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Abstract

In this master thesis, algorithms for acoustic simulations in underwater en-
vironments are ported for GPU processing. The GPU parallel computing
platforms used are CUDA, OpenCL and SkePU. The purpose of this master
thesis is to adapt and evaluate the ported algorithms’ performance on two
modern NVIDIA GPUs, Tesla K20 and Quadro K5000.

Several optimizations, described in existing literature for GPU processing
(e.g. usage of shared memory, coalesced memory accesses), are implemented
and multiple versions of each algorithm are created to study their trade-offs.

Evaluation on two GPUs showed that different versions of the same algo-
rithm have different performance characteristic and execution with the best
performing version can give better performance than the original algorithm
executing on 8 CPUs. A performance comparison between CUDA, OpenCL
and SkePU versions of one algorithm is also made.
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Chapter 1

Introduction

An application which is used to perform calculations for acoustic simulations
in underwater environments is provided by Saab Dynamics. The application
was originally running on a CPU. The main problem solved by this master
thesis is to port a number of selected algorithms within the application
from CPU to GPU, and to adapt and evaluate these algorithms in order to
achieve better performance. The calculations for acoustic simulations are
very performance demanding and this is the reason for wanting to use GPU
rather than merely CPU. Also, with the power of a GPU, more advanced
and realistic simulations can be performed.

In the application’s GUI, the user can load files with sonar and sce-
nario information. Other parameters, such as number of objects, sample
frequency, and other, can be set by the user in the GUI. The algorithms
that have been chosen for porting (see Chapter [4) are executed when a
scenario is simulated in the application.

The given application is a smaller part of a larger application. The
given application calculates simulated sonar signals and sends the results to
other parts of the parent application which in turn performs beamforming
calculations on these simulated signals. The parent application also contains
a GUI where the result of the beamforming is shown.

1.1 Methods and sources

A literature study is made in the beginning of the project in order to get
a better understanding of which algorithms, within the given application,
are suitable to port to GPU and which adaptations can be done in order
to achieve good performance. When the algorithms are ported, their per-
formance is tested and adaptations are made to increase performance. The
ported algorithms’ performance is evaluated on two graphic processors that
are based on the NVIDIA Kepler architecture; a NVIDIA Tesla K20 graphic
processor and a NVIDIA Quadro K5000 graphic processor.
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The primary parallel computing platform that is used when porting the
algorithms is CUDA [16]. Besides CUDA, OpenCL [12] is used as a sec-
ondary computing platform together with the C4++ skeleton programming
library SkePU [4]. A comparison is made between the performances of an al-
gorithm ported using CUDA, OpenCL, and SkePU respectively. In addition,
a discussion is made about the following:

e Which method is the easiest to use when porting the algorithm?
e Is skeleton programming flexible enough for porting the algorithms?

e Can some symmetries be drawn between each method’s ease of pro-
gramming and its given performance?

When testing the application, files have been used to simulate sonar with
a number of signal samples in a number of channels. When studying the
performance of the ported algorithms, the following tools have been used:

e NVIDIA’s Visual Profiler
e NVIDIA’s Nsight for Visual Studio

These tools made it possible to examine each kernel’s execution time,
time spent copying data to/from GPU memory, and other. More information
about the tools used in this project and what they are used for can be found
in Chapter

The functionality of the ported algorithms is validated by comparing the
original and the ported algorithms’ signal data sent to other parts of the
larger application. Also the beamforming output in the larger application’s
GUI were used to detect differences and similarities between the original
and the ported algorithms.

There are almost no articles where porting to GPU is treated with the same
algorithms as in this master thesis. Therefore, most sources and references
used in this master thesis are from articles and books which treat porting
of other algorithms with CUDA and OpenCL, optimization of algorithms
for GPU processing, and comparisons between CUDA and OpenCL applica-
tions. Some sources are from the platform developers homepage, for example
NVIDIAs CUDA C Programming Guide [I7]. More about related works can
be found in Chapter

1.2 Limitations

Only two profiling and performance analysis tools have been used in this
master thesis. There are other profiling tools, especially for analyzing OpenCL
applications, but those are not used in this project because of lack of time.
Two functions have been chosen to be ported for GPU processing. The
first function, Noisegen, have been ported with CUDA, OpenCL and SkePU.
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The second function, Fdatacalc, have only been ported with CUDA because
of lack of time. The Edatacalc function might also be harder to implement in
SkePU than the Noisegen function because it preforms more calculations on
more different arrays. It might require a new variant of the ARRAY_FUNC E|
user function generator macro in order to be able to port the function with
SkePU. However, because of lack of time, this could not be evaluated and
therefore only the Noisegen function is implemented in SkePU.

There might be other functions within the application which also are
suited for GPU processing. However, because of lack of time, the application
could not be studied in more detail to find these functions. Also, there would
not be enough time to port more than two functions.

The two OpenCL versions that are implemented do not allow the pro-
grammer to choose the number of threads nor the number of blocks of which
the kernel shall be executed with. It is possible in OpenCL to do this, but
it is not an available option in these versions because of lack of time.

1.3 Structure

The structure of the report is as follows:
e A general explanation of GPU computing is given in Chapter

e Chapter [3| explains different performance analysis tools that are used,
and the benefits and disadvantages of these tools.

e The functionality of original algorithms is described in Chapter[d] Also
an explanation of why these algorithms have been chosen for porting
is given.

e In Chapter 5 the implementations and adaptations of the ported al-
gorithms with CUDA, OpenCL and SkePU are discussed.

e The performance results of the algorithms are presented and evaluated
in Chapter [6]

e Chapter [7] gives some examples on related works to this master thesis.

e A more detailed discussion of the results of the porting is given in
Chapter 8] Also a conclusion of which method that is most preferable
is presented.

e Some improvements for future work are given in Chapter [9}

Thttp://www.ida.liu.se/~usmda/skepu/doc/html_v1.0/group__userfunc.html
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1.4 Definitions

CPU Central Processing Unit.

CUDA | Compute Unified Device Architecture, a parallel computing
platform and programming model created by NVIDIA.

GPU Graphic Processing Unit.

GUI Graphical User Interface.

IDE Integrated Development Environment, a software application
that usually provides a text editor, compiler, and debugger,
all in one in order to facilitate software development.

Kernel | Function that is executed on the GPU.

OpenCL | Open Computing Language, a framework for writing pro-
grams that execute across heterogeneous platforms consist-
ing of CPUs, GPUs, DSPs and other processors.

SIMD Single Instruction Multiple Data, this means that the same
instruction is performed on multiple data elements simultane-
ously.

SIMT Single Instruction Multiple Thread, this means that a single
instruction is executed by multiple threads simultaneously.

SkePU | Skeleton Programming Framework for Multicore CPU and
Multi-GPU Systems.

SM Streaming Multiprocessor.

SP Streaming Processor.

SSE Streaming SIMD Extensions.

Table 1.1: Definitions




Chapter 2

GPU computing

General purpose computing on GPUs (GPGPU) implies that a GPU is used
together with a CPU to accelerate general-purpose science and engineering
applications. With GPU computing, the compute-intensive parts of the
application are transferred to the GPU while the rest of the application
continues to run on the CPU.

The CPUs design is optimized for sequential code performance. A single
thread of execution is allowed to be executed, at instruction level, in parallel
or out of the sequential order with help of control logic in the CPU, while
maintaining appearance of a sequential execution. Instruction and data
access latencies to main memory in the CPU are reduced with large cache
memories.

The design of GPUs is optimized for compute-intensive, highly paral-
lel computation and for floating-point calculations. Data-parallel problems
that have more computations than memory transfers are particularly prof-
itable to run on GPUs. Compared to CPUs, GPUs have more transistors
dedicated to data processing rather than data caching and flow control.
The architecture of a CUDA-capable GPU is organized into an array of
highly threaded streaming multiprocessors (SMs). Each SM has a num-
ber of streaming processors (SP) that shares instruction cache and control
logic. Resource allocation, scheduling and thread creation are handled by
the SMs in hardware. There is a minimal cost of employing many threads
since threads are managed in hardware.

CUDA-capable GPUs have Graphic Double Data Rate (GDDR) DRAM,
also called global memory. The GDDR DRAM functions as the frame buffer
memory when graphics applications are running. When general-purpose sci-
ence and engineering applications are running, the GDDR DRAM functions
as a very-high-bandwidth, off-chip memory, but with a bit longer latency
than a typical system memory. When running massively parallel applica-
tion, the long latency is not a problem thanks to the high bandwidth.

The Tesla GPU architecture is good for nongraphics applications. It has
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a more generic parallel programming model with barrier synchronization,
hierarchy of parallel threads, and atomic operations to dispatch and manage
compute-intensive, highly parallel computations. The Tesla architecture also
has L1/L2 cache and shared memory. There is one L1 cache per SM, whose
purpose is to improve bandwidth and reduce latency. The purpose of the
L2 cache is to act as data unification between the SMs. This master thesis
uses a Tesla K20 GPU and a Quadro K5000 GPU, both are based on the
Kepler architecture. An overview of the Kepler architecture and the Kepler
memory hierarchy is shown in Figure and respectively.

ShL Mz 5M
| Shared memory | | Shared memory | | Shared memory |
| SPo|[SP2 | [sPu]||[SPe]|sPz| . {SPu] ESIEENED
Registers | | Registers | | Registers
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DRAM/Global memory

Figure 2.1: Overview of the Kepler architecture.

It is difficult to increase the memory bandwidth in CPUs because the
CPUs have to satisfy many different requirements. GPUs, on the other hand,
have simpler memory models and fewer design constraints which makes it
easier to increase the memory bandwidth. The different design philosophies
for CPU respectively GPU are shown in Figure |2.3
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Figure 2.2: Kepler memory hierarchy.

GPGPU can be very powerful when running applications that require
both serial and parallel processing, compared to running such applications
on CPUs only. The few cores, optimized for serial processing, in CPUs
and the thousand smaller cores, designed for parallel performance, in GPUs
makes it possible to efficiently process both the serial and the parallel part
of an application.

2.1 CUDA

The main parallel computing platform and programming model that has
been used in this master thesis is CUDA. This section describes the CUDA
programming model and some practices that should be followed when using
CUDA.

2.1.1 CUDA programming model

When programming with CUDA, two different platforms are used concur-
rently. There is a host system with one or several CPUs, and there is one or
several CUDA-enabled NVIDA GPU devices. The main differences between
host and device are:




CHAPTER 2. GPU COMPUTING

|| o o e o o =
Iﬂllﬁl Conizol EEEEI O o IE
2110 OB EEEE

m OO0doEEEEEEEE
Cache | o o e o o =
OO0doEEEEEEEAa
|| o o o o o =

DREATI DEAM

CPU GFU

Figure 2.3: Difference in area use between CPUs and GPUs.

e Threading resources: The host system supports much fewer threads
to run concurrently compared to the device.

e Threads: CPU threads are heavyweight while GPU threads are lightweight.
The design of GPU is optimized for maximizing throughput while the
design of CPU cores is optimized for minimizing latency.

e RAM: The host and the device have their own physical memories,
separated by a PCI Express bus.

A CUDA program consists of one or more threads on the host processors,
and these host threads executes one or more parallel kernels on a GPU
device. Each kernel thread executes a scalar, sequential program across
a set of parallel threads. In the CUDA programming model, the threads
are grouped into blocks. The threads within a block can communicate and
synchronize with each other; they share a software data cache (L1) and a
so called shared memory, and they are executed on a single multiprocessor.
The total size of a block is limited to 512 or 1024 threads depending on the
GPU architecture. The GPUs used in this master thesis have a maximum
limit of 1024 threads per block. The blocks are grouped into a grid, and
blocks within a grid are independent from each other. A warp consists of 32
threads from a single block. Instructions in the code are executed per warp.
If a memory operation is not ready to be issued, the warp will stall. The
multiprocessor will then select another ready warp and switch to that one.
This will keep the cores busy and productive, as long as there is sufficient
parallelism in the code. The context switching between the warps must
be fast if it shall be efficient. Since thread blocks always are created by a
multiple of 32 threads (a number of warp units), most efficient execution
will be given if the chosen size of a thread block also is a multiple of 32
threads.
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2.1.2 CUDA best practice

When porting and adapting a application for CUDA, there are some steps
that should be followed:

1. Study the application and localize the parts/algorithms that can be
executed on a GPU.

2. Parallelize the selected algorithms from step 1 for GPU execution.

3. Optimize the modified algorithms to improve performance. Compare
the result to the original application.

If the result from step 3 is not good enough, another iteration of the steps
above can be performed. In order to achieve good performance, there are a
few things that are worth focusing on. NVIDIA’s guide for tuning CUDA
applications for Kepler [2I] gives the following general recommendations:

e Find ways to parallelize sequential code.
e Minimize data transfers between the host and the device.
e Adjust kernel launch configuration to maximize device utilization.

e Ensure global memory accesses are coalesced. This basically means
that consecutive memory addresses in the global memory should be
accessed by all of the threads in one half-warp at the same time.

e Minimize redundant accesses to global memory whenever possible.

e Avoid different execution paths within the same warp.

2.2 Other frameworks

The secondary parallel computing platforms that are used in this master
thesis are OpenCL and SkePU. This section describes the OpenCL framwork
and the SkePU skeleton programming library.

2.2.1 OpenCL

OpenCL, Open Computing Language, is an open standard for cross-platform,
parallel programming on GPUs and designed by the Khronos group for
portable, general purpose computing on GPUs. It offers portability between
CPUs and GPUs from different vendors (compared to CUDA which is bound
to NVIDIAs GPUs).

Conceptually, CUDA and OpenCL are quite alike, but there are some
differences in terminology [26],[6], see Table and kernel syntax [10].
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’ CUDA ‘ OpenCL
Thread Work-item
Block Work-group
Grid Index space, NDRange
Host CPU Host
Streaming Compute unit (CU)
multiprocessor (SM)
Scalar core Processing element (PE)
Host thread Host program
Shared memory Local memory
Constant memory Space constant memory
Texture memory Space constant memory

Table 2.1: Differences in terminology between CUDA and OpenCL

The OpenCL architecture is defined in four parts: a Platform Model, a Mem-
ory Model, a Programming Model, and an Ezecution Model. The Platform
model consists of a host which is connected to one or more OpenCL devices.
Each device is composed of one or more compute units, and each compute
unit is divided into one or more processing elements. The memory model
defines the different types of OpenCL memories, see Table

’ Memory \ Description ‘

Global Accessible by all work-items, visible to
all work-groups

Constant Read-only memory and visible to all
work-groups

Local Shared within a work-group

Private Private to a work-item

Host memory | The CPUs memory

Table 2.2: OpenCL memory model [23], [26].

There are no guarantees of consistency between the work-groups and the
memory management is explicit, in other words, the data must be moved
from host, to global, to local, and then back.

There is a data parallel and a task parallel programming model. The data
parallel programming model offers one-to-one mapping between work-items
and elements in a memory object, and work-groups can be defined implic-
itly (the programmer only defines the number of work-items and OpenCL

10
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handles the work-group creation) or explicitly (as in CUDA). The task par-
allel programming model defines a model where the kernels are executed
independently of the index space. The two programming models also offer
synchronization between items in a work-group and between commands in
a context command queue.

The execution model can be divided into two parts, host and kernel exe-
cution. The OpenCL host program runs on a host and submits work to the
devices. The kernels are functions that are executed on one or more devices.
A work-item is an instance of a kernel. The work-items and work-groups are
defined when the host submits a kernel, as in a CUDA program. A context
is a collection of devices and it refers to the environment in which the kernels
can be executed. The execution between the host and the kernels is asyn-
chronous. The coordination of kernel executions on the devices is handled
by so-called command queues. Commands can be memory and kernel syn-
chronization commands, and they can be executed in-order or out-of-order.

One of the differences between OpenCL and CUDA is the effort of setting
up the GPU for kernel execution. A lot more effort has to be made when
OpenCL is used for context creations, data copying, kernel mapping, and
so on. On the other hand, the effort of writing kernel code is almost the
same in OpenCL and CUDA. A typical OpenCL program flow [26] can be
as follows:

o Select the desired devices (for example all GPUs)
e Create a context

e Create command queues (per device)

e Compile program

o Create kernels

e Allocate memory on devices

e Transfer data to devices

e Execute kernel

e Transfer results back

e Free memory on devices

In contrast to CUDA, OpenCL compiles its kernels at runtime and re-
quires environmental setup on the CPU before the kernels can be launched
at the GPU. This may add to the OpenCL codes execution time. Since
OpenCL is a portable language, CUDA-written code often results in better
performance than OpenCL-written code. However, the runtime compilation
of the kernel in OpenCL can generate code that makes better use of the
target GPU, thus resulting in better performance.

11
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2.2.2 SkePU

SkePU is a skeleton programming framework for multicore CPU and multi-
GPU systems. It is a C++ template library designed to provide the applica-
tion programmer with a higher abstraction level with the use of high-order
functions, so-called skeletons, when specifying data- and task-parallel com-
putations. SkePU supports execution on multi-GPU systems both with
CUDA and OpenCL, and it also contains support for a sequential CPU and
a parallel OpenMP backend.

Skeletons are predefined generic components which are derived from higher-
order functions. Skeletons provide abstraction with a generic sequential
high-level interface and this may give structure to parallel applications. The
details involved in parallel computation structure are concealed from the
user when a suited set of skeletons exists for the computations. The term
skeleton programming refers to the approach where applications are written
with the help of skeletons.

The advantages with skeleton programming are that parallelism and syn-
chronization are given with very little effort. Skeletons are also beneficial
when it comes to programmability, portability and performance:

e Programmability: Skeletons are simplifying the construction of ap-
plications by raising the level of abstraction. With a sequential in-
terface to the outside world, applications can be written almost the
same way as structured sequential applications are constructed. The
low-level concurrency issues such as communication, synchronization,
and the load-balancing are hidden by the skeleton.

e Portability: Portability are enhanced since the description of the al-
gorithmic structure are modeled in a platform-independent manner by
a skeleton interface. This makes the implementation portable across
different platforms. Also the programmer is released from the respon-
sibility of detailed realization of the underlying patterns.

e Performance: By exploiting knowledge about parallelism, synchro-
nization and communication, optimization can be done for a skeleton
implementation despite the skeleton’s generic interface, and thereby
performance can be improved.

Another advantage is that the programmer does not need to write CUDA,
OpenCL, or OpenMP code by hand when using SkePU. The choice of back-
end is made by turning on/off some flags. The disadvantage with skeletons
is that computations that do not fit the predefined skeletons have to be
written manually.

Several preprocessor macros have been implemented in SkePU in order to
easily be able to define functions that can be used with the skeletons. These

12




2.3. WELL-SUITED PROBLEMS FOR GPUS

macros expand to the right kind of structure that constitutes the function
and they can be written and used with the skeletons regardless of the target
architecture. The skeleton functions in SkePU are represented by objects.
SkePU also includes implementations for Vector and Matrix containers to
support skeleton operations.

SkePU uses so-called lazy memory copying to avoid unnecessary memory
transfer operations between main memory and device memory. The SkePU
vector and matrix containers keep track on which parts of it are currently
allocated and uploaded to the GPU. Elements in a container that have been
modified by computations are not immediately transferred back to the host
memory. The container does not copy back the elements until the host wants
to access an element. Lazy memory copying is preferable when several skele-
tons operating on the same data are called one after the other and when no
modifications of the container data have to be performed in between by the
host.

2.3 Well-suited problems for GPUs

GPUs are best suited for problems and applications that include data par-
allelism, see Section [2:3.1] If an application includes data parallelism, it is
easier to achieve a speedup. Applications that involve large problem sizes
and more complex models are suited for parallel computing. The reason for
this is because these applications typically process large amounts of data
and/or do a lot of iterations on the data, which is what GPUs are optimized
for. It is however important that these applications are formulated in the
right way in order to achieve good performance on the GPU. The problem
must be decomposed into subproblems that can be solved at the same time
without conflicts.

Most parts of an application must usually be executed sequentially.
These parts should not be executed on a GPU; a CPU can execute them
much better. A list of some typical applications that are suited to be exe-
cuted on GPUs can be found in Section 2.3.2]

2.3.1 Data parallelism

Data parallelism is a form of parallelization where the same computation is
executed on each data elements of an large array in parallel. In order for
this to work, all element computations must be independent of each other.
A simple example of data parallelism is to increment values of all elements
in an array by some constant.

13
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2.3.2 Typical applications

GPUs are for the most part used for image and media processing applica-
tions, but they can also be used for accelerating science and engineering
applications. The following is a list of some typical applications that are
suitable to be executed on GPUs:

e Video encoding/decoding
e Stereo vision

e Image scaling

Pattern recognition

Signal processing

Computational finance, biology and chemistry

Physics simulations

14




Chapter 3

Performance analysis tools

Two performance analysis tools have been used when analyzing the ported
algorithms’ performance. These tools are described in this chapter along
with the advantages and disadvantages of each tool and how each tool is
used in this master thesis. The two tools complement each other; where one
tool performs unsatisfactory, the other tool can be used instead.

3.1 NVIDIA Visual Profiler

NVIDIA Visual Profiler is a stand-alone, cross-platform performance profil-
ing tool. It can analyze and provide feedback on CUDA C/C++ applica-
tions. With the timeline option, the user can view CUDA activities such as
memory transfers, kernel launches, and other API functions, that occur on
both the CPU and GPU in one timeline. The programmer can also choose
specific parts of the code where the profiler should collect information by
adding the commands cudaProfilerStart() and cudaProfilerStop(). This re-
sults in no unnecessary collection of data. Visual Profiler is able to collect
metric&ﬂ such as DRAM read/write throughput, branch efficiency, and cache
hit rate. Moreover, it is able to collect instruction/memory /cache event data
such as warp/thread launches, active cycles/warps, and others (event data
can be different on different GPU’s).

3.2 NVIDIA Nsight

NVIDIA Nsight is a tool for debugging and analyzing CPU and GPU code.
The tool can be integrated with the IDEs Visual Studio [I5] and Eclipse [1].
With the timeline option, the user can view activities such as memory trans-
fers, kernel launches, and other API functions, that occur on both the CPU

IMetrics references: |http://docs.nvidia.com/cuda/profiler-users-guide/index.
html#metrics-reference

15
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and GPU. The Nsight tool can also collect performance information about
instruction statistics, memory statistics, branch statistics, instruction effi-
ciency, achieved occupancy, and more ﬂ

The Nsight tool can analyze different types of applications, among oth-
ers CPU, CUDA, and OpenCL applications. It is also possible to choose
which kernel shall be analyzed without adding extra lines of code into the
application code.

3.3 Comparison and Discussion

In this project, the Visual Profiler has mostly been used for quickly generat-
ing timelines. From this timeline, kernel execution time and memory copy
execution time could easily be observed. Nsight has mostly been used to
study the memory usage, CPU threads, memory transfers, kernel launches,
and other API functions. Moreover, it has been used to study detailed
performance information about the application.

A problem with the Visual Profiler tool is lack of proper documentation.
In that aspect, Nsight is preferable because it gives a better description of
what the collection data actually collects and it presents the collection data
better than the Visual Profiler tool.

Another problem with Visual Profiler is that, in order to collect data, the
application needs to be executed several times in a row. This is a big problem
since the tester may need to set preferences, press run, and then close the
program repeatedly, which is time consuming. This is not a problem when
using the NVIDIA Nsight tool which only has to execute the application
once to collect data.

The Nsight tool does not support the Tesla K20 card. Because of this,
the Visual Profiler tool is used when analyzing the algorithms on the Tesla
K20 card. The Visual Profiler tool can only profile CUDA applications, and
because of this, the OpenCL applications can only be analyzed with the
Nsight tool.

2Nsight Visual Studio User Guide: http://http.developer.nvidia.com/
NsightVisualStudio/2.2/Documentation/UserGuide/HTML/Nsight_Visual_Studio_
Edition_User_Guide.htm

16
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Chapter 4

Application analysis

This chapter discusses the selected algorithms original design and rationale
for selection of these algorithms.

After studying the application with the knowledge gained from the liter-
ature study, two functions were found suitable for GPU processing. Those
function were Noisegen(), see Section and Edatacalc(), see Section
Together these functions create signals with noise which is used as input
signals for beamforming processing. The functions are supposed to simulate
signal samples that have been generated from a number of sources and then
received in a number of channels.

There are almost no other functions in the application that are suited for
GPU processing. One reason for this is because the other functions does not
perform enough loop iterations. Therefore, no gain is given to port them
to the GPU. Also, because of the limitations explained in Section there
were only enough time to implement two functions.

The amount of work spent in these two functions in the CPU thread
from which they are triggered from, depends on the problem size and the
number of CPU threads the programmer choose to execute the functions
with. If there is a small problem size and the two functions are executed
with eight threads each, little time will be spent executing the function and
more time will be spent waiting for other functions to be executed. The
trigger CPU thread’s amount of work spent executing the functions can in
that case be less than 5 % of the total amount of work for that CPU thread.
If there is a large problem size and the two functions are executed with one
thread each, then more time will be spent executing the functions and less
time will be spent waiting for other functions to be executed (since these
functions can be executed in other CPU threads during the executions of
the Noisegen and Edatacalc functions). The trigger CPU thread’s amount
of work spent executing the functions can in that case be about than 99 %
of the total amount of work for that CPU thread. No matter how fast the
execution of the two functions are, the total amount of time for the trigger
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CPU thread will not be lower than a certain value. This lowest value are
determined by the other functions that are executed in other CPU threads.

4.1 Noisegen()

The purpose of the Noisegen algorithm is to calculate colored noise for signal
samples. The noise shall be added to each of the calculated samples and
channel in the function Edatacale(). In the original code, the workload of
the algorithm is divided between a number of CPU threads (the maximum
is eight threads). Each thread receives a number of channels on which it is
supposed to execute the algorithm in parallel to the other threads.

The Noisegen function consists of two nested for-loops. The computation
that generates the noise is placed in the inner for-loop which loops through
each channel’s samples. The outer for-loop loops through the number of
channels which the thread has been assigned. Other samples’ noise values
are not included in the calculation of the noise value for a sample, and this
makes the two loops suitable to be parallelized on a GPU. Algorithm [1]shows
the Noisegen function’s pseudocode.

Algorithm 1: Noisegen in pseudocode

for each channel do
for each sample do
{Calculate noise for signal samples}
end for
end for

The size of the vector with the noise calculation data depends on the
number of threads. Each noise calculation data is of a noisestate struct
type which contains 26 values of the type double. The size of the result
vector with the calculated noise is the number of channels multiplied with
the number of samples. Each value in the result vector is of the type float.
Since the noisestate struct contains values of the type double, double
precision must be used in the ported versions of the function in order to
achieve the same accuracy in the result. Unfortunately, the use of double
precision will increase the execution time of the function.

The access pattern of the noise calculation data is that each thread reads
each variable’s value, preforms some calculations, and then assigns the same
variable with the new value. It also happens that it assigns one variables
value to another variable. These assigns occur in each loop iteration.

The access pattern of the result data depends on which iteration the
thread is at. The result of one iteration is written to the result array in
the inner most loop, and the indexing of the result array will be as follows:
currentSample * numberO fChannels + currentChannel. This way of in-
dexing the array results in that the writes to the result array will not be to
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indices in subsequent order.

Although a large amount of data is being calculated and processed in
the Noisegen function, it is still suitable to run on a GPU because of the
large amount of loop iterations performed in each instance of the function.
Since the calculated noise values are independent of other noise values, the
calculations can be performed in parallel rather than in a loop. It is impor-
tant though that each noise is calculated with fairly unique noise calculation
data in order to attain the random noise values which the Edatacalc function
requires.

A downside with the Noisegen function is that it cannot be executed on
the GPU while the CPU continues to work since the CPU is dependent of
the result from the function directly after the function has been executed.
Noisegen can also not be executed in advance because the CPU does not
know that Noisegen shall be executed until just before the execution.

4.2 Edatacalc()

The purpose of the Edatacalc algorithm is to create signal samples for a
number of channels. The generated noise from the function Noisegen will
be added to the calculated signal samples in the end of this function. The
workload of the algorithm is, as for the Noisegen function, divided between
a number of CPU threads (the maximum is eight threads). Each thread
is assigned a number of samples on which it is supposed to execute the
algorithm in parallel with the other threads.

The Edatacalc function consists of three nested for-loops with two extra
for-loops within the innermost for-loop, see Algorithm [2} The first outer
for-loop loops through the number of samples which the thread has been
assigned. The second outer for-loop loops through all sources in the envi-
ronment and the third for-loop loops through all channels. The third loop
calculates the signal samples for four channels at a time. To do this, two
for-loops following each other are executed within the third loop. The first
inner for-loop assigns values to a number of arrays with four elements each.
When the assignments are done, these arrays are used to calculate signals
for four channels at a time with help of a function Spline4 that uses SSE
Intrinstics functions [9] instead of ordinary addition, subtraction and mul-
tiplication operators. The second inner for-loop loops four times in order
to assign the result values from the Spline4 function to the correct index
in the result array, one iteration for each channel. Algorithm [2] shows the
Edatacalc function in pseudocode.

The Edatacalc function is, just like the Noisegen function, a good candi-
date for porting to the GPU because of the large amount of loop iterations
performed in each instance of the function. Also, the calculated signal val-
ues are not dependent on other signal values and this makes it possible to
perform the calculations in parallel. A drawback is that the original function
uses values of the type double, this means that double precision must be
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Algorithm 2: Edatacalc in pseudocode

for each sample do
{Update platform};
for each source do
{Update source};
for 4 channels at a time do
for i =[0..3] do
{Fill the arrays which have four elements each};
end for
{Calculate signal samples, four channels at a time}
Spline4(..);
for i =[0..3] do
{Add results from Spline4 to result array};
end for
end for
end for
end for

used in the ported versions of the function which results in higher execution
times, see Chapter

Another disadvantage with the Edatacalc function is that a large amount
of data is used to calculate the signal samples. It is especially the source
type data that contains very large arrays. It is unfortunately not possible
to minimize the amount of source type data that has to be sent to the GPU
in the ported version of the function, which will increase the function’s
execution time.

The access pattern of the data used for calculating the signal sample
values is a bit arbitrary. The reads and write can be to the same or different
variables, and the instructions performing the reads/write does not do it
with variables that are in subsequent order to each other in the structs.
Also, there are a lot of reads and writes to many different variables in each
for-loop.

The access pattern of the result data is similar to the Noisegen function
and depends on which iteration the thread is at. The result of one iteration
is added to the result array in the inner most loop, and the indexing of
the result array will be as follows: currentSample * numberO fChannels +
currentChannel. This means that the result array is first read to get the old
value, this value is then added to the result value of the current iteration’s
calculations, and this sum is then written to the same index that were read.
This way of indexing the array results in that the reads and writes to the
result array in one iteration will be to the same index, but the indices will
not be accessed in subsequent order from iteration to iteration.

There are already optimizations in the Edatacalc function to make it
execute faster on the CPU. The original code calculates the signal values
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for four channels at a time. This is done with the use of SSE Intrinsics
functions. SSE is an SIMD instruction set extension to the x86 architecture
designed by Intel. The programmer can use C+-+ function calls and vari-
ables with assembly-coded functions called intrinsics in place of assembly
instructions. SSE instructions can be used directly from C++ code when
SSE Intrinsics are supported. This eliminates the need of writing assembly
instructions. By using SSE Intrinsics, function call overhead from the C++
code is eliminated. It provides the same benefits as using inline assembly;
however, it is easier to write readable code. The use of SSE Intrinsics is a
good optimization when running the application on CPU. The equivalent
to SSE Intrinsics for NVIDIA GPUs is warp SIMT execution, where each
individual thread in a warp executes the same sequence of instructions.
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Chapter 5

Algorithm adaptations

This chapter describes how the chosen algorithms from Chapter 4 have been
implemented in CUDA, OpenCL and SkePU.

Since the original versions of the Noisegen and the Edatacalc functions
uses variables of the type double to calculate the results, double precision
had to be used in order to achieve equivalent results. The disadvantage with
double precision compared to single precision is that the functions executes
slower by a factor of 2 on a NVIDIA Quadro GPU and by a factor of 3 on
a NVIDIA Tesla K20 GPU.

5.1 Implementation and adaptations, CUDA

This section describes how the two algorithms Noisegen and Edatacalc, de-
scribed in Chapter [4] are implemented in CUDA. The result vector is placed
in the global memory in each version of the function.

5.1.1 Noisegen()

Four different versions of the Noisegen function have been implemented in
order to be able to compare which kind of implementation gives the best
performance. These four versions of the function are:

e CUDA_NV1: One GPU thread per channel (calculates noise for all
samples inside a channel). The noise calculation data is placed in the
global memory during entire kernel execution.

e CUDA_NV2: One GPU thread per channel (calculates noise for all
samples inside a channel). The noise calculation data is placed in the
shared memory.

e CUDA_NV3: One GPU thread calculates a number of samples inside
a channel. The noise calculation data is placed in the shared memory.
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e CUDA_NV4: One GPU thread calculates a number of samples inside
a channel. The thread’s part of the noise calculation data is copied to
the thread’s local registers.

The first version that was implemented, CUDA_NV1, assigned GPU threads
to calculate noise for all samples for one channel each. This version is sim-
ilar to the original code, the inner loop is the same and the outer loop
is replaced by one GPU thread per outer loop-iteration, where each GPU
thread is working in parallel. The noise calculation data is placed in the
global memory, resulting in each thread reading and writing to global mem-
ory several times in each sample iteration. This may increase the execution
time of the function since communication with the GPU’s global memory is
more time consuming compared to communication with shared memory or
local registers.

The second version, CUDA_NV?2, is implemented in the same way as
CUDA_NV1 with the exception of the use of shared memory. Before calcu-
lating the noise for each sample, the noise calculation data for each thread
is copied from global memory to shared memory. Because of the fact that
the noise calculation data is changed in each iteration of calculation noise,
it is less time consuming to save the changed data to shared memory than
to global memory.

In both CUDA_NV1 and CUDA_NV2 each thread has to perform as
many iterations as there are samples per channel. If for example the data
set contains 2205 samples per channel, then each thread must perform 2205
iterations. To perform that many iterations is very time consuming and may
result in poor execution times.

In the third version of the function, CUDA_NV3, each GPU thread calcu-
lated an arbitrary number of samples and shared memory is used for storing
the noise calculation data. This version provides greater flexibility because
the programmer can choose how many samples each thread will compute
noise values for. The programmer can also choose how many threads that
shall be executed per block, and how many blocks there shall be in each
grid. These choices may affect the execution time of the function. The first
and second version does not have this flexibility, the number of channels
decides the number of threads. A problem with using shared memory is
that if the number of threads per block is too large, the noise calculation
data will not fit in the shared memory, which forces the programmer to use
a smaller number of threads and this may increase the execution time for
the function.

The fourth and final version of the Noisegen function, CUDA_NV4, is
similar to the third version, but the noise calculation data is copied from
global memory to registers and local memory for each thread instead of
copying it to shared memory. The new noise calculation data is copied back
to global memory when the thread has finished calculating the noise values
for its share of the samples.
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5.1.2 Edatacalc()

Three different versions of the Edatacalc function have been implemented
in order to be able to compare which kind of implementation that gives the
best performance. These three versions of the function are:

e EV1: One GPU thread per sample (calculates the signal for that sam-
ple over all channels and sources).

e EV2: One GPU thread:

— EV2a: per sample and source;

— EV2b: per sample, source and channel.

The first version, EV1, is almost identical to the original function except
that the most outer for-loop had been replaced with one GPU thread per
iteration. The variables that are used within the calculations are either
copied to local variables for each thread or read directly from the global
memory.

The second version, EV2, can be executed in two different modes. For the
first mode, EV2a, both the first and second outer for-loop has been replaced
with one thread per iteration. For the second mode, EV2b, all for-loops has
been replaced with one thread per iteration. For EV2a and EV2b, there
are a lot of redundant calculations which may increase the execution times.
The third outer for-loop uses calculations from just before the third outer
for-loop. If there is one thread per iteration and no for-loops (EV2b) then
all the threads will perform one iteration each of the third for-loop calculate
the same values before entering the third for-loop code. The same argument
goes for the second outer for-loop, if there is one thread per iteration and
there are no for-loops (EV2a) or only the third inner for-loop (EV2b).

It is possible to launch fewer threads than the total amount of iterations,
this will result in that some threads do all the calculations one more time
with another thread id. If there are much fewer threads than the total
amount of iterations, a lot of redundant calculations will be performed,
causing higher execution time. If the programmer wants to use few threads
it is not recommended to use version EV2a or EV2b but rather the first
version (depending on the amount of threads the programmer is willing to
launch).

5.2 Implementation and adaptations, OpenCL

This section describes how the algorithm Noisegen, which is described in
Chapter is implemented using OpenCL.

Two different versions of the Noisegen function have been implemented
in order to be able to compare which kind of implementation gives the best
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performance. These two versions are almost the same as the CUDA ver-
sions CUDA_NV1 and CUDA_NV4 of the Noisegen function, see Section
5.1.1] The noise calculation data and the result vector are placed in the
global memory in each version of the function.

The first version that was implemented with OpenCL, OPENCL_NV1, is
equivalent to CUDA_NV1, their kernel functions are exactly the same. The
outer for-loop from the original function has been replaced with one thread
per iteration, and the inner for-loop is unchanged. This means that each
thread has to perform as many for-loop iterations as there are samples per
channel.

The kernel code of the second version that was implemented, OPENCL_NV2,
is almost the same as the kernel code of CUDA_NV4. The outer for-loop
from the original function has been removed and replaced with a number of
threads per iteration. The inner for-loop has been changed to only iterate
through a chosen number of samples per thread. The difference between
them is that CUDA_NV4 places the noise calculation data in registers and
in local memory while OPENCL_NV2 places the data in global memory.
However, their results may still almost be the same. The reason for this is
because the registers will most likely be overflowed with data in CUDA_NV4
and the data may therefore be placed in the local memory, which is located
in the global memory.

OPENCL_NV2 provides greater flexibility than OPENCL_NV1 because
the programmer can choose how many samples each thread shall compute
noise values for and thereby can a larger number of computations be paral-
lelized.

The kernel codes for these two OpenCL versions are almost the same as
CUDA_NV1 and CUDA_NV4. The kernel setup is on the other hand much
different. More work has to be put down before a OpenCL kernel can be
launched, as described in Section and this may increase the total
execution time of the functions.

The total number of threads is calculated in the code by the number
of channels and the number of samples per channel defined in the GUI.
The programmer are in these versions not allowed to choose the number of
threads per block which the kernel shall be executed with, see Section |1.2
However, the programmer can choose the number of samples per thread in
the second version, and thereby indirectly affect the total number of threads.

5.3 Implementation and adaptations, SkePU

This section describes how the algorithm Noisegen, which is described in
Chapter [£.1] is implemented in SkePU.

Two different versions of the Noisegen function have been implemented
with two backends each in order to be able to compare which kind of imple-
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mentation gives the best performance. The versions are implemented with
a CUDA and a CPU backend. These two versions are almost the same as
CUDA_NV1 and CUDA_NV4, see Section [5.1.1]

A few modifications had to be done in the SkePU code in order to be
able to port the Noisegen function with SkePU. Another user function gen-
erator macro had to be created. A new variant of the ARRAY_FUNC []
user function generator macro was written by Usman Dastgeer (one of the
developers of SkePU). The two first operands in the original ARRAY_FUNC
are input operands (read) and the third is an output operand (write). In
the modified ARRAY _FUNC, also the content of the first input operand can
be modified (readwrite) while the other two are the same (second operand
is read and third operand is write). A small modification was also made to
make it possible for the programmer to choose which GPU to execute the
function on.

The kernel functions of the two versions are both defined with the new
variant of the ARRAY_FUNC user function generator macro and called
with the MapArray skeleton. All calculations within the two for-loops in
the original function are placed in the kernel function for each version. The
few number of calculations which are performed before the two loops in
the original function, are calculated outside the kernel function and then
passed to the kernel each time it is invoked. The initiation of the noise
calculation data were defined with the GENERATE_FUNC user function
generator macro and called with the Generate skeleton.

The first version that was implemented with SkePU, SKEPU_CPU_NV1 and
SKEPU_CUDA_NV1, is equivalent to CUDA_NV1. The outer for-loop from
the original function has been replaced with a MapArray skeleton with one
vector element per iteration, and the inner for-loop is unchanged.

The second version that was implemented, SKEPU_CPU_NV2 and
SKEPU_CUDA_NV2, is equal to CUDA_NV4. The outer for-loop from the
original function has been removed and replaced with a MapArray skele-
ton with a number of vector elements per iteration. The inner for-loop has
been changed to only iterate through a chosen number of samples per vec-
tor element. All this is placed in the kernel function. This version provides
greater flexibility than the first version because the programmer can choose
how many samples each vector element shall compute noise values for and
thereby can a larger number of computations be parallelized.

In contrast to CUDA, SkePU with CUDA backend does not allow the pro-
grammer to choose whether shared or global memory shall be used. That is
on the other hand not a necessity in this case since the performance results
of the CUDA versions shows that shared memory only results in a little bit
lower execution time and that it limits the number of threads per block.
An advantage with implementing the Noisegen function with SkePU is

Thttp://www.ida.liu.se/~usmda/skepu/doc/html_v1.0/group__userfunc.html
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that, when CUDA backend is used, the programmer does not need to hard
code a specific number of threads per block or a specific number of blocks,
SkePU chooses the numbers that it finds most suitable. This is good when
the problem size changes at runtime and when perhaps a larger or smaller
number of blocks gives better performance. The programmer can, if desired,
choose the maximum number of threads per block that shall be used, SkePU
then might set a lower number of threads per block if that gives better
performance.

It is necessary that the programmer is able to define a maximum limit
on the number of threads per block since SkePU sets the GPUs maximum
number of threads per block as default and the best performance may not
be given by using all thread in a block.
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Chapter 6

Result and evaluation

This chapter lists the speedup results that were given when testing and
evaluating the ported algorithms in Chapter The CUDA and OpenCL
applications (and the SkePU versions with CUDA backend) have been eval-
uated on two different GPUs during the tests: a NVIDIA Quadro K5000 [19]
and a NVIDIA Tesla K20 [20]. There are two figures for each speedup, one
with Quadro K5000 and one with Tesla K20. The speedup of the CPU
versions are the same in both figures. The speedup is calculated as the fol-

lOWiIlgI Speedup = TOriginal function(1 thread) / TPorted function-

During the tests, the following parameters have been varied:
e Number of samples
e Number of channels
e Number of sources (only for the Edatacalc tests)

e Number of threads per block and number of blocks (only for CUDA
versions)

e Number of samples per thread (only for the third and fourth CUDA
versions, the second OpenCL version, and the second SkePU version)

The function’s execution time has been measured with the C++ function
clock() from the time the functions have been invoked until the functions
return. The average execution time has then been given by taking the
average of ten execution times.

The performance analysis tools have measured time in the C kernel code;
all the CUDA allocation function, CUDA copy functions, the kernel invoke,
and CUDA free functions. These measured execution times are therefore
smaller than when measuring with the clock function. The execution time
of the kernel and the time spent in copying to/from GPU memory before
and after the kernel launch has been measured with the Visual Profiler tool,
which gives about the same result as the Nsight tool.
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6.1 Noisegen()

This section present the Noisegen functions speedups compared to the orig-
inal Noisegen function executed with one thread. More information about
the Noisegen function can be found in Chapter The OpenCL versions
were only tested on the Quadro K5000 card because problems occured when
using OpenCL with the Tesla K20 card [20].

6.1.1 Sample speedup

The sample speedups for CUDA_NV2 and CUDA_NV3 are not displayed in
the plots because their speedups are almost the same as the speedup for
CUDA_NV1 and CUDA _NV4 respectively.

The best sample speedup is given by OPENCL_NV2 on Quadro K5000
and CUDA_NV3 on Tesla K20. CUDA_NV4 also gives the second best
speedup on Quadro K5000.

The original Noisegen function executed with eight threads, Org_8t, gives
good speedup on Quadro K5000, but if the number of samples would in-
crease, then would CUDA_NV4, OPENCL_NV2, and SKEPU_CUDA_NV2
most likely perform much better than the original function.

Figure [6.1] and Figure [6.2] show the sample execution time speedup on
Quadro K5000 and on Tesla K20 respectively for each Noisegen version
compared to the original function executed with 1 thread, Org_1t.
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Noisegen sample speedup, Quadro K5000
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Figure 6.1:  Sample execution time speedup on Quadro K5000 for each
Noisegen version compared to the original function executed with 1 thread,

Org_1t.
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Figure 6.2: Sample execution time speedup on Tesla

K20 for each Noisegen

version compared to the original function executed with 1 thread, Org_1t.

6.1.2 Channel speedup

The best channel speedup is given by OPENCL_NV2 on Quadro K5000 and
by CUDA_NV4 on Tesla K20. CUDA_NV4 version also gives the second
best channel speedup on Quadro K5000.

The original Noisegen function executed with eight threads, Org_8t gives
good speedup on Quadro K5000, but if the number of channels would in-
crease, then CUDA_NV4, OPENCL_NV2, and SKEPU_CUDA_NV2 would
most likely perform much better than the original function.

Figure [6.3| and Figure show the channel execution time speedup on
Quadro K5000 and on Tesla K20 respectively for each Noisegen version
compared to the original function executed with 1 thread, Org_1t.
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Noisegen channel speedup, Quadro K5000
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Figure 6.3: Channel execution time speedup on Quadro K5000 for each
Noisegen version compared to the original function executed with 1 thread,

Org_1t.
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Figure 6.4: Channel execution time speedup on Tesla K20 for each Noisegen
version compared to the original function executed with 1 thread, Org_1t.

6.1.3 Discussion

The execution times for CUDA_NV1, OPENCL_NV1, and SKEPU_CUDA_NV1
are all similar. The reason for this is because the kernel algorithms are the
same. The speedups are therefore almost the same for all three versions.

The reason of why the execution times for SKEPU_CPU_NV1 is almost
the same as the execution times of the original function when one thread is
used is because they do the same amount of work. SKEPU_CPU_NV1 also
runs on the CPU with one thread and is only a bit slower than the original
function because SkePU has to do some extra work before the algorithm can
be executed. SKEPU_CPU_NV1 also has higher speedup than CUDA_NV1,
OPENCL_NV1, and SKEPU_CUDA_NV1 because the cost of running those
versions on the GPU is higher than what it costs to do the same work on
the CPU. Because of their kernel implementations they cannot yield enough
parallelism for them to be profitable.

For CUDA_NV3 and CUDA_NV4, OPENCL_NV2, and SKEPU_CUDA _NV2,
the time spent in copying data to and from the GPU memory before and
after the kernel launch depends on the number of samples per thread. If
there are few samples per thread, then more data has to be copied to the
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GPU memory, and this takes more time. If there are a large number of sam-
ples per thread, then each thread will have to iterate a lot which increases
the total execution time but it decreases the time spent in memory copy.
These versions can parallelize the noise calculations for the samples in each
channel, in other words, they can have one thread calculating the noise for
a subset of the samples in one channel and thereby splitting up the inner of
the two for-loops from the original version. This result in lower execution
time and a better sample speedup compared to the other versions.

If CUDA_NV4 is being executed with the same parameters as CUDA_NV1
and CUDA_NV?2, that is one thread for each channel, then it will run slower
than those versions. The reason for this is the extra calculations that have
to be performed in CUDA_NV4 to ensure that all variations of the chosen
parameters give a correct result. CUDA_NV3 gives faster execution time
when the same number of threads per block is used in CUDA_NV3 and
CUDA _NV4, but CUDA_NV4 is able to give a lower execution time since it
can use more threads per block.

CUDA_NV4, OPENCL_NV2, and SKEPU_CUDA _NV2 have almost the
same execution times because their kernel implementations are almost the
same. However, SKEPU_CUDA_NV2 have a bit lower execution time be-
cause of implementation differences in SkePU with CUDA backend and
CUDA; the OpenCL versions have a bit higher execution times.

CUDA implementations generally result in better performance than OpenCL
implementations. There are some cases though where the result is the oppo-
site. The compilers used for translating the CUDA and OpenCL kernels into
intermediate PTX assembly code, produce different results, even though the
kernel codes are similar. Therefore there may be cases where the OpenCL
compiler produces better PTX assembly code than the CUDA compiler.
This is probably the case for CUDA and OpenCL versions in this master
thesis, and the reason why OpenCL results in better speedup. The same
outcome where OpenCL results in better performance, also occurred in two
algorithms which were studied in a master thesis by Sanden [25].

As the graphs show (see Figure [6.1] - [6.4)), the versions running on the
GPU do not give that much speedup compared to the original version exe-
cuted with eight threads. The reason for this is because the kernel threads
communicate a lot with the global memory. The noise calculation data,
used to perform the calculations, are in almost all GPU versions placed in
the global memory. The threads read from and write to this noise calcula-
tion data several times in each kernel invocation, and this results in a lot
of global memory traffic. Since communication with the global memory is
slow, the speedup cannot get much better. CUDA_NV3 is an exception,
where the noise calculation data is placed in the shared memory with the
intention to decrease the communication with global memory. The problem
with this implementation was that it limits the number of threads per block
that could be used. If too many threads per block are used, the shared
memory would overflow with data. The usage of shared memory limited the
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number of threads/block so much that the occupancy per SM deteriorated
(available parallelism inside a SM decreased) and this resulted in an increase
of the execution times. By putting the noise calculation data in the global
memory, the maximum number of threads per block could be used if needed
and lower execution times could be achieved than when shared memory is
used.

The fact that the speedup is limited by the communication with the
global memory is proven by analyzing the memory communication. There
are a lot of load/stores transactions from/to the global memory and the
kernel execution times decreases if the number of transactions decrease. A
low number of transactions to global memory is necessary for good speedup
because else the caches swap data in/out more often and this will cause the
cache hit rate to decrease. It is also bad to have a lot of store transactions
since stores are not cached in L2, and this decreases the L2 cache hit rate.

It is possible to increase the cache hit rates by, among other things, con-
figuring the size of the L1 cache and the shared memory. By increasing the
L1 cache size and decreasing the shared memory size with the CUDA func-
tion cudaFuncSetCacheConfig, the L1 hit rate more than doubled. However,
the total execution time did not change particularly much, and the kernel
execution only decreased with 2,3%. By adding dummy shared memory and
having a low number of threads per block, the L1 hit rate could increase
to 83,9% and the L2 hit rate to 46,9%. However, the execution time be-
came five times higher. This because the occupancy decreased from 36,8%
to 6,15% when the number of threads decreased, and this also decreased the
speedup.

There is a trade-off, having more threads per block will cause a lot of
cache misses and more global memory traffic. On the other hand, having
low number of threads per block also give bad performance considering that
not enough work will be done to hide global memory access latency, the
occupancy will decrease.

6.2 Edatacalc()

This section present the CUDA Edatacalc versions’ speedup compared to
the original Edatacalc function executed with one thread, Org_1t. More
information about how the CUDA versions are designed can be found in
Chapter [f]

6.2.1 Sample speedup

The best sample speedup is given by the original Edatacalc function exe-
cuted with 8 threads, Org_8t.

All CUDA versions parallelize the signal calculations for the samples
in each channel, and therefore will the version with lowest global memory
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latency have the best sample speedup. This results in that EV1 has the
second best sample speedup.

If the number of samples is increased to more than 6400 samples, then
will EV1 most likely give better speedup than the original function executed
with 8 threads. Also EV2a will most likely give better speedup if the number
of samples is increased.

Figure [6.5] and Figure shows the sample execution time speedup
on Quadro K5000 and Tesla K20 respectively for each Edatacalc version
compared to the original function executed with 1 thread, Org_1t.

Edatacalc sample speedup, Quadro K5000
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Figure 6.5: Sample execution time speedup on Quadro K5000 for each
Edatacalc version compared to the original function executed with 1 thread,
Org_1t.

36




6.2. EDATACALC()

Edatacalc sample speedup, Tesla K20
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Figure 6.6: Sample execution time speedup on Tesla K20 for each Edatacalc
version compared to the original function executed with 1 thread, Org_1t.

6.2.2 Channel speedup

The best channel speedup is given by the original Edatacalc function exe-
cuted with 8 threads, Org_8t.

Even though EV2b parallelizes the inner most for-loop that loops through
the channels, it gives a worse speedup than the other versions. The reason
for this is because the more channels that are used, the more duplicated
data between the threads, and this results in more data in local memory
and thereby more global memory communication. So even though more is
parallelized, this cannot hide the global memory latency (which increases
with more channels being used).

EV1 and EV2a all have each thread looping through all channels, and
therefore will the version with lowest global memory latency have the best
channel speed-down. This results in that EV1 has the second best channel
speedup.

If the number of channels is increased to more than 96 channels, then will
the EV1 most likely give better speedup than the original function executed
with 8 threads. Also EV2a will most likely give better speedup if the number
of channels is increased.

Figure and Figure shows the channel execution time speedup on
Quadro K5000 and on Tesla K20 respectively for each Edatacalc version
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compared to the original function executed with 1 thread, Org_1t.

Edatacalc channel speedup, Quadro K5000
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Figure 6.7: Channel execution time speedup on Quadro K5000 for each
Edatacalc version compared to the original function executed with 1 thread,
Org_1t.
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Edatacalc channel speedup, Tesla K20
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Figure 6.8: Channel execution time speedup on Tesla K20 for each Edat-
acalc version compared to the original function executed with 1 thread,
Org_1t.

6.2.3 Source speedup

The best source speedup, when 10 or more sources are being used, is EV2a.

Since EV2a can have one thread per source for-loop iteration, and thus
parallelize that for-loop, it gives better source speedup than the EV1 and
the original version of the Edatacalc function executed with 8 threads,
Org_8t. This is particularly clear when the maximum number of sources
is 100 sources or more.

EV2b, which also can have one thread per source for-loop iteration, could
not be tested with a maximum of 100 sources because the global memory
cannot handle the amount of data that a source maximum at 100 sources
would result in. The speedup should in theory though be almost the same
as for EV2a because both of them can have one thread per source, but this
is not the case since EV2b communicates to much with the global memory.
EV2b speedup will decrease as the number of sources increases.

Figure and Figure shows the source execution time speedup on
Quadro K5000 and on Tesla K20 respectively for each Edatacalc version
compared to the original function executed with 1 thread, Org_1t.
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Figure 6.9: Source execution time speedup on Quadro K5000 for each
Edatacalc version compared to the original function executed with 1 thread,
Org_1t.
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Edatacalc source speedup, Tesla K20
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Figure 6.10: Source execution time speedup on Tesla K20 for each Edat-
acalc version compared to the original function executed with 1 thread,
Org_1t.

6.2.4 Discussion

When collecting data for the sample and channel speedups for each version,
only two sources were used when executing the functions. Since a lot of data
has to be transferred to the GPU each invocation of the kernel functions,
the problem size does not become large enough to hide the time for copying.
This is why the sample and channel speedup for the CUDA versions are not
that good and why the original function executed with 8 threads are better
in those tests. If the number of sources increases, the speedup for the CUDA
versions increases (see Section [6.2.3).

The difference in the speedup at 8 to 96 channels is almost the same
for the original function executed with 8 threads, Org_8t, EV1, and version
EV2a. However, the difference in sample speedup from 700 to 6400 sam-
ples is much higher for EV1 compared to the original function. Also, the
difference in source speedup from 1 to 10 sources is much higher for EV2a
compared to Org_8t. Since it is more likely to increase the number of sam-
ples and the number of sources for more advanced simulations, the CUDA
versions will most likely give better performance than the original function
if the problem size increases.
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6.3 Discussion: Threads per block

In most cases, higher occupancy is achieved with a large number of threads
per block. High occupancy have a positive effect on the execution time
because that means that when some threads stall for data access from the
cache/global memory, other threads can continue to work. In other words,
the SM is active most of the time because the threads do not have to wait for
other threads before they can get data from the cache/global memory. To
achieve good occupancy, the number of threads should be a multiple of 32,
which is the warp size. If it is not a multiple, the warps do not become fully
utilized, the occupancy decreases and the execution time increases. For
CUDA_NV3, CUDA_NV4, and SKEPU_.CUDA_NV2, also the number of
samples per thread (number of iterations per thread) affects the occupancy.

Unfortunately the shared memory limits the number of threads per block
in CUDA_NV3. Only a small number of threads per block can be used and
therefore it is not possible to achieve high occupancy per SM. It is because
of this reason CUDA_NV4 can achieve lower execution times than the third
version. If a large number of threads per block is used in CUDA_NV3, then
there will also be more conflicts toward the shared memory. If there are a
lot of conflicts, threads have to wait to get data from the shared memory
which decreases the number of request per second to the shared memory,
and this result in increasing execution time.

The L1 cache hit rate is higher when more than 15 and less than 1024
threads per block are used. High hit rate indicates that the data exists in
the cache most of the time when the thread needs it (there is no need to get
data from the global memory, which is a slow process compared to getting
data from the L1 cache). The L1 cache (which is closest to the SM) can
be overflowed with data when a large number of threads per block is used
and each thread has a lot of data to process. With a lot of threads per
block, data will be swapped in and out from the L1 cache more often than if
there are few threads per block. This will result in lower L1 cache hit rates
and more transactions per requests to the global memory, and since getting
data from global memory is time consuming, this increases the functions
execution time. The execution time does not have to increase that much
when a lot of threads per block are used. If the L2 hit rate is quite high
there will be less time spent communicating with the global memory. If both
the L1 and L2 cache hit rate is low, the execution time could increase much
more. Also, if shared memory is used, there is less need to get data from the
global memory and this decreases the number of request per second to the
L1 cache and it increases the L1 cache hit rate compared to when shared
memory is not used.

A low execution time depends on both the number of samples per thread
and the number of threads per block in CUDA_NV3 and CUDA_NV4. It
has to be enough threads per block to occupy the SMs, each thread has
to perform a balanced amount of work in such a way that they do not
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have to wait for each other to acquire computational units to perform the
calculations, and there shall be few swaps to/from the L1 cache. A large
number of threads per block is preferred to achieve high occupancy per
SM. However, this only applies if the number of samples per thread are low
enough to prevent L1 cache misses, achieve a high number of requests per
second to the L1 cache, and low enough to achieve high occupancy per SM.

If there are too many threads per block and too many samples per thread
then the data request stall reason will increase. An ineligible warp will
increase the number of data request stalls if a request cannot currently be
made as the required resources needed to perform the calculation are not
available, or are fully utilized, or too many operations of that type are
already outstanding. These problems can be avoided by either decreasing
the number of threads per block or the number of samples per thread.

A small number of threads per block and a small number of samples
per thread will decrease the occupancy per SM and thereby increase the
execution time. There is a limit on how many samples per thread gives
good performance. A high number of samples per thread may decrease
the data request stall reasons, but the total parallelism will decrease since
fewer threads have to perform more work and this increases the functions
execution time.

The fastest execution time in EV2b of the Edatacalc function is much
slower than the fastest execution in the other versions of the Edatacalc
function. This is because a lot of data will be duplicated between the threads
in this version (since the for-loops are gone) and this fills up the registers.
With a lot of threads per block, the registers in a SM will not be enough
to hold all data and therefore some data will be put in the local memory
(which is placed in the global memory). Since a lot of calculation data is
placed in the local memory, the L1 and L2 caches will overflow more easily
than in the other versions of the function. Therefore more communication
with the global memory will occur. This increases the execution time. The
execution time will increase even more when the number of threads per
block is increased because then more of the calculation data for each thread
will be placed in the local memory. For 64 threads per block and more, the
occupancy will be high, but this will not help to lower the execution time
because of the large amount of communication with the global memory.
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Related work

A paper by Vinod et al. [27] describes nearly the same noise generation al-
gorithms as those that are being used by the functions in this master thesis.
They do not port their algorithms for GPU processing, but they discuss
topologies for parallel implementations. They suggest, among others, one
design where one processor should be allocated for each channel. This is
what the first versions of the CUDA, OpenCL and SkePU implementations
do in this master thesis.

Not many other articles or papers have been written about the problem
handled by this master thesis. There are however more articles and papers
about algorithm optimizations and performance evaluations on GPUs using
CUDA.

A paper by Ryoo et al. [24] discusses different optimizations principles
and how to evaluate an application’s performance on a multithreaded GPU
using CUDA. Their way of studying an application, optimizing it, and eval-
uating its performance has served as guidelines in this master thesis. They
also discuss the challenge of balancing the threads’ resources and the num-
ber of simultaneously active threads. This is an issue which also we had to
deal with.

Another paper that studies performance of general-purpose applications
on GPUs using CUDA is [I], by Che et al. They explore how the performance
can be improved by porting a number of applications for the GPU, and
they also describes some coding idioms which can improve the performance
of their applications. Their study shows that the use of shared memory
increases the performance since the communication with global memory
decreases, especially when threads need to share data amongst each other.
However, they also mention the limitations of the shared memory and that
a large amount of threads per block may fill up the shared memory. In their
paper as well as in this master thesis, a lower number of threads per block
must occasionally be used to avoid filling up the shared memory. They also
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conclude that it is not always the maximum number of threads per block
which results in the best performance.

Porting of complex scientific applications written in FORTRAN to CUDA
have been done by Delgado et al. [5]. Their methodology of porting and
performance improvement is almost the same as in this master thesis, even
though their original application is written in FORTRAN and the original
application in this master thesis is written in C++. Their ported appli-
cation spent more time transferring data between the host and the device
memories than the kernel took to be executed. This is a problem that also
occurred with the porting of the Edatacalc function with CUDA, more than
half of the total execution time was spent copying data to the device.

CUDA was the primary parallel computing platform used when porting the
algorithms, and OpenCL was the secondary. It is therefore interesting to
compare the performance of these two. A paper by Dua et al. [6] evalu-
ates OpenCL as a programming tool for developing performance-portable
applications for GPGPU. The algorithms used in that project focuses on
dense matrix routines for numerical linear algebra, which are quite different
from the original algorithms in this master thesis. Their conclusion is that
OpenCL is a good choice for porting their algorithm for GPU processing,
even though CUDA gives slighly better performance. This master thesis
also concludes that OpenCL is a good choice, and it sometimes even gives
better performance than CUDA.

Another paper in which CUDA and OpenCL are being compared is [10]
by Karimi et al. They show that converting a CUDA kernel to an OpenCL
kernel involves minimal modification but it requires more modifications to
set up the OpenCL kernel. Also in their work, CUDA results in slightly
better performance than OpenCL.
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Discussion and conclusion

The Tesla K20 card is better at double precision calculations than the
Quadro K5000 card, and this is the reason for why the execution time of
the functions are faster on the Tesla K20 card. It also has a larger global
memory bandwidth and larger L2 cache. The OpenCL versions resulted in
better performance on the Quadro K5000 card than the CUDA versions.
This might have had something to do with the card itself, and it is possible
that the OpenCL versions would perform better on the Tesla K20 card than
the CUDA versions. Unfortunately we faced problems when using OpenCL
with the Tesla K20 card and we could therefore not compare OpenCL and
CUDA on that GPU.

To write the CUDA code was more simple than to write the code of the other
frameworks. Not many lines of code were needed for setting up the GPU
for kernel execution. It took however more work to decide the number of
threads per block and the number of blocks, especially when shared memory
is used.

OpenCL required a lot more code to set up the GPU for kernel execution
than both CUDA and SkePU. On the other hand, there is no need to set
number of threads per block or to wonder if the number of threads per block
together with the number of blocks would yield enough threads (which is a
problem when setting up the GPU for CUDA).

Not much SkePU code was needed for setting up the GPU for kernel
execution, a little bit more than for CUDA and a little bit less than for
OpenCL. However, since SkePU does not have that many user function
generators a new macro had to be written in order to be able to port the
Noisegen function.

One typical issue that is dealt with when optimizing an algorithm is to
ensure that global memory accesses are coalesced. Coalesced memory ac-
cesses cannot be achieved in neither the Noisegen nor the Edatacalc function
when writing to the result arrays. Each thread writes to non-consecutive
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indexes, and also for one thread in two consecutive for-loop iterations the
writes are to non-consecutive indexes. The access pattern of the result arrays
cannot be changed without changing the entire algorithm.

8.1 Noisegen

For all problem sizes larger than 700 samples and 48 channels, the author
would recommend using the second OpenCL Noisegen version (OPENCL_NV2)
or the fourth CUDA version (CUDA_NV4) depending on which GPU the
application shall use. OPENCL_NV2 provides the best sample and chan-
nel speedup on the Quadro K5000 card compared to the original Noisegen
function executed with one thread. Since it is an OpenCL implementation,
it also provides platform portability. On other NVIDIA cards however, the
compilation of the OpenCL version might give less optimal PTX assem-
bly code than the CUDA versions. CUDA_NV4 is also a strong candidate
since its performance is only slightly lower than the OpenCL version on the
Quadro K5000. On Tesla K20 it even gives better sample speedup than
when the second OpenCL version is executed on Quadro K5000.

Another reason for choosing OPENCL_NV2 rather than CUDA_NV4 is
because there is no need for the programmer to hard code the number of
threads per block. The number of threads per block increases or decreases
automatically when the problem size changes. This is not the case in the
CUDA versions where the total number of threads might be too many or
too few depending on the hard coded number of threads per block and the
problem size.

On the other hand, CUDA_NV4 can perform better if choosing the num-
ber of threads per block would be an option in the GUI when running the
application. This way, there would be less chance of having too many or
too few threads. Also, the user can optimize the performance since the
maximum number of threads per block does not always result in the best
performance. This is a downside with the OpenCL version. Due to lack of
time, see Section there is currently no possibility to change the number
of threads per block, OpenCL will choose the maximum amount of threads
per block, even though fewer might give better performance.

This master thesis has not implemented Noisegen versions for SkePU
with OpenCL backend, therefore it is hard to tell which one of OpenCL and
SkePU would be the best choice on GPUs from other vendors than NVIDIA.
If a SkePU version with OpenCL backend would perform as good as with
CUDA backend on a NVIDIA GPU, then the best choice would still be to
choose the OpenCL version.

Unfortunately, lazy memory copying could not be exploited in the SkePU
versions since the CPU must modify the data between the function invoca-
tions. If it could be utilized, then the SkePU functions might have resulted
in a speedup closer to the CUDA and the OpenCL speedups.

One downside with all Noisegen version is that the memory accesses are
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not coalesced for reading and writing the calculation data. This is because
each thread accesses one noisestate struct element each from the array
consisting of each threads calculation data. The noisestate struct ele-
ment for index 0 in the array is placed first in the global memory, then on
the following memory addresses, the struct element for index 1 is placed,
an so on. If then each thread accesses for example the first variable in its
struct element, the accesses of consecutive threads will not be to consecutive
addresses and the memory access are therefore not coalesced.

8.2 Edatacalc

For small problem sizes, the author would recommend using EV1. With
small problems, EV1 results in lower execution time than the other versions,
and it results in better sample and channel speedup. The author would
recommend EV2a of the Edatacalc function for larger problem sizes (more
than 2205 samples per channel and more than 10 sources). EV2a gives faster
execution time and speedup when large number of sources are used, and the
difference in sample and channel speedup are not that large when comparing
to EV1.

One drawback is that it is not possible to decrease the amount of data
that has to be copied to GPU global memory in the Edatacalc function.
This is ashame because the copy takes about as long as it takes the original
function with 8 threads to execute the function (for problem sizes smaller
or equal to 96 channels and 2205 samples).

The original Edatacalc function was already optimized for CPU with
the use of threads and SSE Intrinsics functions. Because of this, the original
function executed with eight threads got better speedup for small problem
sizes than the CUDA versions of the Edatacalc function. Also important to
point out is that in the future, in order to simulate more advanced simula-
tions, the number of sources should go towards infinity and EV2a is much
more suitable to handle that large amount of sources. Also, more advanced
simulations may require a larger amount of samples and then the first version
might give better speedup than the original.

In EV2b, it is not possible to assign one thread to each iteration if the
maximum number of samples, channels and sources are used, because the
GPU cannot provide that many threads. This problem might appear in the
other versions as well if the maximum problem size increases in the future.
If there are not enough threads to process one for-loop iteration each, then
some threads have to rerun the kernel. This will increase the execution time
and decrease the speedup.
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Future work

If the CUDA versions shall be used in the future then it should be possible
to change the CUDA kernel properties (number of threads per block and
blocks) online, while the application is executed. Either the user should be
able to change the parameters in the GUI, or there shall be a formula in the
code which calculates the number of threads per block and number of blocks
depending on the problem size that has been set in the GUI. It should also
be possible to change the number of samples per thread in the GUI for the
concerned versions.

In the future, solutions for making the memory accesses coalesced in
both the Noisegen and the Edatacalc functions should be investigated. As
for now, writing to the result array are not coalesced, but this could perhaps
be solved if the algorithms were rewritten. Also, there might be a solution
for making the memory accesses for the calculation data in the Noisegen
function more coalesced. By rearrange the noisestate struct and the
array which contains the calculation data for each thread so that the first
variable in the noisestate struct for each thread are first in the array,
then comes each threads second variable, and so on, the memory accesses
could be more coalesced. There might be other ways to restructure the
algorithms as well to make them more suited for GPU processing. This is
also something that could be investigated in future work.

A new user function generator macro had to be written for the Noisegen
SkePU versions. However, the need for more read/write input/output operands
is a restriction that could be much harder to resolve for the Edatacalc func-
tion. This because the Edatacalc function reads from and writes to more
parameters than the Noisegen function.

In the future it can also be interesting to test the OpenCL and SkePU
versions on GPUs from other vendors than NVIDIA.
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