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Abstract

!is thesis consists of four papers and focuses on function spaces related to !rst-
order analysis in abstract metric measure spaces. !e classical (i.e., Sobolev) theory
in Euclidean spaces makes use of summability of distributional gradients, whose
de!nition depends on the linear structure ofRn. Inmetric spaces, we can replace the
distributional gradients by (weak) upper gradients that control the functions’ behav-
ior along (almost) all recti!able curves, which gives rise to the so-called Newtonian
spaces. !e summability condition, considered in the thesis, is expressed using a
general Banach function lattice quasi-norm and so an extensive framework is built.
Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newto-
nian spaces in particular, have been under intensive study since the mid-1990s.

In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach
function lattices is built up. Standard tools such as moduli of curve families and the
Sobolev capacity are developed and applied to study the basic properties of Newto-
nian functions. Summability of a (weak) upper gradient of a function is shown to
guarantee the function’s absolute continuity on almost all curves. Moreover, New-
tonian spaces are proven complete in this general setting.

Paper II investigates the set of all weak upper gradients of aNewtonian function.
In particular, existence of minimal weak upper gradients is established. Validity of
Lebesgue’s di%erentiation theorem for the underlyingmetric measure space ensures
that a family of representation formulae for minimal weak upper gradients can be
found. Furthermore, the connection between pointwise and norm convergence of
a sequence of Newtonian functions is studied.

Smooth functions are frequently used as an approximation of Sobolev func-
tions in analysis of partial di%erential equations. In fact, Lipschitz continuity, which
is (unlike C1-smoothness) well-de!ned even for functions on metric spaces, of-
ten su&ces as a regularity condition. !us, Paper III concentrates on the question
when Lipschitz functions provide good approximations of Newtonian functions.
As shown in the paper, it su&ces that the function lattice quasi-norm is absolutely
continuous and a fractional sharpmaximal operator satis!es a weak norm estimate,
which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator
of Hardy–Littlewood type is locally weakly bounded. !erefore, such a local weak
boundedness on rearrangement-invariant spaces is explored as well.

Finer qualitative properties ofNewtonian functions and the Sobolev capacity get
into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven
to be quasi-continuous, which yields that the capacity is an outer capacity. Various
su&cient conditions for local boundedness and continuity of Newtonian functions
are established. Finally, quasi-continuity is applied to discuss density of locally Lip-
schitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces.



ii Doctoral thesis of LukášMalý



iii

Populärvetenskaplig sammanfattning

Avhandlingen består av fyra artiklar som behandlar så kallade newtonrum baserade
på vissa kvasinormer. Låt oss försöka belysa det som döljs bakom dessa begrepp.

Många företeelser i naturvetenskap kan beskrivas med hjälp av di%erentialekva-
tioner. Till exempel kan temperaturfördelningen i en kropp uttryckas som en funk-
tion beroende på tid och position och den löser den så kallade värmeledningsekva-
tionen. Vanligtvis kan man visa att det !nns en entydig lösning, men det är sällan
möjligt att !nna den explicit. Å andra sidan kan man med hjälp av datorer försöka
beräkna en approximation av den sökta lösningen. Ett problemmed detta angrepps-
sätt är att man inte i förväg vet om det numeriska resultatet närmar sig den verkliga
lösningen. I allmänhet kan lösningarna vara ganska ”vilda” funktioner. Emellertid
går det o/a att visa 0era trevliga egenskaper hos dem. Dessa egenskaper kan t.ex.
vara uppskattningar av hur stora värden funktionen antar och hur snabbt värdena
svänger. Med hjälp av ett lämpligt mätningssätt kan man avgöra om en approxima-
tion till di%erentialekvationens lösning representerar verkligheten tillräckligt väl.
Det !nns olika sätt att mäta storleken av funktioner samt deras variationer (alltså i
princip derivator), och denna avhandling behandlar olika sådana sätt samt den rika
teorin omkring dessa.

Teorin för mätning av icke-släta funktioner på våra vanliga (åskådliga) rum stu-
derades noggrant under större delen av 1900-talet. Under de senaste 15–20 åren har
man försökt utvidga detta till allmänna så kallade metriska rum, där man endast
känner till avståndet mellan två godtyckliga punkter. Metriska rum kan vara väl-
digt oregelbundna (t.ex. fraktaler) så att det i själva verket inte behöver !nnas några
räta linjer mellan olika punkter, vilket förhindrar tillämpning av den klassiska teo-
rin. Ändå kan man o/a förbinda punkterna med kurvor. Omman nöjer sig med att
mäta funktionen längs kurvor, så förenklas problemet. Finns det tillräckligt många
kurvor, så kan man ändå dra viktiga slutsatser om beteendet av en funktion med
hjälp av mätningar längs alla möjliga kurvor. Detta är ungefär den princip som står
bakom teorin om newtonrum.

Newtonrum har redan studerats för vissa typer av storleksbegrepp. Teorin i av-
handlingen byggs, mer allmänt än tidigare, baserad på kvasinormer i banachfunk-

tionslattice, vilket ger många generaliseringar och kvalitativa för!ningar av hittills
kända resultat.

Låt oss nu betrakta ett 0ertal frågor som man o/a vill få besvarade och som
besvaras i avhandlingen. Antag att man vill undersöka en funktion som beskriver
någon fysikalisk storhet och att funktionens variation redan har mätts (eller sna-
rare uppskattats) längs alla kurvor. Man kan fråga sig huruvida det verkligen var
nödvändigt att kolla på funktionens beteende på alla kurvor. Det visar sig att man
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mycket väl kunde ha struntat i ett litet antal kurvor (i en väldigt precis mening) utan
att förlora väsentliga data. Dessutom inser man att funktionen egentligen är gans-
ka snäll (absolutkontinuerlig) längs alla kurvor med undantag av ett litet antal (där
”litet antal” har samma betydelse som ovan).

Man kan behöva ta reda på om det !nns ställen (mängder) där funktionsvär-
dena inte styrs av mätningar längs kurvor och hur stora dessa mängder egentligen
är. I avhandlingen visas att det exakt är de mängder vars så kallade sobolevkapacitet
är lika med noll. Sobolevkapaciteten kan i princip tolkas som ett volymmått med en
!nare upplösning än det vanliga volymmåttet. Strängt taget innebär det att mäng-
derna där man saknar kontroll över funktionsvärden är ännu mindre än när man
använder sig av den klassiska sobolevteorin om icke-släta funktioner i det vanliga
rummet Rn.

Trots att man i de 0esta fall endast överuppskattar funktionernas variationer, så
känns det bara naturligt att förvänta sig att det !nns en bästa (alltså minsta) upp-
skattning. Frågan omhuruvida den existerar är i själva verket mer kompliceradmed
tanke på att funktionernas beteende kan vara oförutsebart längs ett visst litet antal
kurvor. Dessutom beror den egentliga innebörden av frasen ”litet antal” på storleks-
begreppet som bestäms av funktionslatticets kvasinorm. För vissa storleksbegrepp
var den här existensfrågan ett öppet problem inom newtonteori tills den besvarades
jakande i en av avhandlingens artiklar.

När partiella di%erentialekvationer studeras, så kräver många resonemang att
släta funktioner utgör bra approximationer till alla funktioner som kommer i fråga
som svaga lösningar till ekvationen. Om området har goda geometriska egenskaper,
så beror approximerbarheten på storleken av så kallademaximalfunktioner. Därför
undersöksmaximalfunktioner samt deras uppskattningar noggrant i avhandlingen.
Följaktligen får man fram några enkla villkor som räcker för att kunna använda sig
av släta approximationer. Därtill ges typexempel där sådana approximationer inte
är möjliga.

Till sist studeras det om uppskattningar av storleken av en funktions variationer
längs kurvor leder till att själva funktionen är begränsad eller till och med kontinu-
erlig. Så är fallet om det storleksbegrepp som används vid uppskattningar (d.v.s.
kvasinormen av banachfunktionslatticet) är tillräckligt restriktivt i jämförelse med
dimensionen av volymmåttet. Man inser nämligen att det då inte kan !nnas några
icke-tomma mängder som har sobolevkapacitet noll. Det innebär i sin tur att funk-
tionen är kontrollerad överallt av sina variationer som enbartmätts eller uppskattats
längs nästan alla kurvor.
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Introduction 3

Background

!e aim of this thesis is to de!ne and build up the theory around Newtonian spaces
based on quasi-Banach function lattices, eventually proving some interesting prop-
erties in this setting. Newtonian spaces present perhaps the most fruitful general-
ization of !rst-order Sobolev spaces to abstract metric measure spaces. Such gen-
eralizations have been under intensive study since the mid-1990s. We refer the
reader interested in analysis onmetric spaces, for example, toAmbrosio andTilli [3],
Björn and Björn [6], Cheeger [12], Heinonen and Koskela [31], Heinonen [28], or
Heinonen, Koskela, Shanmugalingam and Tyson [32]. !is theory can be applied in
diverse areas of analysis, such as linear and non-linear potential theory on Rieman-
nian manifolds or Carnot groups, !rst-order analysis on fractal sets, the theory of
degenerate elliptic equations and quasi-conformal mappings.

1 Sobolev spaces and variations thereupon

!e theory of Sobolev spaces is an essential tool for analysis of various properties
of partial di%erential equations, including calculus of variations. In the Euclidean
setting, the Sobolev space W 1,p(Ω) for an open set Ω ⊂ R

n consists of functions
integrable in the pth power whose distributional gradient is integrable in the pth
power as well. For more details on Sobolev spaces, see, for example, Evans [19],
Maz′ya [38], Stein [50], or Ziemer [54]. !e distributional derivatives are de!ned
via integration by parts, for which the linear structure ofRn is crucial. On the other
hand, the classical Sobolev norm

∥u∥W 1,p(Ω) = (∥u∥pLp(Ω)
+ ∥∇u∥p

Lp(Ω)
)1/p

does not really depend on the vector of the weak gradient, but only on its length.
One possible approach to generalizations of Sobolev spaces is to replace ∣∇u∣ by a
function that preserves certain fundamental properties of the modulus of the gra-
dient. !is is the idea that lies behind the de!nition of Newtonian spaces via (weak)
upper gradients. Some other approaches make use of various characterizations of
Sobolev functions as in!eorems 1 and 2 below.

First, let us introduce some notation. !e open ball centered at x ∈ P with
radius r > 0 will be denoted by B(x , r). Given a ball B = B(x , r) and a scalar σ > 0,
we let σB = B(x , σr). We de!ne the integral mean of a measurable function u over
a set E of !nite positive measure as

uE ..= ∫⨏
E
u dµ =

1
µ(E) ∫E u dµ
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whenever the integral on the right-hand side exists, not necessarily !nite though.
!e (centered) Hardy–Littlewood maximal operator is de!ned as

M f (z) = sup
r>0
∫⨏
B(z,r)

∣ f (x)∣ dx , z ∈ Rn , (1)

where f ∶ Rn
→ R is a measurable function (cf. Section 5 below).

"eorem 1 (cf. Hajłasz [22,!eorem 2.1]). For u ∈ Lp(Rn), p ∈ [1,∞), the following
conditions are equivalent:

• u ∈W 1,p(Rn);
• there is 0 ≤ g ∈ Lp(Rn) such that

∫⨏
B
∣u − uB∣ dx ≤ r ∫⨏

B
g dx (2)

for every ball B of radius r > 0;

• there is 0 ≤ g ∈ Lp(Rn) and σ ≥ 1 such that

∫⨏
B
∣u − uB∣ dx ≤ r( ∫⨏

σB
gp dx)1/p (3)

for every ball B of radius r > 0;

• there is 0 ≤ g ∈ Lp(Rn) and σ ≥ 1 such that

∣u(z) − u(y)∣
∣z − y∣ ≤ sup

0<r<σ ∣z−y∣

( ∫⨏
B(z,r)

gp dx)1/p + sup
0<r<σ ∣z−y∣

( ∫⨏
B(y,r)

gp dx)1/p

whenever z, y ∈ Rn
∖ E, z ≠ y, where ∣E∣ = 0.

Moreover, there is c > 0 such that ∣∇u∣ ≤ cg a.e. whenever g satis!es either of the

conditions above.

"eorem 2 (cf. Hajłasz [22, !eorem 2.2]). Let u ∈ Lp(Rn) for some p ∈ (1,∞).
!en, u ∈ W 1,p(Rn) if and only if there is 0 ≤ h ∈ Lp(Rn) and E ⊂ Rn with ∣E∣ = 0
such that

∣u(z) − u(y)∣ ≤ ∣z − y∣(h(z) + h(y)), z, y ∈ Rn
∖ E .

Furthermore, there is c > 0 such that M∣∇u∣ ≤ ch.
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1.1 Newtonian spaces – an approach based on (weak) upper gradients

!e concept of Newtonian spaces is based on the Newton–Leibniz formula in the
following way. Let Ω ⊂ Rn be open. Suppose that u ∈ C1(Ω) and let γ ∶ [0, lγ] → Ω
be a C1-curve parametrized by arc length ds. !en,

∣u(γ(lγ))−u(γ(0))∣ = ∣ ∫ lγ

0
(u ○γ)′(t) dt∣ ≤ ∫ lγ

0
∣∇u∣ ⋅ ∣γ′(t)∣ dt = ∫

γ
∣∇u∣ ds. (4)

!us, the modulus of the usual gradient can be used to estimate the di%erence of
function values in two distinct points, which is themain idea lying behind the upper
gradients. Namely, having an extended real-valued function u de!ned on a metric
measure space P , we call a Borel function g ∶ P → [0,∞] an upper gradient of u if
it satis!es

∣u(γ(lγ)) − u(γ(0))∣ ≤ ∫
γ
g ds (5)

for every recti!able curve γ ∶ [0, lγ] → P . Obviously, the upper gradient is not
given uniquely as we can add a non-negative Borel function to an upper gradient
of u obtaining another upper gradient of u. Upper gradients, under the name very
weak gradients, were !rst de!ned and studied by Heinonen and Koskela in [30, 31].

Given a space X ofmeasurable functions endowedwith a quasi-seminorm ∥⋅∥X ,
we de!ne the Newtonian space N 1X as the space of extended real-valued functions
(not equivalence classes) that belong to X and have an upper gradient in X. !e
Newtonian space N 1X can also be characterized as the set of measurable functions
u ∶ P → R with !nite N 1X quasi-seminorm, i.e.,

∥u∥N 1X
..= ∥u∥X + inf

g
∥g∥X <∞ , (6)

where the in!mum is taken over all upper gradients g of u. Note that if there are no
recti!able curves in the metric space, then the constant zero function is an upper
gradient of any functionwhence theNewtonian space is rendered trivial in the sense
that N 1X = X.

!e theory of Newtonian spaces becomesmore 0exible if we relax the de!nition
of upper gradient by allowing (5) to fail for a family of curves with so-calledmodulus
equal to zero. !is relaxation gives rise to the weak upper gradients, which were
introduced by Koskela and MacManus [35] and can be considered a standard tool
in the area of Newtonian spaces.

We have already mentioned that upper gradients are not given uniquely. !e
same holds for weak upper gradients. Nevertheless, among all weak upper gradi-
ents, there are signi!cant ones, namely minimal weak upper gradients. !ey are
minimal both pointwise a.e., and normwise, hence the in!mum in (6) is attained.
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Existence of minimal weak upper gradients has been established for Lp, p ∈ (1,∞),
by Shanmugalingam in [48], and for p ∈ [1,∞) by Hajłasz in [22]. Tuominen has
shown the existence in the setting of re0exive Orlicz spaces in [51]. Using a similar
approach as Shanmugalingam and Tuominen, Mocanu [39] has applied the James
characteristic of re0exive spaces to prove thatminimal weak upper gradients exist in
any strictly convex Banach function space. Even though re0exivity of the underly-
ing function space is crucial for the argument inMocanu’s paper, it is notmentioned
there. Newtonian spaces based on quasi-Banach function lattices (see Section 2 be-
low) were introduced in [I] and minimal weak upper gradients were proven to exist
in this very general setting in [II].

1.2 Hajłasz spaces and Hajłasz gradients

Hajłasz [21] proposed a Sobolev-type spaceM1,p(P) using a “gradient” that satis!es
another pointwise inequality, inspired by the characterization of Sobolev functions
in!eorem 2. Namely, a function u ∈ Lp(P) belongs to M1,p(P) if there is a non-
negative function g ∈ Lp(P) and a set E ⊂ P with µ(E) = 0 such that

∣u(x) − u(y)∣ ≤ d(x , y)(g(x) + g(y))
holds for every x , y ∈ P ∖ E. !e symbol d(x , y) denotes the distance between the
points x and y. Such a function g is called a Hajłasz gradient of u. Since Hajłasz
gradients are de!ned via an inequality (and hence not uniquely), the norm on the
Hajłasz space M1,p(P) needs to be established by a minimization process, i.e.,

∥u∥M1,p
..= ∥u∥Lp + inf

g
∥g∥Lp ,

where the in!mum is taken over all Hajłasz gradients g of u. In [22], Hajłasz showed
that for every u ∈ M1,p(P), 1 ≤ p < ∞, there is ũ ∈ N 1,p(P) ..= N 1Lp(P) such
that u = ũ a.e. !erefore, M1,p(P) ⊂ N 1,p(P) as long as the Newtonian space
is equipped with a.e.-equivalence classes. If there are no recti!able curves, then
M1,p(P) is usually a proper subset of N 1,p(P) = Lp(P) for every p ∈ [1,∞], apart
from some pathological cases such as when P is a !nite set.

We could see in (4) that the notion of upper gradient is inspired by the length of
the vector of the ordinary gradient. On the other hand, the Hajłasz gradient in the
Euclidean setting can be understood as the Hardy–Littlewood maximal function of
the ordinary gradient as we have seen in!eorem 2. !erefore, when working with
a.e.-equivalence classes, it can be shown thatM1,p(Rn) = N 1,p(Rn) =W 1,p(Rn) for
p > 1, but M1,1(Rn) ⊊ N 1,1(Rn) =W 1,1(Rn). Aïssaoui extended Hajłasz’s approach
to de!ne Orlicz–Sobolev spaces on metric measure spaces in [1].
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1.3 Calderón–Sobolev spaces and fractional sharp maximal functions

Calderón’s characterization of u ∈ W 1,p(Rn) in [11] motivated Shvartsman [49] to
de!ne Calderón–Sobolev spaces using the fractional sharp maximal function

u♯1(x) = sup
r>0

1
r ∫⨏B(x ,r) ∣u − uB(x ,r)∣ dµ, x ∈ P .

Provided that 1 < p <∞, a function u ∈ Lp(Rn) belongs toW 1,p(Rn) if and only if
u♯1 ∈ L

p(Rn). It follows from the Poincaré inequality for Sobolev functions, i.e., (2)
with g = c∣∇u∣, that u♯1 ≤ cM∣∇u∣, where M is the Hardy–Littlewood maximal
operator de!ned in (1).

!e Calderón–Sobolev space is CW 1,p(P) = {u ∈ Lp(P) ∶ u♯1 ∈ Lp(P)}. Haj-
łasz and Kinnunen [23] showed that cu♯1 is a Hajłasz gradient of u for some c ≥ 1,
provided that the metric measure space is equipped with a doubling measure (see
Section 3 below). On the other hand, direct calculation shows that we can estimate
u♯1 ≤ cMg, where g is a Hajłasz gradient of u. If 1 < p ≤ ∞ and if the measure is
doubling (whence M ∶ Lp

→ Lp is bounded), then M1,p(P) = CW 1,p(P).

1.4 Other approaches

Heikkinen, Koskela, and Tuominen [27] de!ned a Sobolev-type space by means
of a generalized Poincaré inequality, extending the ideas of Franchi, Hajłasz, and
Koskela in [20], and relate this space to the corresponding Newtonian space. Func-
tion spaces based on a weak p-Poincaré inequality analogous with (3) were also dis-
cussed by Hajłasz and Koskela in [24, 25]. Koskela and MacManus [35] studied the
role of (weak) upper gradients in the Poincaré inequality.

Cheeger [12] de!ned Sobolev-type spaces consisting of such u ∈ Lp(P) that
can be approximated by a sequence {ui}∞i=1 of Lp functions with upper gradients
gi ∈ L

p(P) in the sense that ui → u in Lp as i →∞, while lim inf i→∞ ∥gi∥Lp <∞.
Shanmugalingam showed in [47] that for p > 1 the Newtonian space N 1,p with a.e.
equivalence classes coincides with the corresponding Cheeger space. On the other
hand, if p = 1, then the Cheeger approach yields a generalization of the space of
functions of bounded variation.

For comparison of various approaches to generalization of Sobolev spaces, see
e.g. Hajłasz [22], Björn and Björn [6, Appendix B], or Heinonen, Koskela, Shanmu-
galingam and Tyson [32, Chapter 9]. !e presented thesis however focuses solely on
the theory of Newtonian spaces.
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2 Quasi-Banach Function Lattices

Newtonian spaces have been studied for various underlying function norms in the

past two decades. First, Shanmugalingam [47] studied the Newtonian spaces built

upon the Lp norm for p ∈ [1, ∞). Since then, a rich theory based on Lp has been

developed. �orough treatises on the Newtonian space theory in the Lp setting with

p ∈ [1, ∞) have been given by Björn and Björn [6], and Heinonen, Koskela, Shan-

mugalingam and Tyson [32]. Durand-Cartagena [16], together with Jaramillo [17],

discussed the case p = ∞. Tuominen [51] and Aïssaoui [2] investigated Orlicz–

Newtonian spaces. Harjulehto, Hästö, and Pere [26] examined Newtonian spaces

based on Orlicz–Musielak variable exponent spaces. Newtonian theory built upon

the Lorentz Lp,q spaces was studied by Podbrdský [41] and Costea and Miranda [14].

Mocanu [39, 40] tried to generalize the concepts to the setting of Banach function

spaces. In some of her results, uniform convexity or re)exivity of the underlying

function space is however necessary. �e theory that is developed in this thesis en-

compasses all these results and goes even further.

In the thesis, we assume that the function space X is a quasi-Banach function

lattice, i.e., a complete quasi-seminormed linear space of measurable functions that

has the lattice property. It can be described by the axioms its quasi-seminorm ∥ ⋅ ∥X
needs to satisfy:

• ∥ ⋅ ∥X determines the set X, i.e., X = {u ∶ ∥u∥X < ∞};
• ∥ ⋅ ∥X is a quasi-seminorm giving rise to a.e. equivalence classes, i.e.,

◇ ∥u∥X = 0 if and only if u = 0 a.e.,

◇ ∥au∥X = ∣a∣ ∥u∥X for every a ∈ R and every function u,

◇ there is a constant c▵ ≥ 1, the so-called modulus of concavity, such that

∥u + v∥X ≤ c▵(∥u∥X + ∥v∥X) for all functions u, v;

• ∥ ⋅ ∥X satis+es the lattice property, i.e., if ∣u∣ ≤ ∣v∣ a.e., then ∥u∥X ≤ ∥v∥X ;

• ∥ ⋅ ∥X satis+es the Riesz–Fischer property, i.e., if un ≥ 0 a.e. for all n ∈ N, then

∥∑∞n=1 un∥X ≤ ∑
∞
n=1 c

n
▵∥un∥X , where c▵ ≥ 1 is the modulus of concavity. Note

that the function∑
∞
n=1 un needs be understood as a pointwise (a.e.) sum.

• ∥ ⋅ ∥X is continuous, i.e., if ∥un − u∥X → 0 as n →∞, then ∥un∥X → ∥u∥X .

�e Riesz–Fischer property is for continuous quasi-seminorms equivalent to com-

pleteness of the function space (see Zaanen [53, Lemma 101.1] or Maligranda [36,

�eorem 1.1]). Moreover, the assumption of continuity of ∥ ⋅ ∥X is not really re-

strictive since every discontinuous quasi-seminorm has an equivalent continuous

quasi-seminorm (while the lattice property is preserved) such that

∥u + v∥r ≤ ∥u∥r + ∥v∥r
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with r = 1/(1 + log2 c▵) ∈ (0, 1], due to the Aoki–Rolewicz theorem, cf. Benyamini
and Lindenstrauss [5, Proposition H.2]. If c▵ = 1, then the functional ∥ ⋅ ∥X is a
seminorm. We then drop the pre!x quasi and hence call X a Banach function lattice.

If X ⊂ Y are quasi-Banach function lattices over the same measure space, then
it follows from the Riesz–Fischer property that X is continuously embedded in Y ,
cf. Bennett and Sharpley [4,!eorem I.1.8].

2.1 Quasi-Banach function spaces

Quasi-Banach function spaces, and Banach function spaces in particular, form an
important (and still very general) subclass of (quasi)Banach function lattices. In
addition to the aforementioned axioms, (quasi)Banach function spaces satisfy the
following ones as well:

• ∥ ⋅ ∥X has the Fatou property, i.e., if 0 ≤ un ↗ u a.e., then ∥un∥X ↗ ∥u∥X ;
• if a measurable set E ⊂ P has !nite measure, then ∥χE∥X <∞;

• for every measurable set E ⊂ P with µ(E) < ∞ there is CE > 0 such that

∫E ∣u∣ dµ ≤ CE∥u∥X for every measurable function u.

!e Fatou property implies the Riesz–Fischer property, and it can be interpreted
as the monotone convergence theorem. !e other two conditions describe “local”
continuous embeddings L∞ #֒→ X and X #֒→ L1, where “local” actually means on
sets of !nite measure. A thorough treatise on Banach function spaces is given in
Bennett and Sharpley [4, Chapter 1].

Example 3. (a) !e Lebesgue Lp(P , µ) spaces with p ∈ [1,∞] are Banach func-
tion spaces.

(b) !e intersection of the Lebesgue spaces (Lp
∩ Lq)(P , µ) with (quasi)norm

given as ∥⋅∥Lp+∥⋅∥Lq , where p ∈ [1,∞] and q ∈ (0, p), is a (quasi)Banach func-
tion space. Roughly speaking, the functions lying in this space have peaks
controlled by the Lp norm, whereas their rate of decay “at in!nity” (provided
that µ(P) = ∞) is controlled by the Lq norm. If q < 1 and µ(P) = ∞,
then these spaces are not normable. On the other hand, if µ(P) < ∞, then
Lp
∩ Lq = Lp with equivalent (quasi)norms due to the Hölder inequality.

(c) !e Lebesgue Lp(P , µ) spaces with p ∈ (0, 1) are not quasi-Banach function
spaces as they fail the embedding Lp

#֒→ L1 on sets of !nitemeasure. However,
they are quasi-Banach function lattices.

Example 4 (cf. Rao and Ren [42]). Let Φ ∶ [0,∞) → [0,∞] be a Young function,
i.e., a convex function such that

lim
t→0

Φ(t) = 0 and lim
t→∞

Φ(t) =∞.
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!en, theOrlicz space LΦ(P , µ) consists ofmeasurable functions whose Luxemburg

norm

∥u∥LΦ ..= inf{λ > 0 ∶ ∫
P

Φ(∣u(x)∣
λ
) dµ(x) ≤ 1}

is !nite. Orlicz spaces are Banach function spaces, providing a generalization of the
Lebesgue spaces. Namely, if Φ(t) = tp with p ∈ [1,∞) and Ψ = ∞χ[1,∞), then
LΦ = Lp and LΨ = L∞. !e notion of a Young function however allows us to make
!ner distinction of function spaces.

!e Zygmund spaces L log L and Lexp can be de!ned as Orlicz spaces LΦ and LΨ,
respectively, where Φ(t) = tmax{0, log t} and Ψ(t) =min{t, e t−1}.
Example 5 (cf. Diening, Harjulehto, Hästö, Růžička [15]). Let p ∶ P → [1,∞] be
a measurable function. !e variable exponent space Lp(⋅) consists of measurable
functions whose Luxemburg norm

∥u∥Lp(⋅)
..= inf{λ > 0 ∶ ∫

{p<∞}
(∣u(x)∣

λ
)p(x) dµ(x) ≤ 1 & ∥u∥L∞({p=∞}) < λ}

is !nite. If p is constant, then the variable exponent space coincides with the usual
Lebesgue Lp space. !e Lp(⋅) spaces can be understood as a special case of Orlicz–
Musielak spaces, which are Banach function spaces.

Apparently, the Luxemburg norm of anOrlicz space (unlike a variable exponent
space) does not depend on the exact distribution of function values in P . !us,
Orlicz spaces belong to a wide class of spaces, the so-called rearrangement-invariant

spaces (see [4, Chapter 2]), where the (quasi)norm of a function is invariant under
measure-preserving transformations. For a measurable function f ∶ P → R, we
de!ne its distribution function µ f and its decreasing rearrangement f ∗ by

µ f (t) = µ{x ∈ P ∶ ∣ f (x)∣ > t} and f ∗(t) = inf{s ≥ 0 ∶ µ f (s) ≤ t}, t ≥ 0.

!e Cavalieri principle implies that ∥ f ∥L1(P ,µ) = ∥µ f ∥L1(R+ ,λ1) = ∥ f ∗∥L1(R+ ,λ1).
Example 6 (cf. [4, Chapters 4 and 5]). !e real interpolation method applied to
the Lebesgue spaces gives rise to the so-called Lorentz spaces. !e Lorentz space
Lp,q(P , µ) with p, q ∈ [1,∞) is de!ned by

∥u∥Lp ,q
..= ( q

p ∫
∞

0
(u∗(t)t1/p)q dt

t
)1/q <∞.

!e Lorentz space Lp,∞, also called the weak-Lp space, is for p ∈ [1,∞) given via

∥u∥Lp ,∞
..= sup

t>0
u∗(t)t1/p <∞.
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!e Lp,q spaces are Banach function spaces whenever 1 ≤ q ≤ p, but only (normable)
quasi-Banach function spaces if 1 < p < q. !e L1,q spaces are not quasi-Banach
function spaces if q ∈ (1,∞] since they are not locally embedded in L1. !ey are
mere quasi-Banach function lattices.

!e Lorentz spaces Lp,q form a !ner scale of spaces that in some sense lie close
to Lp. Namely, it holds that Lp,p = Lp and Lp,q1

#֒→ Lp,q2 whenever 1 ≤ q1 ≤ q2 ≤∞.
Moreover, if µ(P) < ∞, then also Lp1 ,q1

#֒→ Lp2 ,q2 whenever 1 ≤ p2 < p1 < ∞

regardless of the exact values of q1, q2 ∈ [1,∞].
Some rudimentary properties of a rearrangement-invariant space X = X(P , µ)

(where µ is non-atomic) can be described by its fundamental function, which is de-
!ned for t ∈ [0, µ(P)) as ϕX(t) = ∥χEt∥X , where Et ⊂ P is an arbitrary measur-
able set with µ(Et) = t. In general, the fundamental function of a rearrangement-
invariant Banach function space (r.i. space) X is quasi-concave, but Xmay be equiv-
alently renormed so that ϕX is concave. Moreover, ϕX is absolutely continuous ex-
cept perhaps at the origin, where there may be a jump discontinuity.

Example 7. Given an r.i. space X with concave fundamental function ϕX , we de!ne
the Lorentz space Λ(X) and theMarcinkiewicz space M(X) by their norms

∥u∥Λ(X) ..= ∫ ∞
0

u∗(t) dϕX(t) = ∥u∥L∞ϕ(0+) + ∫ ∞
0

u∗(t)ϕ′X(t) dt,
∥u∥M(X) ..= sup

t>0
M∗u∗(t)ϕX(t) = sup

t>0
ϕX(t) ∫⨏ t

0
u∗(s) ds,

whereM∗ is the non-centered Hardy–Littlewood maximal function (cf. (1); in fact,
M∗ = M1 de!ned in (10) below). !e Lorentz and the Marcinkiewicz spaces are
the smallest and the largest spaces, respectively, among all r.i. spaces of the same
fundamental function ϕX , i.e., Λ(X) #֒→ X #֒→ M(X) whenever X is an r.i. space.

2.2 Other quasi-Banach function lattices

We have already seen in Examples 3 and 6 that the Lp(P , µ) spaces with 0 < p < 1
and the L1,q(P , µ) spaces with q ∈ (1,∞] are mere quasi-Banach function lattices
as they fail to be locally embedded in L1.

Example 8. Let X be an arbitrary (quasi)Banach function space. We can de!ne a
subspace Y of X by posing an additional condition that forces the function value to
be zero at some point x0 ∈ P , e.g.,

∥u∥Y = ∥u∥X + ∞∑
k=1
∫⨏
B(x0 ,2−k)

∣u∣ dµ.
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!en, Y is not a (quasi)Banach function space since L∞ is not locally embedded in
Y . It is however a (quasi)Banach function lattice.

Example 9. Spaces of continuous, Ck-smooth, or Sobolev functions are not quasi-
Banach function lattices as they fail to comply with the lattice property.

2.3 Absolute continuity of the quasi-norm

!e quasi-norm ∥ ⋅ ∥X in a quasi-Banach function lattice X is absolutely continuous
if ∥uχEn∥X → 0 as n →∞ whenever u ∈ X and {En}∞n=1 is a decreasing sequence of
measurable setswith µ(⋂∞n=1 En) = 0.!e notion of absolute continuity of the quasi-
norm turns out crucial for the results on approximability of Newtonian functions
by Lipschitz continuous functions obtained in [III]. It is possible to !nd examples
of function spaces X = X(Rn) lacking this property such that (locally) Lipschitz
functions are not dense in the corresponding Newtonian space N 1X(Rn).

!e dominated convergence theorem yields that the Lp (quasi)norm is abso-
lutely continuous for p ∈ (0,∞). On the other hand, the weak-Lp (i.e., the Lorentz
Lp,∞ spaces) and L∞ spaces lack this property apart from a few pathological cases.
In quasi-Banach function spaces, the dominated convergence theorem is in fact
equivalent to the absolute continuity of the quasi-norm.

It is worth noting (even though it will not be used in the thesis) that the ab-
solute continuity of the norm plays a vital role for establishing a connection be-
tween functional-analytic and measure-theoretic approaches to dual spaces of Ba-
nach function spaces (see [4, Sections I.3 and I.4]). Namely, the Banach space dual
X∗ that consists of bounded linear functionals on a Banach function space X is iso-
metrically isomorphic to the associate space

X′ = {v ∈M(P , µ) ∶ ∥v∥X′ ..= sup
∥u∥X=1

∫
P

uv dµ <∞}
if and only if the norm of X is absolutely continuous. !e relation between T ∈ X∗

and v ∈ X′ is then given by the representation Tu = ∫P uv dµ, where u ∈ X.

3 Doubling measures

Some of the results on regularity and regularization of Newtonian functions in [III,
IV] make use of the assumption that the measure is doubling, i.e., there is cdbl ≥ 1
such that µ(2B) ≤ cdblµ(B) for every ball B ⊂ P , where 2B denotes the ball of the
same center as B but twice the radius. Roughly speaking, the doubling condition
of the measure guarantees that the metric measure space has certain properties of
!nite-dimensional spaces. In particular, the Hardy–Littlewood maximal operator
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is a bounded mapping from L1(P) to L1,∞(P), whence Lebesgue’s di%erentiation
theorem holds true.

In general, it is however not possible to de!ne the dimension of the space (re-
lated to the measure) unambiguously. On the other hand, if µ is doubling, then
there are cs > 0 and s > 0 such that

µ(B(y, r))
µ(B(x , R)) ≥ cs(

r

R
)s (7)

for every x ∈ P , 0 < r < R < ∞, and y ∈ B(x , R). If (7) holds with some s, then it
holds with all s′ ≥ s. By an iteration argument, it can be shown that (7) holds with
s = log2 cdbl, which however need not be the optimal value. !e set of admissible
exponentsmay be open (see Björn, Björn, and Lehrbäck [7]), whence there need not
exist an optimal value of s. !e exponent s plays a fundamental role in [IV] when
establishing su&cient conditions for Newtonian functions to be locally bounded
and (Hölder) continuous. Roughly speaking, s is as signi!cant as the dimension n

is for the embeddingsW 1,p(Rn) #֒→ L∞loc(Rn) andW 1,p(Rn) #֒→ C0,α(Rn).
IfP is connected (which in particular holds ifP supports a Poincaré inequality,

see Section 4 below) and µ is doubling, then there are cσ > 0 and 0 < σ ≤ s such that

µ(B(y, r))
µ(B(x , R)) ≤ cσ(

r

R
)σ (8)

for every x ∈ P , 0 < r < R < ∞, and y ∈ B(x , R). Similarly as above, if (8) holds
with some σ , then it holds with all σ ′ ≤ σ . Note however that it may happen that
σ < s even if both σ and s are the best possible exponents (provided that these
exist). Inequalities (7) and (8) may be used to estimate the Hausdor% dimension
of the metric space as dimH P ∈ [σ , s]. !e metric measure space is called Ahlfors

Q-regular if both (7) and (8) are satis!ed with σ = s =.. Q. Ahlfors regularity is a very
restrictive condition that fails even in weighted R

n, unless the weight is bounded
away both from zero and from in!nity.

If a metric space is endowed with a doubling measure, then the metric space
is doubling, i.e., there is N < ∞ such that every ball of radius r can be covered
by at most N balls of radius r/2. Consequently, bounded sets in such a metric
space are totally bounded. Conversely, a doubling metric space may be equipped
with a measure that is not doubling. However, if the doubling metric space is com-
plete, then one can construct a doubling measure thereon (see Volberg and Konya-
gin [52]). Roughly speaking, doubling metric spaces possess certain properties of
!nite-dimensional linear spaces since they are bi-Lipschitz equivalent to a subset of
R

n equipped with a metric that however need not be equivalent with the Euclidean
one, see Semmes [45].
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4 Poincaré inequalities

A metric space P supports a p-Poincaré inequality with p ∈ [1,∞) if there exist
constants cPI > 0 and λ ≥ 1 such that for all balls B ⊂ P , all functions u ∈ L1loc(P)
and all (p-weak) upper gradients g of u, we have

∫⨏
B
∣u − uB∣ dµ ≤ cPI diam(B)( ∫⨏

λB
gp dµ)1/p . (9)

Roughly speaking, if the metric space supports a Poincaré inequality, then there
are plentiful curves forcing the upper gradient to be su&ciently large so that the
volume integral of an upper gradient can be used to control the mean oscillation of
a function. !e Poincaré inequality allows us to do an advanced !rst-order analysis
in metric spaces.

Regularity of Newtonian functions (such as continuity, Hölder continuity, ap-
proximability by Lipschitz functions) as well as Sobolev-type embeddings can be
established if the metric space is endowed with a doubling measure and supports a
Poincaré inequality.

Furthermore, a p-Poincaré inequality together with the doubling condition of
the measure enables us to establish a relation between (weak) upper gradients, Haj-
łasz gradients and fractional sharp maximal functions that are used to de!ne New-
tonian, Hajłasz and Calderón–Sobolev spaces, respectively. Namely, it is easy to
see that the p-Poincaré inequality implies that u♯1 ≤ c(M1g

p)1/p, where M1 is the
Hardy–Littlewood maximal operator (see (10) below) and g is an upper gradient
of u. Hajłasz and Kinnunen [23] showed that there is c > 0 such that cu♯1 is a Haj-
łasz gradient of every u ∈ L1loc(P), provided that µ is doubling (even if P does not
support any Poincaré inequality).

Obviously, if (9) holds for some p ∈ [1,∞), then it holds for every p′ ∈ [p,∞)
by the Hölder inequality. On the other hand, Keith and Zhong [34] showed that the
Poincaré inequality is a self-improving property if the metric space P is complete
and µ is doubling. Namely, if (9) holds for some p ∈ (1,∞), then there is ε > 0 such
that it holds for every p′ ∈ (p − ε,∞).

It is o/en di&cult to check whether a metric measure space supports a Poincaré
inequality. !e list of known examples includes Euclidean spaces with the Lebesgue
measure, weighted Euclidean spaces with p-admissible weights (e.g., weights of the
Muckenhoupt class Ap), complete Riemannian manifolds with non-negative Ricci
curvature, Heisenberg groups, Carnot–Carathéodory spaces, and Loewner spaces,
see [9, 25, 28, 29, 31, 37, 43]. Poincaré inequalities are preserved under bi-Lipschitz
mappings and they survive the Gromov–Hausdor% limits. Semmes [44] established
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that n-Ahlfors regular complete metric spaces (where n ∈ N) support a 1-Poincaré
inequality if there are su&ciently many recti!able curves.

!ere are some geometric constraints imposed on ametric spaceP if it supports
a Poincaré inequality. First of all, it is necessarily connected. Roughly speaking, the
following example shows that P cannot have any slits.

Example 10. Suppose that there exists an open ball B = B(z, r) ⊂ P such that
3B = U3 ∪ V3, where U3 and V3 are disjoint and open, while both U1

..= U3 ∩ B and
V1

..= V3 ∩ B have positive measure, and dist(U1,V1) = 0. Let

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{0, d(x , z)
2r

− 1} for x ∈ U3,

min{1, 2 − d(x , z)
2r
} for x ∈ V3,

1
2

for x ∈ P ∖ (U3 ∪ V3).
!en, u = 0 in U2

..= U3 ∩ 2B while u = 1 in V2
..= V3 ∩ 2B. Moreover, g = χ3B∖2B/2r

is an upper gradient of u. We will now show by contradiction that u and g do not
ful!ll (9) and hence P does not support any p-Poincaré inequality.

Suppose on the contrary that there are p ∈ [1,∞), λ ≥ 1, and cPI > 0 such
that (9) holds. Since dist(U1,V1) = 0, we can !nd a ball B̃ ⊂ 2B such that λB̃ ⊂ 2B,
µ(U2 ∩ B̃) > 0, and µ(V2 ∩ B̃) > 0. For such a ball B̃, the right-hand side of (9) is
equal to zero. However, the le/-hand side is equal to µ(U2∩B̃)µ(V2∩B̃)/µ(B̃)2 > 0.

Similarly, narrow passages or cusps may destroy the Poincaré inequality. If P
is complete, endowed with a doubling measure, and supports a Poincaré inequality,
then it is quasi-convex, i.e., every two points can be connected by a curve whose
length is comparable with the distance of these two points.

5 Maximal operators of Hardy–Littlewood type

!e classicalHardy–Littlewoodmaximal operator is a central tool in harmonic anal-
ysis. It can be also used in studying partial di%erential equations and Sobolev func-
tions, see e.g. Bojarski andHajłasz [10]. Given 1 ≤ p <∞, we de!ne the non-centered
maximal operator by

Mp f (x) = sup
B∋x

( ∫⨏
B
∣ f ∣p dµ)1/p , x ∈ P , (10)

where f ∶ P → R is a measurable function. Coifman and Weiss [13] showed that
M1 ∶ L

1(P , µ) → L1,∞(P , µ) is bounded, given that µ is a doubling measure. As
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a direct consequence, we see that Mp ∶ L
p(P , µ) → Lp,∞(P , µ) is bounded for

all p ∈ [1,∞). Apparently, Mp ∶ L
∞(P , µ) → L∞(P , µ) is bounded as well. !e

Marcinkiewicz interpolation theorem then yields that Mp ∶ L
q(P , µ) → Lq(P , µ)

is bounded whenever 1 ≤ p < q ≤∞.

It has been mentioned earlier that the maximal operator M1 conveys the rela-
tion between fractional sharp maximal functions and Hajłasz gradients in metric
spaces endowed with a doublingmeasure. If the metric space in addition supports a
p-Poincaré inequality, then the maximal operatorMp creates a link between (weak)
upper gradients on one side, and fractional sharp maximal functions and Hajłasz
gradients on the other side.

Hence in doublingmeasure spaces, theHajłasz spaceM1X (that consists of func-
tions u ∈ X that have aHajłasz gradient g ∈ X) coincides with theCalderón–Sobolev
space CW 1X (that consists of functions u ∈ X with u♯1 ∈ X) whenever M1 ∶ X → X

is bounded. In doubling p-Poincaré spaces, the Newtonian space N 1X (with a.e.-
equivalence classes) coincides with M1X and CW 1X whenever Mp ∶ X → X is
bounded.

When applying the method of Lipschitz truncations in [III], weak boundedness
of maximal operators of Hardy–Littlewood type is used in conjunction with the
Poincaré inequality to prove that Lipschitz functions are dense in the Newtonian
space both in the Newtonian norm and in the Luzin sense, i.e., restriction of a New-
tonian function to the complement of a set of arbitrarily small measure is Lipschitz
continuous. Such a result goes back to Shanmugalingam [46] in the Lp setting. Sim-
ilar results were also obtained by Tuominen [51] in the Orlicz setting, by Harjulehto,
Hästö and Pere [26] in the setting of variable exponent spaces, and by Costea and
Miranda [14] for the Lorentz–Newtonian spaces N 1Lp,q(P) with 1 ≤ q ≤ p <∞.

6 Quasi-continuity

In the theory of !rst-order Sobolev spaces (and spaces of Sobolev type), quasi-
continuity plays an analogous role as Luzin’s theorem in zeroth-order analysis. A
function is called quasi-continuous if an open set of arbitrarily small Sobolev capac-
ity can be found so that the restriction of the function to the complement of that
set is continuous. !e notion of quasi-continuity is closely related with the Sobolev
capacity CX whose de!nition depends on the used Sobolev-type function norm. In
the Newtonian setting, it is customary to de!ne CX(E) = inf{∥u∥N 1X ∶ u ≥ 1 on E}
for E ⊂ P , which turns out to correspond well with the natural equivalence classes
in N 1X. Unfortunately, when the capacity is de!ned this way, it is not a priori outer
regular. Roughly speaking, the capacity is an outer capacity if and only if all New-
tonian functions are quasi-continuous, cf. Björn, Björn and Shanmugalingam [8]
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and [IV]. Note also that CX(E) = 0 implies that µ(E) = 0, but not vice versa.
In the Euclidean setting, Sobolev functions inW 1,p(Rn ,w(x) dx), wherew is a

p-admissible weight, have quasi-continuous representatives, cf. Heinonen, Kilpeläi-
nen, Martio [29]. For a thorough treatise of the unweighted case, see e.g. Malý and
Ziemer [37]. In metric spaces, it su&ces that continuous functions are dense in
the Newtonian space N 1X in order to obtain existence of quasi-continuous repre-
sentatives of N 1X functions, cf. [8, 47, IV]. In fact, there is a qualitative di%erence
between W 1,p(Rn) and N 1,p(Rn). Namely, the space N 1,p(Rn) corresponds to the
re!ned Sobolev space (see [29]) since all the representatives are quasi-continuous in
this case.

Summary of papers

Paper I: Newtonian spaces based on quasi-Banach function lattices

In the !rst paper, we de!ne Newtonian spaces based on quasi-Banach function lat-
tices using the notion of upper gradient. We investigate generalizations of stan-
dard tools in the theory of Newtonian functions. Namely, we de!ne and study the
Sobolev capacity based on the quasi-norm of the function lattice. It serves as a !ner
(σ-quasi-additive) outer measure for sets of zero measure.

As in the Lp case, we see that a function hasNewtonian quasi-seminormequal to
zero if and only if the function is equal to zero quasi-everywhere, i.e., with exception
of a set of capacity zero.!e natural equivalence classes are thus given by equality up
to sets of capacity zero and it is exactly these sets that do not carry any information
about a Newtonian function.

We also de!ne the modulus of a family of curves and prove that Newtonian
spaces can be equivalently de!ned using weak upper gradients. We show that all
these objects retain their properties, well-known in the Lp and the Orlicz cases,
even in our general setting. Most importantly, the Newtonian space with equiva-
lence classes given by equality quasi-everywhere is a complete quasi-normed space.
Moreover, all Newtonian functions are absolutely continuous along almost every
recti!able curve, where “almost every curve” means that the exceptional family of
curves has zero modulus.

Paper II: Minimal weak upper gradients in Newtonian spaces

based on quasi-Banach function lattices

Given an extended real-valued function, there is a corresponding (weak) upper gra-
dient. It is, however, not unique. !e de!nition of the Newtonian quasi-norm uses
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minimization of an energy functional over all (weak) upper gradients. In this paper,
we use a method similar to that of Hajłasz [22] to show that in the fully general set-
ting of quasi-Banach function lattices, there is a minimal weak upper gradient and
thus the in!mum in the Newtonian quasi-norm is indeed attained. !is result ap-
plies, in particular, to the N 1,∞ ..= N 1L∞ spaces, where the question of existence of a
minimal weak upper gradient was still open. A/erwards, we !nd a family of repre-
sentation formulae for the minimal weak upper gradient under the assumption that
Lebesgue’s di%erentiation theorem holds in the underlyingmetric measure spaceP .
For example, it su&ces that the measure satis!es the doubling condition.

Next, we study the sets of upper gradients and weak upper gradients. We show
that the latter is the closure of the former in the convex cone of non-negative func-
tions in the corresponding quasi-Banach function lattice. Furthermore, we inves-
tigate convergence properties of sequences of Newtonian functions and their weak
upper gradients.

Paper III: Regularization of Newtonian functions on metric spaces

via weak boundedness of maximal operators

Analysis of partial di%erential equations frequently makes use of approximability of
Sobolev functions by smooth functions. As usual partial derivatives (and hence the
notion of Ck-smoothness with k ≥ 1) are unavailable in metric spaces, we consider
Lipschitz continuity as the regularity concept of interest.

First, we look into the question when bounded functions are dense in the New-
tonian space. It turns out that absolute continuity of the quasi-norm of the base
function space X is crucial for the density. We observe that bounded functions are
not dense in weak Marcinkiewicz (weak Lorentz) spaces. As a particular conse-
quence, (locally) Lipschitz functions are shown not to be dense in N 1X(Rn) when-
ever X is a weakMarcinkiewicz space whose fundamental function, roughly speak-
ing, is not concave enough relative to the dimension n.

!e regularizations in N 1X that are investigated in the paper are constructed
via Lipschitz truncations, provided that Hajłasz gradients of Newtonian functions
satisfy certain weak norm estimates. Interplay between the Hajłasz, the Calderón
and the Newtonian approaches is employed to study the problem in metric spaces
endowed with a doubling measure supporting a p-Poincaré inequality. !en, the
regularization problem reduces to establishing su&cient conditions for a maximal
operator of Hardy–Littlewood type to be weakly bounded on sets of !nite measure.

!erefore, such a weak boundedness of the maximal operators is explored as
well. Particular focus is given to the situation when X is a rearrangement-invariant
space.!en, the desired boundedness can be obtained, e.g., if X is locally embedded
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in certain classical Lorentz spaces or if the reciprocal for the fundamental function
of X is comparable with its Lp-means.

Paper IV: Fine properties of Newtonian functions and

the Sobolev capacity on metric measure spaces

Regularity of Newtonian functions based on quasi-Banach function lattices is the
object of interest of this paper. Two interlinked concepts of regularity are studied,
namely, quasi-continuity and continuity. !e former can be understood as a Luzin-
type condition, where a set of arbitrarily small capacity can be found for each New-
tonian function so that its restriction to the complement of that set is continuous.

Furthermore, the quasi-continuity bears a close relation to outer regularity of
the Sobolev capacity. In the Euclidean setting, the Sobolev capacity is de!ned in
such a way that it is automatically an outer capacity (see [29, De!nition 2.35]). !is
is however not the case when the Sobolev capacity is built via the Newtonian func-
tion (quasi)norm so that it corresponds well to natural equivalence classes in the
respective Newtonian space. If continuous functions are dense in the Newtonian
space, then we prove that all Newtonian functions are quasi-continuous if and only
if the Sobolev capacity is an outer capacity.

Applying the results on quasi-continuity and on outer regularity of the capacity,
locally Lipschitz functions are shown to be dense in a Newtonian space on an open
subset of a propermetric space, provided that (locally) Lipschitz functions are dense
in theNewtonian space on thewholemetric space.!e noteworthy part of this claim
is that no hypotheses are put on this open subset. In particular, the open subset as
a metric space need not support any Poincaré inequality, nor does the restriction of
the measure need to be doubling.

Given that the metric space is endowed with a doublingmeasure and supports a
Poincaré inequality, Newtonian functions can be proven to be essentially bounded
if the summability of (weak) upper gradients, in terms of the function norm, ex-
ceeds the “dimension” s of the measure de!ned in (7). !is is a well-known result
for N 1,p ..= N 1Lp, where p > s. On the other hand, there are unbounded Newto-
nian functions in N 1,p if p = s. Since the theory in the paper is built considering
general quasi-Banach function lattices, it is possible to analyze the borderline case
using a !ner scale of function spaces. It su&ces that the gradient lies in the Zyg-
mund space Ls(log L)α with α > 1 − 1/s or in the Lorentz space Ls,1 to see that the
Newtonian functions are locally essentially bounded. In the unweighted Euclidean
spaces Rn (where s = n), it is known (cf. [18]) that the Lorentz space Ln,1 is the
optimal rearrangement-invariant Banach function space to obtain the embedding
W 1Ln,1(Ω) #֒→ L∞(Ω) for ∣Ω∣ <∞.!emethods applied in the current paper di%er
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signi!cantly from those used in the Euclidean case. Here, all the estimates are based
on Poincaré inequalities, whereas pointwise estimates by the Riesz potential and
symmetrization of the Riesz kernel (cf. [33]), or the Pólya–Szegő principle (cf. [18])
can be used in R

n.
!e estimates for local essential boundedness are uniform in a certain way so

that one can conclude that Newtonian functions have continuous representatives if
the gradient is summable in a su&ciently high degree. If the metric space is in ad-
dition complete, then all representatives are continuous, which illustrates yet again
the qualitative di%erence between the usual Sobolev and the Newtonian spaces.

Furthermore, several technical tools are established in the paper. In the area of
calculus of weak upper gradients, the product and the chain rule are proven and
the minimal weak upper gradient is shown to depend only on the local behavior of
a function. !e Vitali–Carathéodory theorem (i.e., approximability of the norm of
a function by the norms of its lower semicontinuous majorants) for general quasi-
Banach function lattices is also looked into.
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