundary closures of order of accuracy n. For
the advection-diffusion equation (1), this leads to the global order of accuracy min(n+2, 2n).
We refer to [37] for a derivation of this result on accuracy.

The first and second derivative SBP operator were introduced in [23, 36] and [8, 28], re-
spectively. For the first derivative, we use the approximation ux ≈ P−1Qu, where subscript
x denotes partial derivative and Q satisfies

Q+QT = diag(−1, 0, . . . , 0, 1) ≡ B̃. (40)

Additionally, P must be symmetric and positive definite in order to define a discrete
norm. For the proof of stability of spatially varying viscosity µ(x, ξ), P must be diagonal,
so we will only use SBP operators leading to a diagonal P norm.

For the approximation of the second derivative, we can either use the first derivative
operator twice, or use uxx ≈ P−1(−M + B̃D)u, where M +MT ≥ 0, B̃ is given by (40),
and D is a first-derivative approximation at the boundaries, i.e.,

D =
1

∆x


d1 d2 d3 . . .

1
. . .

1
. . . −d3 −d2 −d1

 ,

where di, i = 1, 2, 3, . . . , are scalar values leading to a consistent first-derivative approxima-
tion.

Data on the boundaries are imposed weakly through a Simultaneous Approximation Term
(SAT), introduced in [7]. Let the matrices E0 = diag(1, 0, . . . , 0), EN = diag(0, . . . , 0, 1) be
used to position the boundary conditions, and let ΣI

0, ΣV
0 and ΣV

N be penalty matrices to
be chosen for stability. Let ⊗ denote the Kronecker product, of two matrices B and C by

B ⊗C =

 [B]11C . . . [B]1nC
...

. . .
...

[B]m1C . . . [B]mnC

 .
The system (8) is discretized in space using SBP operators with the properties described

above. For the general case of spatially varying viscosity µ(x, ξ), first-derivative operators
can be successively applied to the viscosity term. An alternative, not considered here, is
to use the compact SBP operators for ∂/∂x(b(x)∂/∂x) with b(x) > 0, developed in [27].
These operators have minimal stencil width. We will first perform the stability analysis
for the general case of spatially varying viscosity. As a further illustration of the SBP-SAT
framework, we will then perform stability analysis for the special case of spatially constant
viscosity using compact second-derivative SBP operators.
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7.2.1. Spatially varying viscosity

Consider the case of a spatially varying µ = µ(x, ξ), given by (8). Since µ depends on
x, we cannot write the semi-discretized version of B as a Kronecker product. Instead, we
introduce the block diagonal matrix

B̂ = diag(B(x1),B(x2), . . . ,B(xm)).

Note that B̂ and the matrix (P−1 ⊗ I) commute, i.e.,

(P−1 ⊗ I)B̂ = B̂(P−1 ⊗ I). (41)

Additionally, B̂ is symmetric, positive definite, and block diagonal. The matrix (P−1⊗I)B̂
is a scaling of each diagonal block B(xj) of B̂ with the factor p−1

jj > 0. Thus, (P−1⊗I)B̂ is
symmetric and positive definite. The numerical approximation of (8) using SBP operators
is given by

∂u

∂t
+ (P−1Q⊗ V )u = (P−1Q⊗ I)B̂(P−1Q⊗ I)u

+ (P−1 ⊗ I)(E0 ⊗ΣI
0)(u− 0) + (P−1 ⊗ I)(QTP−1 ⊗ I)(E0 ⊗ΣV

0 )(u− 0)

+ (P−1 ⊗ I)(EN ⊗ΣV
N)((P−1Q⊗ I)u− 0), (42)

where the first line corresponds to the discretization of the PDE, and the second and third
lines enforce the homogeneous boundary conditions weakly, here expressed as (u − 0). Al-
though the numerical experiments are performed with nonzero boundary conditions, it is
sufficient to consider the homogeneous case in the analysis of stability.

Proposition 3. The scheme in (42) with ΣV
N = −B(xN), ΣV

0 = B(x1), and ΣI
0 ≤ −V /2

is stable.

Proof. Multiplying (42) by uT (P ⊗ I) and replacing Q = EN −E0 −QT in the first term
of the right-hand-side, we obtain

uT (P ⊗ I)
∂u

∂t
+

Advective term︷ ︸︸ ︷
uT (Q⊗ V )u =

Viscous terms from PDE︷ ︸︸ ︷
uT (EN ⊗ I)B̂(P−1Q⊗ I)u

−uT (E0 ⊗ I)B̂(P−1Q⊗ I)u− uT (QT ⊗ I)B̂(P−1 ⊗ I)(Q⊗ I)u︸ ︷︷ ︸
Viscous terms from PDE

+ uT (E0 ⊗ΣI
0)u︸ ︷︷ ︸

Adv. penalty term

+ uT (QTP−1 ⊗ I)(E0 ⊗ΣV
0 )u︸ ︷︷ ︸

Left viscous penalty term

+uT (EN ⊗ΣV
N)(P−1Q⊗ I)u︸ ︷︷ ︸

Right viscous penalty term

. (43)

The right viscous penalty term and the first viscous term from the PDE cancel if we set
ΣV
N = −B(xN). Adding the transpose of the remaining terms of (43) to themselves and

using (41), we arrive at the energy equation
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∂

∂t
‖u‖2

P⊗I +

Advective boundary terms︷ ︸︸ ︷
uT (EN ⊗ V )u− uT (E0 ⊗ V )u =

= −uT (E0 ⊗ I)B̂(P−1Q⊗ I)u− uT (QTP−1 ⊗ I)B̂(E0 ⊗ I)u︸ ︷︷ ︸
Viscous terms from PDE

− 2uT (QT ⊗ I)B̂(P−1 ⊗ I)(Q⊗ I)u+ 2uT (E0 ⊗ΣI
0)u︸ ︷︷ ︸

Adv. penalty term

+ uT (QTP−1 ⊗ I)(E0 ⊗ΣV
0 )u+ uT (E0 ⊗ΣV

0 )(P−1Q⊗ I)u︸ ︷︷ ︸
Left viscous penalty terms

. (44)

The viscous terms from the PDE and the left viscous penalty terms cancel if we set ΣV
0 =

B(x1). Pairing the second advective boundary term with the advective penalty term for
stability and choosing ΣI

0 = −δV where δ ∈ R leads to

∂

∂t
‖u‖2

P⊗I = uT0 (1− 2δ)vu0 − uTNvuN − 2 [(Q⊗ I)u]T B̂(P−1 ⊗ I) [(Q⊗ I)u] . (45)

For δ ≥ 1/2, i.e., ΣI
0 ≤ −V /2, the energy rate (45) shows that the scheme (42) with variable

B is stable, as the norm of u decays with time.

7.2.2. Spatially constant viscosity

For the case of spatially constant viscosity µ(ξ), we use compact second-derivative SBP
operators. We show that the choice of penalty matrices is similar to the case of spatially
varying viscosity µ(x, ξ) presented in the preceding section. The scheme is given by

∂u

∂t
+ (P−1Q⊗ V )u = (P−1(−M + B̃D)⊗B)u

+ (P−1 ⊗ I)(E0 ⊗ΣI
0)(u− 0) + (P−1 ⊗ I)(DT ⊗ I)(E0 ⊗ΣV

0 )(u− 0)

+ (P−1 ⊗ I)(EN ⊗ΣV
N)((D ⊗ I)u− 0), (46)

Proposition 4. The scheme in (46) with the parameters ΣV
0 = B, ΣV

N = −B, and ΣI
0 ≤

−V /2 is stable.

The proof of Proposition 4 is given in Appendix A.

7.3. Eigenvalues of the total system matrix

The semi-discrete scheme (46) is an ODE system of the form

∂u

∂t
= Dtotu,

whose properties are determined by the complex-valued eigenvalues of the total system ma-
trix Dtot. The eigenvalues of Dtot must all have negative real parts for stability. The utmost
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right lying eigenvalue determines the slowest decay rate, and thus the speed of convergence
to steady-state, see [29, 30]. The total spatial operator defined by the scheme (46) with
ΣV

0 = B, ΣV
N = −B, and ΣI

0 = −V /2 is given by the matrix

Dtot = (P−1 ⊗ I)
(
−(Q+E0/2)⊗ V + (DTE0 −E0D −M)⊗B

)
. (47)

The location in the complex plane of the eigenvalues of Dtot depends on the distribution
of µ, the spatial step ∆x, and the ratio between viscosity and advective speed.

Figure 6 depicts the eigenvalues of Dtot for uniform µ(ξ) ∼ U [0, 0.04], v = 1, different
orders of polynomial chaos, and number of spatial grid points. The fourth order SBP oper-
ators have been used and penalty coefficients are chosen according to the stability analysis
above. The eigenvalues all have negative real parts, showing that the discretizations are
indeed stable. Note that for an order of gPC expansion p, there will be p+ 1 eigenvalues for
each single eigenvalue of the corresponding deterministic system matrix. The groups of p+1
eigenvalues are clustered around the corresponding eigenvalue of the deterministic system
matrix. When the range of possible viscosity values (uncertainty) is increased, the spreading
of the eigenvalues within each cluster increases. When the mean of the viscosity is increased,
the eigenvalues with non-zero complex part will move away farther from the origin.

The change of location of the eigenvalues with increasing order of gPC expansion gives
an idea how the time-step restriction changes with the order of gPC. Figure 7 shows the
eigenvalues of the total system matrix for uniform and lognormal µ for first order (left) and
fourth order (right) gPC. For the random viscosities to be comparable, the coefficients are
chosen such that the first and second moments of the uniform and the lognormal µ match
each other. For low-order polynomial chaos expansions, the eigenvalues are close to each
other and the systems are similar in terms of stiffness. As the order of gPC expansion is
increased, the scattering of the eigenvalues of B resulting from lognormal µ increases (µ is
unbounded). Hence, the stochastic Galerkin system becomes stiffer with increasing order of
gPC. The time-step restriction for the uniform viscosity does not change significantly with
the order of gPC. The fourth order operators are a factor of approximately 1.5 stiffer than
the second-order operators. Here, we calculate stiffness as

ρstiff =
max |λDtot

|
min |λDtot

| ,

where |λDtot
| denote the absolute values of the complex eigenvalues of the total spatial

operator Dtot.

7.3.1. The relation to steady-state calculations

As we let t → ∞, the problem (8) with B(x) > 0 will reach steady-state, i.e., it will
satisfy ∂u/∂t = 0. This situation can be formulated as a time-independent problem with
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(b) p = 5, m = 20.
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(c) p = 2, m = 40.
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(d) p = 2, m = 80.

Figure 6: Eigenvalues of the total operator Dtot (including force terms). Comparison of different orders of
gPC (a) and (b), and different grid sizes (a), (c), and (d).
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Figure 7: Eigenvalues of the total operator for m = 20 and different orders of polynomial chaos. Here
the viscosity µ has mean 〈µ〉 = 0.02 and variance Var(µ) = 3.33e − 5, and has uniform and lognormal
distributions.

solution ũ, that satisfies

V
∂ũ

∂x
=

∂

∂x

(
B(x)

∂ũ

∂x

)
, (48)

ũ(x = 0) = g̃0,

∂ũ(x)

∂x
|x=1 = g̃1.

By subtracting (48) from (8), we get the initial boundary value problem for the deviation
e = u− ũ from steady-state,

∂e

∂t
+ V

∂e

∂x
=

∂

∂x

(
B(x)

∂e

∂x

)
, (49)

e(0, t) = g0 − g̃0,

∂e(x, t)

∂x
|x=1 = g1 − g̃1,

e(x, 0) = uinit(x)−ũ(x) = e0(x), (50)

where it has been used that as t → ∞, the boundary data must be independent of time
and vanish. The problem (49) can be semi-discretized analogous to the numerical schemes
presented in Section 7.2. Thus, with Dtot defined in (47), the aim is to solve the initial value
problem

∂e

∂t
= Dtote, t > 0, (51)

e = e0(x), t = 0, (52)
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with the solution e(x, t) = e0(x) exp(Dtott). The largest real component of the eigenvalues of
Dtot, denoted by max<(λDtot

), must be negative; otherwise, the solution will not converge
to steady-state. The more negative max<(λDtot

) is, the faster the convergence to steady-
state.

Although the boundary conditions may be altered in different ways to accelerate the con-
vergence to steady-state [30], we use the weak imposition of boundary conditions described
in Section 7.2 and compare the convergence to steady-state for a diagonalizable stochastic
Galerkin system with that of the stochastic collocation. The number of iterations to reach
convergence to steady-state depends on the size of the time-step and the exponential de-
cay of the solution, governed by the rightmost lying eigenvalue of the total system matrix,
max<(λDtot

). For each stochastic quadrature point of the advection-diffusion equation,
there is a maximal time-step as well as a maximal eigenvalue of the total system matrix. For
stochastic Galerkin, each scalar instance of the advection-diffusion equation corresponds to
one of the eigenvalues of B, and for stochastic collocation each instance corresponds to µ
evaluated at a stochastic quadrature point.

Explicit time integration together with various convergence acceleration techniques, such
as residual smoothing, local time-stepping and multi-grids, are the most common methods
for reaching steady-state in flow calculations [20, 22, 21]. In this simplified case, explicit
time integration with the maximum possible time step illustrates this scenario.

Figure 8 depicts the maximum time-step and the maximum eigenvalue of Dtot for each
one of the instances of advection-diffusion equations for different approximation orders of the
gPC and stochastic collocation. If diagonalization is possible, and for sufficiently high orders
of stochastic Galerkin, the scalar instances of the continuous advection-diffusion equation
with the most negative max<(λDtot

) converge to steady-state faster than the corresponding
instances of stochastic collocation. However, the severe time-step limit of stochastic Galerkin
implies that a large number of time-steps are needed to reach steady-state numerically with
explicit time-stepping. It is not clear from Figure 8 alone whether stochastic Galerkin or
stochastic collocation reaches steady-state numerically in the smaller number of time-steps.
This will be investigated in Section 9.2.

For non-diagonalizable stochastic Galerkin, the local bounds of Figure 8 on time-steps
and maximum eigenvalues no longer apply. Instead, the most severe local time-step limit
and eigenvalue will dominate the entire stochastic Galerkin system, with deteriorating perfor-
mance as a consequence. Stochastic collocation is still subject to local time-step restrictions
and local maximum eigenvalues, and is expected to converge faster to steady-state than
stochastic Galerkin.
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(
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. These quantities

are plotted for lognormal viscosity µ(ξ) = 0.02 + 0.05 exp(ξ), ξ ∼ N (0, 1). Stochastic collocation (left) and
stochastic Galerkin (right).

A practical algorithm for steady-state calculations should be designed to be as efficient
as possible in terms of computational cost. For instance, one may use an implicit/explicit
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scheme as devised in [48] for stochastic diffusion problems. What we presented above is not
an efficient algorithm for steady-state calculations, it is rather an analysis of the properties
of the semi-discrete system leading to convergence to steady-state.

8. Extensions to multi-variate random inputs

In this section we discuss the possibilities of extending the results of previous sections
to multi-variate random inputs. To this end, let ξ = (ξ1, . . . , ξd)

T ∈ Rd be a random vector
of input uncertainties defined on the probability space (Ω,F ,P). Assume that the entries
of ξ are independent and identically distributed (i.i.d.). Consider µ = µ(x, ξ) ≥ µ0 > 0,
P-almost surely in Ω. For l = 1, . . . , d, let {ψk(ξl)}∞k=0 be a polynomial basis orthonormal
w.r.t. the measure of the random variable ξl. The multi-dimensional gPC basis functions
may then be obtained by tensorization of the univariate basis functions {ψk(ξl)}∞k=0, i.e.,

ψk(ξ) =
d∏
l=1

ψkl(ξl), (53)

with the multi-index k ∈ Nd
0 := {(k1, · · · , kd) : kl ∈ N ∪ {0}}. In practice the multi-index k

has to be truncated in order to generate a finite cardinality basis. This may be achieved by
restricting k to the sets

Λp,d :=
{
k ∈ Nd

0 : ‖k‖1 ≤ p
}

(54)

or
Γp,d :=

{
k ∈ Nd

0 : kl ≤ p, l = 1, . . . , d
}

(55)

to achieve the so-called complete polynomial or tensor polynomial basis, respectively. For
the simplicity of notation, we subsequently consider a one-to-one relabeling of the form
{ψk(ξ)}Pk=1 for the gPC basis {ψk(ξ)}, k ∈ Λp,d or Γp,d, where P is the cardinality of the
gPC basis. In particular, for the complete polynomial basis P = (p+ d)!/p!d!, while for the
tensor polynomial basis P = (p+ 1)d.

8.1. Diagonalization of B(x)

For the case of the multi-variate random inputs, the matrix B in (8) is defined by

[B(x)]jk = 〈µ(x, ·)ψjψk〉 j, k = 1, . . . , P (56)

and is symmetric, positive definite. Here, the expectation 〈·〉 is w.r.t. the probability density
of ξ. The matrix B in (56) is not generally diagonalizable. However, following [39], when µ
is of the form

µ(x, ξ) = µ̄(x) +
d∑
l=1

µl(x)ξl, (57)

and a tensor gPC truncation is used in (56), then B is diagonalizable. More precisely, given
the assumption (57) on µ,

B(x) = µ̄(x)I +
d∑
l=1

µl(x)C l, (58)
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where [C l]ij = 〈ξlψiψj〉. Then the matrices C l in (58) are simultaneously diagonalizable
by the orthogonal congruence [39, Lemma 3.2.1]. When µ depends non-linearly on ξl or
when a complete order gPC expansion is used, the B matrix may not be diagonalized via
the orthogonal congruence, see [39, Chapter 3] for further details. We note that the model
in (57) has been adopted to represent the uncertainty in diffusivity/viscosity coefficients in
several previous studies, e.g., [44, 2, 5, 43, 10].

8.2. Extension of the monotonicity and stability analysis

In the monotonicity analysis in Section 6, we assume that B is not spatially dependent.
Repeating the steps of the monotonicity analysis for the multi-variate case, we get identical
conditions on the mesh Reynolds number. The only difference is that the eigenvalues λB are
different, so the actual mesh Reynolds numbers are different from those of the uni-variate
case.

The von Neumann stability analysis of the initial value problem in Section 7.1 can be
generalized to the multi-variate case in the same manner as the monotonicity analysis. The
stability analysis of the initial boundary value problem requires the matrix B̂ in Section
7.2.1 to be symmetric, block diagonal and positive-definite. These conditions also hold when
the diagonal blocks of B̂ are defined by (56). Thus, the stability analysis extends to the
multi-variate case.

9. Numerical results

In the numerical examples of this Section, we use a fourth order Runge-Kutta method for
the time integration and the fourth order accurate SBP-SAT scheme in space. The matrix
operators can be found in [28]. The problem (1) with spatially independent µ is solved for
the initial function

u0(x, ξ) =
ρ0√

4πµ(ξ)τ
exp

(
−(x− (x0 + vτ))2

4µ(ξ)τ

)
, ρ0 > 0, x0 ∈ [0, 1], τ > 0,

for which the analytical solution at time t is given by

u(x, t, ξ) =
ρ0√

4πµ(ξ)(t+ τ)
exp

(
−(x− (x0 + v(t+ τ)))2

4µ(ξ)(t+ τ)

)
. (59)

For the spatially varying µ(x, ξ), we employ the method of manufactured solutions [33, 34]
where we get the same solution as in the case of spatially constant µ(ξ) with the aid of an
appropriate source function s(x, t, ξ) in (1).

The stochastic reference solution (59) is projected onto the gPC basis functions using
a high-order numerical quadrature. The order N of the quadrature is chosen sufficiently
large so that the difference between two successive reference solutions of order N − 1 and
N are several orders of magnitude smaller than the difference between the solution from the
numerical scheme and the reference solution.

Figure 9 illustrates the convergence as the spatial grid is refined for constant order of gPC,
p = 12 and N = 13 collocation points. For this high-order stochastic representation, the
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Figure 9: Convergence with respect to the spatial discretization using stochastic Galerkin (SG) and stochastic
collocation (SC). Plotted are norms of the absolute errors in mean, first coefficient and variance with p = 12
order of generalized Legendre/Hermite chaos, and N = 13 quadrature points for stochastic collocation.

theoretical fourth order convergence rate is attained for the mean using stochastic Galerkin
and stochastic collocation. For the variance, the stochastic truncation error becomes visible
for fine spatial meshes with lognormal µ, see Figure 9 (b). There is no significant difference
in performance between stochastic collocation and stochastic Galerkin for this test case.

9.1. The inviscid limit

The theoretical results for the advection-diffusion problem are based on µ > 0. When
µ is arbitrarily close to 0 (but non-negative), the problem becomes nearly hyperbolic. In
the stochastic setting, this happens with non-zero probability whenever µ(ξ) ∈ [0, c], c > 0.
For small µ the mesh must be very fine, otherwise the mesh Reynolds number requirement
discussed in Section 6 will be violated. This is illustrated in Figure 10 (numerical solution
left and error right) for results obtained with fourth order SBP operators, v = 1 and µ ∼
U [0.01, 0.19] . Note that the error is maximal close to the inviscid limit of µ = 0.01. The
solution (59) is a Gaussian in space for any fixed value of ξ and t and varies exponentially
in x with the inverse of µ. Thus, spatial convergence requires a fine mesh for small µ.
Deterioration of the convergence properties for small µ is a well-known phenomenon for
other problems with a parabolic term, c.f. the Navier-Stokes equations in the inviscid limit.

Figure 11 shows the convergence in space for µ = 0.02 exp(ξ), ξ ∼ N (0, 1), using stochas-
tic Galerkin (left) and stochastic collocation (right). When µ approaches zero, the gradients
become steeper, which requires finer meshes. The fourth order convergence rate is not ob-
tained for these coarse meshes. As long as the stochastic basis is rich enough to represent
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Figure 10: Approximate solution with p = 3 order of Legendre chaos.

the uncertainty, the choice of stochastic collocation versus stochastic Galerkin has neither
any significant effect on the rate of spatial convergence, nor on the actual error. However,
the number of stochastic basis functions needed for a certain level of resolution increases
as µ goes to zero; therefore, a simultaneous increase in spatial and stochastic resolution is
necessary for convergence in the inviscid limit.

The performance of stochastic Galerkin versus stochastic collocation depends on the
proximity to the inviscid limit. Figure 12 shows the convergence in the order of gPC expan-
sion (stochastic Galerkin) and the number of quadrature points (stochastic collocation) for a
fixed spatial grid. Two cases of lognormal µ are compared; one with µmin = 0.2 and one with
µmin = 0.01. For these cases, the stochastic Galerkin system can be diagonalized, so the cost
for stochastic Galerkin with an expansion order p− 1 is equivalent to the cost of stochastic
collocation with p quadrature points. If the problem is highly diffusive, stochastic Galerkin
is the more efficient method. If the viscosity is close to zero with some non-zero probability,
the difference in performance decreases. Low viscosity sharpens the solution features. The
effect of this on the spatial convergence is seen in the low-viscosity case (µmin = 0.01) in
Figure 12 (b), where the spatial truncation error becomes visible for high-order polynomial
chaos expansions. Due to the fixed number of spatial grid points, the convergence rate de-
creases for high-order stochastic representations. With a sufficiently fine mesh, one could
show exponential convergence rate for any given order of stochastic representation.

Both the stochastic collocation and diagonalizable stochastic Galerkin rely on a set of
scalar advection-diffusion problems, with the difference between the methods lying in the
choice of stochastic viscosity point values and the postprocessing used to obtain statistics
of interest. Figure 13 displays the difference in the range of the effective values of µ for
stochastic collocation and stochastic Galerkin (this corresponds to the range of eigenvalues
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Figure 11: Lognormal viscosity, µ = 0.02 exp(ξ). T = 0.001 and τ = 0.005.
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Figure 12: Stochastic Galerkin (SG) and stochastic collocation (SC) as a function of the order of gPC/number
of quadrature points. Fixed mesh of 201 spatial points.
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Figure 13: Minimum and maximum viscosity for different orders of stochastic Galerkin (SG) and stochastic
collocation (SC) for two different distributions of µ. This corresponds to the minimum and maximum λB
for SG and to the minimum and maximum µ(ξ) for SC.

of B for stochastic Galerkin). From a purely numerical point of view, stochastic Galerkin
poses an additional challenge compared to stochastic collocation in that a wider range of
scales of diffusion must be handled simultaneously, as shown in Figure 13. If we were to
choose the eigenvalues of the matrix B as the collocation points, the two methods would
only differ in the postprocessing.

9.2. Steady-state calculations

Let the time of numerical convergence to steady-state be defined as the time Tss when the
discretized residual e satisfies ‖e‖2,∆x =

√
eTPe < tol, where tol is a numerical tolerance to

be chosen a priori and P is an integration operator [19]. When µ is sufficiently large so that
diffusion is the dominating feature compared to advection, Tss decreases, and steady-state
is reached sooner. The number of iterations to steady-state (i.e. the number of time-steps
Tss/∆t) is inversely proportional to ∆t. On the other hand, the limit on ∆t decreases with
µ. Hence, there is a trade-off in the number of iterations to steady-state between the size of
the time-step and the eigenvalues or quadrature point values of µ. In Figure 14, this issue
is explored for a lognormal µ = c1 + c2 exp(ξ) with different choices of c1 and c2.

From the previous analysis and Figure 13, we have observed how the eigenvalues grow
with the order p of gPC. For the most advection dominated case, Figure 14 (a), the number
of iterations grows superlinearly with the number of quadrature points in the stochastic collo-
cation approach. The same holds for up to order p = 8 of stochastic Galerkin. For this case,
the fastest convergence to steady-state is obtained for stochastic collocation. In the more

31



2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Iterations

Quadrature points/Bases

 

 

SG

SC

(a) µ = 0.02 + 0.005 exp(ξ).
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(b) µ = 0.1 + 0.01 exp(ξ).
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Figure 14: Number of iterations to steady-state for different lognormal viscosity µ = c1 + c2 exp(ξ) using
stochastic Galerkin and stochastic collocation. Here tol = 10−6.

diffusive case, i.e., Figure 14 (b), the relative performance for stochastic collocation versus
stochastic Galerkin is less pronounced. In the most diffusive case considered here, Figure
14 (c), the number of stochastic Galerkin iterations required to steady-state is a sublinear
function of the order of gPC. In this case, the largest eigenvalues of λB yield advection-
diffusion equations that converge within a relatively short time Tss, which compensates for
a severe time-step restriction. For these diffusive cases, stochastic Galerkin is more efficient
than stochastic collocation. The stochastic Galerkin problem has been diagonalized to make
the computational cost per iteration similar. In summary, Figure 14 shows that stochas-
tic collocation converges faster than stochastic Galerkin to steady-state for problems that
are advection dominated or moderately diffusive. For diffusion dominated flows, stochastic
Galerkin converges faster to steady-state compared to stochastic collocation.

10. Summary and conclusions

Summation-by-parts operators and weak boundary treatment have been applied to a
stochastic Galerkin formulation of the advection-diffusion equation. We have presented con-
ditions for monotonicity for stochastic, but spatially constant, viscosity, and stable schemes
for the more general case of spatially varying and stochastic viscosity.

Violation of the derived upper bound on the mesh Reynolds number may lead to spurious
oscillations, but it may also result in less obviously recognizable errors that are visible in
different ways, e.g. as incorrect predictions of regions of large variation. The limit on the
mesh Reynolds number gets more severe for higher order operators.

In the case of spatially independent viscosity as well as spatially varying viscosity, the
advection-diffusion Galerkin system can be diagonalized under some conditions. This results
in a number of uncoupled systems and the numerical cost and performance is very similar
to non-intrusive methods such as pseudospectral projection and stochastic collocation.
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For diffusive problems, the stochastic Galerkin formulation leads to better accuracy com-
pared to stochastic collocation. For steady-state calculations, stochastic collocation is faster
for advection dominated cases and stochastic Galerkin is faster for diffusive cases. When
diagonalization of the viscosity matrix B is possible, the problem should be solved in a
non-intrusive way to reduce the computational cost.

SBP operators are suitable for smooth problems like the advection-diffusion equation
investigated here, but many real-world flow problems contain regions of sharp gradients
or discontinuities. For these problems, one may use hybrid schemes consisting of shock
capturing methods in regions of strong variation, coupled through weak interfaces with SBP
schemes in smooth regions.

Appendix A Proof of Proposition 4

Proof. Multiplying (46) by uT (P ⊗ I) and using B̃ = −E0 +EN , we get

uT (P ⊗I)
∂u

∂t
+

Advective term︷ ︸︸ ︷
uT (Q⊗ V )u =

Viscous terms from PDE︷ ︸︸ ︷
−uT (M ⊗B)u− uT (E0D ⊗B)u+ uT (END ⊗B)u

+ uT (E0 ⊗ΣI
0)u︸ ︷︷ ︸

Inviscid penalty term

+ uT (DT ⊗ I)(E0 ⊗ΣV
0 )u︸ ︷︷ ︸

Left viscous penalty term

+ uT (EN ⊗ΣV
N)(D ⊗ I)u︸ ︷︷ ︸

Right viscous penalty term

, (60)

As in the case of variable viscosity, setting ΣV
0 = B and ΣV

N = −B cancels the viscous
boundary terms of the ODE. Using the relation

uT (Q⊗ V )u = uT
(

1

2
(Q+QT )⊗ V

)
u+ uT

(
1

2
(Q−QT )⊗ V

)
u︸ ︷︷ ︸

=0

=

=
1

2
uT ((−E0 +EN)⊗ V )u, (61)

we arrive at

uT (P ⊗ I)
∂u

∂t
= −uT (M ⊗B)u+ uT (E0 ⊗ (V /2 + ΣI

0))u− uT (EN ⊗ V /2)u (62)

Finally, setting ΣI
0 = −δV as in Section 7.2.1 and adding the transpose of (62) to itself, we

get the energy estimate

∂

∂t
‖u‖2

(P⊗I) = uT0 (1− 2δ)vu0 − uTNvuN − uT ((M +MT )⊗B)u. (63)

Since M +MT and B are positive definite, the relation (63) with δ ≥ 1/2, i.e. ΣI
0 ≤ −V /2,

proves that the scheme in (46) is stable.

33



Acknowledgements

The first author gratefully acknowledges funding from King Abdullah University of Sci-
ence and Technology (KAUST), Saudi Arabia. The second author gratefully acknowledges
the support of the Department of Energy under grant DE-SC0006402.

References

[1] Ruth Azor, J. Gillis, and J. D. Victor. Combinatorial applications of Hermite polyno-
mials. SIAM J. Math. Anal., 13(5):879–890, 1982.
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