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Abstract
The correct spatial registration between virtual and real objects in optical
see-through augmented reality implies accurate estimates of the user’s eye-
point relative to the location and orientation of the display surface. A com-
mon approach is to estimate the display parameters through a calibration
procedure involving a subjective alignment exercise. Human postural sway
and targeting precision contribute to imprecise alignments, which in turn
adversely affect the display parameter estimation resulting in registration
errors between virtual and real objects. The technique commonly used has
its origin in computer vision, and calibrates stationary cameras using hun-
dreds of correspondence points collected instantaneously in one video frame
where precision is limited only by pixel quantization and image blur. Subse-
quently the input noise level is several order of magnitudes greater when a
human operator manually collects correspondence points one by one. This
paper investigates the effect of human alignment noise on view parameter
estimation in an optical see-through head mounted display to determine
how well a standard camera calibration method performs at greater noise
levels than documented in computer vision literature. Through Monte-Carlo
simulations we show that it is particularly difficult to estimate the user’s
eyepoint in depth, but that a greater distribution of correspondence points
in depth help mitigate the effects of human alignment noise.
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The correct spatial registration between virtual and real objects in optical see-through augmented reality 

implies accurate estimates of the user’s eyepoint relative to the location and orientation of the display 

surface. A common approach is to estimate the display parameters through a calibration procedure 

involving a subjective alignment exercise. Human postural sway and targeting precision contribute to 

imprecise alignments, which in turn adversely affect the display parameter estimation resulting in 

registration errors between virtual and real objects. The technique commonly used has its origin in 

computer vision, and calibrates stationary cameras using hundreds of correspondence points collected 

instantaneously in one video frame where precision is limited only by pixel quantization and image blur. 

Subsequently the input noise level is several order of magnitudes greater when a human operator manually 

collects correspondence points one by one. This paper investigates the effect of human alignment noise on 

view parameter estimation in an optical see-through head mounted display to determine how well a 

standard camera calibration method performs at greater noise levels than documented in computer vision 

literature. Through Monte-Carlo simulations we show that it is particularly difficult to estimate the user’s 

eyepoint in depth, but that a greater distribution of correspondence points in depth help mitigate the effects 

of human alignment noise. 

 

 

INTRODUCTION 

 

Augmented Reality (AR) is a technique by which 

computer generated signals synthesize impressions that are 

made to coexist with the surrounding real world as perceived 

by the user. Human smell, taste, touch and hearing can all be 

augmented, but most often AR refers to human vision being 

overlaid with information otherwise not readily available to 

the user. Head-mounted display (HMD) techniques by which 

the human vision may be augmented are commonly divided 

into video see-through (VST) and optical see-through (OST) 

devices (Rolland & Fuchs, 2000). Correct calibration of these 

devices is not only important on an application level, ensuring 

that e.g. data labels are presented at correct locations, but also 

on a system level to enable display techniques such as 

stereoscopy to function properly (Livingston et al, 2006) 

(Cakmakci & Rolland, 2006), and ultimately ensuring that the 

user does not suffer from discomfort or injury (Stanney et al, 

1998). Thus, calibration methodology is an important research 

area vital to AR. 

 

In this paper we study the effect of human alignment 

noise on parameter estimation variability using a standard 

camera calibration procedure of an OST HMD. Our main 

findings are: 

 

1. Eyepoint estimation along the user’s line of sight is the most 

sensitive to noise of all calibration parameters.  

2. The distribution of correspondence points in depth is a very 

influential variable. Simulation results show that it takes 81 

manual alignments to estimate user’s eyepoint with ±0.035 

m precision in 50% of the calibration attempts at 

representative noise levels when correspondence points are 

distributed over ±0.1 m. However, if the correspondence 

points are distributed over ±0.5 m instead, only 9 alignments 

are needed for the same precision. 

3. Parameter estimation variability can be modeled linearly as a 

function of noise for all calibration parameters. 

 

RELATED WORK AND PROBLEM STATEMENT 

 

Being inherently based on a camera, VST devices are 

generally considered easier to calibrate due to the 

straightforward application of camera calibration techniques 

found in e.g. computer vision literature (Abdel-Aziz & Karara, 

1971), (Haralick, 1989), (Tsai, 1987), (Zhang 2000), (Hartley 

& Zisserman, 2000). Using a pinhole camera model as an 

analogy for the human eye, similar calibration techniques have 

been suggested for OST devices as well (McGarrity & 

Tuceryan, 1999), (Tuceryan et al, 2000), (Genc et al, 2002), 

(Tang et al, 2003), (Owen et al, 2004), (Gilson et al, 2008).  

 

Either as a part of their calibration procedure (Owen et al, 

2004), (Gilson et al, 2008), or as a part of their evaluation 

process (McGarrity & Tuceryan, 1999), (Tuceryan et al, 

2000), previous researchers have performed the calibration of 

an OST HMD on stationary platforms where the calibration 



procedure was not affected by the human alignment noise 

characteristic of postural sway and head rotation. Furthermore, 

in the cases where quantitative calibration quality is reported 

(Genc et al, 2002), (Tang et al, 2003), or otherwise illustrated 

as lateral registration error (McGarrity & Tuceryan, 1999), 

(Tuceryan et al, 2000), no information on head orientation is 

given. Therefore, this paper sets out to answer three questions: 

1) What is the effect of human alignment noise on OST HMD 

calibration? 2) How does parameter variance, e.g. uncertainty 

in the eyepoint position, affect the resulting calibration 

quality? 3) Which is the most influential parameter? 

 

Human Operator Limitations 

 

To calibrate an OST HMD according to a standard 

camera calibration procedure the human operator must 

manually and subjectively align at least six landmarks with 

their corresponding pixel coordinates on the transparent screen 

through what is known as a boresight exercise. This presents 

challenges in terms of a) simultaneous correspondence point 

acquisition, b) human alignment precision, and c) the use of 

assisting technology. 

 

a) In the case of VST HMD, a video frame provide a 

“snapshot” in which hundreds of correspondence points can be 

collected simultaneously, but with OST a human operator will 

inevitably move between each alignment, thereby preventing 

the boresight lines from converging into a single eyepoint in 

space. A solution to this challenge is to use only one 

landmark, but reference it in the head coordinate system 

according to the Single Point Alignment Algorithm (SPAAM) 

(Tuceryan & Navab, 2000). Since the tracker sensor now 

serves as the origin, the user can collect an arbitrary number of 

correspondence points moving freely in between alignments as 

the boresight lines will all converge at the end of vector t (9).  

 

b) Human alignment precision in an OST HMD is 

predominantly dependent on head rotation precision which has 

been reported to be 0.13° (Nicholson, 1966), 0.9° (Verona, 

1978), and 0.04° (Wells & Griffins, 1987) standard deviation. 

Most recently (Axholt et al, 2009) reported 0.25° precision for 

12 standing subjects using an OST HMD with VGA resolution 

through 28° by 37° FOV, which converts to 4.3 px 

misalignment. However, when the effect of head translation 

was removed, subjects exhibited sub-pixel alignment precision 

on the order of human visual acuity (0.016°, 0.2 px). Hence 

head rotations are thought to compensate postural sway. 

Unfortunately the translation compensation is only possible in 

dynamic modeling using time series and is not an option for 

the static standard camera calibration procedure.   

 

c)  (McGarrity & Tuceryan, 1999), (Tuceryan et al., 2002), 

(Genc et al., 2002), and (Tang et al.,2003)  adopt a calibration 

procedure relying on the user to subjectively construct 

alignments. In the presence of noise, calibration quality 

generally improves with the number of correspondence points 

(Chen et al., 1994). However, due to human fatigue it is 

reasonable to believe that there exists an optimal calibration 

quality as a function of the number of correspondence points 

versus deteriorating user alignment due to fatigue over the 

time it takes to construct the alignments. To reduce the effect 

of noise in “time-consuming and error-prone human 

measurements” Gilson et al. (Gilson et al, 2008) replaces the 

user’s eye with a camera during calibration to estimate the 

parameters of the OST HMD with techniques similar to that of 

VST calibration. The subsequent evaluation is however made 

with the same camera, and not with a human eye, and 

therefore does not illustrate the effects of mismatching camera 

and eye position. Owen et al. (Owen et al, 2004) also use 

camera aided calibration and addresses the challenge of 

switching camera for human eye by dividing the calibration 

procedure in two phases, one for intrinsic and one for extrinsic 

parameters. These two works rely on the fact that the intrinsic 

parameters only need to be estimated once, and do not change 

between user sessions. This fact is unfortunately only true for 

an ordinary camera with a rigid camera house, but not for an 

OST HMD as the location of the eye, after it has replaced the 

camera, does not necessarily coincide with the apex of the 

frustum defined by the intrinsic parameters. Thus focal length, 

f, and principal point (px, py) also need to be adjusted between 

each user session. Genc et al. (Genc et al, 2002) addresses this 

fact, but chooses to correct either principal point or tracker-

eye offset t, not both. Thus it seems as the technique of 

separating extrinsic and intrinsic parameters during calibration 

is not a viable path for reducing the number of alignments 

made by a human operator using an OST HMD. A more 

promising approach is to study the design of the calibration 

environment and in particular the configuration of 

correspondence points: For a fixed configuration there exists 

an optimal number of correspondence points (Chen et al., 

1994) and for a variable configuration, setups with points at 

the perimeter of the calibrated volume yield better results 

(Challis & Kerwin, 1992). 

 

Computer Models 

 

To be able to correctly merge the real and the virtual world 

during user interaction with a dynamic scene, an AR system 

maintains a computer model to represent the location of real 

and virtual objects. The spatial relationships are normally 

modeled using linear transformation matrices. As 4-by-4 

matrices, they can be aggregated through multiplication to 

symbolize the traversal through local coordinate systems and 

Figure 1: Transformations in an AR system. 



so describe the exact location of surrounding objects relative 

to the user’s eye. In Figure 1 TW-T illustrates where the tracker 

transmitter is located in the world. In this model we assume 

that the tracker and world coordinate systems coincide, thus 

TW-T = I. As the user moves, the tracker continuously reports 

the position and orientation of the head-worn tracker sensor 

relative the tracker transmitter through TT-H. The tracker 

sensor and the display are assumed to be rigidly mounted to a 

helmet which in turn is assumed to perfectly follow the user’s 

head. This means that both TH-E  and TE-S are static. The green 

arrow illustrates the tracker-eye offset t. 

 

At the eyepoint, the user’s view is traditionally modeled 

as a pinhole camera frustum. Assuming no radial distortion in 

the optics, this camera subsystem can be modeled as two 

matrices holding extrinsic and intrinsic camera parameters 

which conveniently can be multiplied into the matrix 

aggregation. By aggregating the static matrices {TH-E ,TE-S} 

separately the calibration procedure becomes the task of 

populating the elements of the aggregated static matrix TCAL, 

see eq. 1-3, instead of determining each measurement 

individually. This is preferable since some of the 

measurements needed for an accurate calibration model are 

hard to obtain directly. In the case of an OST display the offset 

t between the tracker sensor and the eye is an example of such 

a measurement. ������� =  	
�			��	��
	
�������� (1) 	
�	 = �, 	��
	
�� = 	��� (2) ������� = 		�� 	��������� (3) 

 

Standard Camera Calibration Procedure 

 

Common calibration procedures usually spring from 

camera resectioning (Hartley & Zisserman, 2000), camera 

pose estimation (Haralick, 1989), and direct linear transform 

(DLT) problems (Abdel-Aziz & Karara, 1971), in which the 

relationship between landmarks of known locations in the 

surrounding real world, pworld, and points of known pixel 

coordinates on the screen, pscreen, are used to determine a 3-by-

4 camera matrix TCAL, see eq. 4. This corresponding point 

data can be expressed as a system of homogeneous linear 

equations, eq. 6, in which x is a vector of the elements in 

matrix TCAL, and A is the result the matrix multiplication in 

eq. 5 when the perspective divide, w, has been substituted, see 

e.g. Appendix A in (Sutherland, 1974) for details. The 

positions in pworld and pscreen are usually normalized to a 

common order of magnitude. By conditioning the matrix A 

this reduces the effect of noise (Hartley, 1997) (Wan & Xu, 

1996). The minimum number of correspondence points 

depends on how the degrees of freedom (DOF) of the 

calibration model have been parameterized. For the 12 entries 

in TCAL at least six points are needed, but in practical 

applications more points are usually gathered to further 

mitigate the effect of noise. This prompts the use of singular 

value decomposition (SVD) by which A is factored into two 

bases (U,V) and a diagonal matrix (Σ), see eq. 7. The 

eigenvalue calculations in SVD effectively perform a least 

square approximation. Thus the 12
th
 and last column in the 

base matrix V, that by convention corresponds to the smallest 

singular value in Σ, can be interpreted as the calibration matrix 

TCAL, see eq. 8, which projects landmark coordinates onto 

screen coordinates with the smallest residual between screen 

points and corresponding landmarks as seen by the user.  ������� = 	������ (4) 

w�u v 1�� = �T!,!  T!,"  T!,# T!,$T",! T"," T",#T",$T#,! T#," T#,#T#,$
% �x y z 1�� (5) 

�) = 0 (6) � = +,-� (7) 

	��� =  �V!,!" V$,!" V/,!" V!0,!"V",!"V1,!"V2,!"V!!,!"V#,!"V3,!"V4,!"V!",!"
% (8) 

At this point, some calibration procedures adjust for non-

linear lens effects by using TCAL as initial values for a 

Levenberg-Marquardt (LM) optimization procedure further 

refining T (Tsai, 1987) (Zhang 2000). Known measurements 

can be used as soft parameter constraints for the LM, and 

further robustness to noise can be provided by weighting the 

optimization cost function to decrease the effect of outliers 

(Hartley & Zisserman, 2000).  

 

The matrix TCAL can be divided further into extrinsic, R|t, 

and intrinsic, K, camera parameters with RQ-decomposition 

using Givens rotations, see eq. 9. At this stage the offset from 

the tracker sensor origin to the center point of the eye is 

accessible through t, and R describes the rotation of the 

screen. K gives focal length, α, which in turn holds the 

distance to the screen (in meters), f, if the pixel ratio, m (pixels 

per meter), is known, see eq. 11. With known screen 

resolution, this information also gives the theoretical FOV. 

The practical FOV is, however, dependent on the eye 

remaining inside the exit pupil defined by the Lagrange 

Invariant (Cakmakci & Rolland, 2006), as well as being inside 

the aperture stop, i.e. that the eye aligns with the frustum apex 

defined by the the principal point, (px, py) and focal length (αx, 

αy). s denotes skew, i.e. perpendicularity of display surface 

axes, and is 0 for most normal cameras (Hartley & Zisserman, 

2000).  	��� = 5�67|9� (9) 

5 = :∝<  s p<0 ∝? p?0   0    1 @  7 =  :r!,!r!,"r!,#r",!r","r",#r#,!r#,"r#,#@  9 = :t<t?tC
@  (10) 

∝ = m ∗ f (11) 

 

METHODS 

 

Modeling and Simulation 

 

Using MATLAB R2006b a right-handed frustum object 

with negative z view vector was built to roughly model a 

Kaiser ProView 50ST with 640 by 480 px (VGA) resolution, 



28° by 37° FOV, centered principal point, projection plane 

located 0.05 m in front of the user’s left eye, and the camera 

origin located stationary in the world origin. Correspondence 

points were located 2 meters in front of the user’s left eye, 

such that they were evenly spaced over the FOV, but at 

randomized depth to avoid coplanar correspondences. The 

independent variables of the simulation where: 1) number of 

correspondence points {6,9,12,16,20,42,81} distributed in a 

grid pattern with even spacing throughout the display surface, 

2) human noise distribution {fixed range, white noise, 

Gaussian} parameterized using range, 3) human noise 

magnitude defined as pixel range {0,1,2,3,4,5,6,7,8,9,10, 

11,12,13,14,15} introduced as permutations of pscreen in 

random (white) direction, and 4) random (white) distribution 

of correspondence points in depth with range ±0.1-1.0 m with 

0.1 m increments. The simulation was run with 1,000 

iterations per combination of independent variables to collect 

TCAL. 

RESULTS 

 

Parameter Estimation Variability 

 

The simulation results in Table 1 show that human noise 

introduced during the boresight exercise mainly manifests 

itself as a poorly estimated eyepoint, primarily along the line 

of sight, tz. This effect is visible reading Figure 2 horizontally. 

The simulation also confirmed previous findings, that variance 

in the estimated parameters due to poor boresighting can be 

mitigated through the use of additional correspondence points, 

but more importantly it also showed that increasing the range 

of correspondence points in depth greatly improves the 

parameter estimation: E.g. Table 1 shows that 9 

correspondence points distributed over ±0.5 m perform 

equally well as 81 points over ±0.1 m in the presence of 

human alignment noise of 5 px range. The improvement due 

to depth distribution is visible reading Figure 2 vertically. 

 

 

Simulation results also showed that variance in all of the 

estimated camera parameters increases linearly as a function 

of human alignment noise  (correlation r
2
 > 0.99) for all three 

human noise models in the range of 1-15 px using 12-81 

evenly distributed grid correspondence points. For the noise 

interval 0-1 px and for 6-9 correspondence points the 

relationship between variance and noise was found non-linear. 

As some HMD model the virtual image plane at optical 

infinity (> 2 m), the relationship was also tested for screen 

distance set to 3.0 m. It was found that the linear relationship 

between parameter variance and noise is independent of 

screen distance, but dependent on screen resolution and FOV. 

The reason for this is that noise is defined as pixel range and 

resolution and FOV changes the physical size of a pixel. 

Lastly we found that calibration parameters exhibited 

increasingly greater variance when human noise was modeled 

with Gaussian noise, white noise and lastly fixed range, 

although this was expected given the fact that range was used 

to parameterize distributions of different shape.    

 

Support in Empirical Data 

 

In a pilot study for a related experiment, not yet 

published, two human subjects collected 9 datasets of 

alignment noise over 81 grid correspondence points 

distributed over ±0.1 m using a Kaiser ProView 50ST with 

640 by 480 px (VGA) resolution, 28° by 37° FOV. Using a 

bootstrap method (Efron, 1979), mean interquartile range 

(min, max) was estimated to 0.21 (0.09,0.45), 0.11 (0.04,0.20), 

0.57 (0.33,1.02), 512 (235,1174), 512 (176,1125), 150 

(101,298), 189 (60,415), 4.9 (1.7,10.1) for tx, ty, tz, fx, fy, px, 

py, orientation, respectively (p=0.05). While the confidence 

interval is far too large to be conclusive and the number of 

subjects too few to be representative, these observations still 

suggest tz to be the more variable parameter. 

 

DISCUSSION AND FUTURE WORK 

 

Traditional camera calibration has generally only been 

studied at relatively low noise levels (< 1 px) (Sun & 

Cooperstock, 2006) and not at levels like those of head 

rotation precision (~5 px). The simulation in this paper 

illustrates that human alignment noise induces parameter 

estimation variance primarily in the extrinsic parameters along 

the user’s line of sight. This effect has not been observed in 

any of the related work on OST HMD calibration cited in this 

paper as their respective experiment design and validation 

were either camera-aided or otherwise done in the absence of 

such noise. It can however be mitigated, and calibration 

procedure can be simplified, by distributing the 

correspondence points over greater depth rather than simply 

adding more points. We are currently investigating this 

approach empirically by calibrating an OST HMD with 

correspondence points at varying depth. Future work involves 

modeling virtual computer graphics objects using the 

estimated parameters and allowing subjects to measure 

perceived registration error between virtual and real objects to 

find thresholds for acceptable calibration quality. 

 

Figure 2: Variability in the eyepoint estimation as a function of 

Gaussian alignment noise and distribution of 20 correspondence 

points in depth. Blue boxes denote interquartile ranges (IQR). Red + 

signs denote outliers > 1.5 IQR from distribution median. 



C
o

rr
es

p
o

n
d

en
ce

 

P
o

in
ts

 

D
ep

th
 d

is
tr

ib
u

ti
o

n
  

(m
, 
+

/-
) 

H
u

m
a

n
 n

o
is

e
  

(p
x

, 
r
a

n
g

e)
 

X
 T

ra
n

sl
a
ti

o
n

 E
rr

o
r 

 

(m
) 

Y
 T

ra
n

sl
a
ti

o
n

 E
rr

o
r 

 

(m
) 

Z
 T

ra
n

sl
a

ti
o

n
 E

rr
o

r 
 

(m
) 

P
r
in

ci
p

a
l 

P
o

in
t 

F
o

ca
l 

L
en

g
th

 

O
ri

e
n

ta
ti

o
n

  

(d
eg

.)
 

9 0.1 1 0,013 0,012 0,092 39,040 8,477 0,458 

    5 0,070 0,057 0,464 197,895 41,489 2,260 

    10 0,127 0,120 1,003 418,827 82,516 4,613 

  0.5 1 0,003 0,002 0,015 6,359 3,981 0,255 

    5 0,014 0,013 0,070 30,416 19,669 1,268 

    10 0,027 0,026 0,151 65,345 37,360 2,546 

  1.0 1 0,001 0,001 0,004 1,821 1,447 0,000 

    5 0,007 0,007 0,019 9,317 7,594 0,525 

    10 0,014 0,012 0,035 17,011 14,909 1,005 

20 0.1 1 0,006 0,006 0,037 15,978 3,709 0,162 

    5 0,034 0,030 0,172 72,723 19,588 0,958 

    10 0,069 0,056 0,341 143,729 38,577 1,668 

  0.5 1 0,001 0,001 0,005 2,245 1,363 0,000 

    5 0,007 0,007 0,026 11,671 6,879 0,485 

    10 0,014 0,013 0,050 23,608 14,325 0,989 

  1.0 1 0,001 0,001 0,001 0,756 0,577 0,000 

    5 0,003 0,003 0,007 3,470 2,752 0,162 

    10 0,007 0,007 0,014 7,461 5,632 0,458 

81 0.1 1 0,003 0,003 0,013 5,389 1,538 0,000 

    5 0,014 0,014 0,070 29,495 7,804 0,324 

    10 0,028 0,028 0,134 57,025 15,163 0,704 

  0.5 1 0,001 0,001 0,002 0,860 0,487 0,000 

    5 0,003 0,003 0,009 4,257 2,568 0,162 

    10 0,006 0,006 0,020 8,944 5,280 0,362 

  1.0 1 0,000 0,000 0,000 0,281 0,212 0,000 

    5 0,001 0,002 0,002 1,447 1,025 0,000 

    10 0,003 0,003 0,005 2,925 2,024 0,162 

Table 1: Interquartile ranges for camera calibration parameters as a 

function of the simulation’s independent variables . 
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