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Abstract

This thesis consists of four papers and focuses on function spaces related to first-
order analysis in abstract metric measure spaces. The classical (i.e., Sobolev) theory
in Euclidean spaces makes use of summability of distributional gradients, whose
definition depends on the linear structure of R”. In metric spaces, we can replace the
distributional gradients by (weak) upper gradients that control the functions’ behav-
ior along (almost) all rectifiable curves, which gives rise to the so-called Newtonian
spaces. The summability condition, considered in the thesis, is expressed using a
general Banach function lattice quasi-norm and so an extensive framework is built.
Sobolev-type spaces (mainly based on the L? norm) on metric spaces, and Newto-
nian spaces in particular, have been under intensive study since the mid-1990s.

In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach
function lattices is built up. Standard tools such as moduli of curve families and the
Sobolev capacity are developed and applied to study the basic properties of Newto-
nian functions. Summability of a (weak) upper gradient of a function is shown to
guarantee the function’s absolute continuity on almost all curves. Moreover, New-
tonian spaces are proven complete in this general setting.

Paper Il investigates the set of all weak upper gradients of a Newtonian function.
In particular, existence of minimal weak upper gradients is established. Validity of
Lebesgue’s differentiation theorem for the underlying metric measure space ensures
that a family of representation formulae for minimal weak upper gradients can be
found. Furthermore, the connection between pointwise and norm convergence of
a sequence of Newtonian functions is studied.

Smooth functions are frequently used as an approximation of Sobolev func-
tions in analysis of partial differential equations. In fact, Lipschitz continuity, which
is (unlike C'-smoothness) well-defined even for functions on metric spaces, of-
ten suffices as a regularity condition. Thus, Paper III concentrates on the question
when Lipschitz functions provide good approximations of Newtonian functions.
As shown in the paper, it suffices that the function lattice quasi-norm is absolutely
continuous and a fractional sharp maximal operator satisfies a weak norm estimate,
which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator
of Hardy-Littlewood type is locally weakly bounded. Therefore, such a local weak
boundedness on rearrangement-invariant spaces is explored as well.

Finer qualitative properties of Newtonian functions and the Sobolev capacity get
into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven
to be quasi-continuous, which yields that the capacity is an outer capacity. Various
sufficient conditions for local boundedness and continuity of Newtonian functions
are established. Finally, quasi-continuity is applied to discuss density of locally Lip-
schitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces.
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Populdrvetenskaplig ssmmanfattning

Avhandlingen bestar av fyra artiklar som behandlar sa kallade newtonrum baserade
pé vissa kvasinormer. Lét oss forsoka belysa det som d6ljs bakom dessa begrepp.

Manga foreteelser i naturvetenskap kan beskrivas med hjélp av differentialekva-
tioner. Till exempel kan temperaturférdelningen i en kropp uttryckas som en funk-
tion beroende pa tid och position och den loser den sa kallade vairmeledningsekva-
tionen. Vanligtvis kan man visa att det finns en entydig l6sning, men det ar séllan
mojligt att finna den explicit. A andra sidan kan man med hjilp av datorer forsoka
berdkna en approximation av den sokta losningen. Ett problem med detta angrepps-
sdtt dr att man inte i forvéig vet om det numeriska resultatet nairmar sig den verkliga
16sningen. I allméanhet kan 16sningarna vara ganska “vilda” funktioner. Emellertid
gar det ofta att visa flera trevliga egenskaper hos dem. Dessa egenskaper kan t.ex.
vara uppskattningar av hur stora virden funktionen antar och hur snabbt virdena
svanger. Med hjilp av ett lampligt métningssdtt kan man avgéra om en approxima-
tion till differentialekvationens 16sning representerar verkligheten tillrackligt val.
Det finns olika sitt att méta storleken av funktioner samt deras variationer (alltsa i
princip derivator), och denna avhandling behandlar olika sadana sétt samt den rika
teorin omkring dessa.

Teorin f6r matning av icke-sldta funktioner pa véra vanliga (askadliga) rum stu-
derades noggrant under storre delen av 1900-talet. Under de senaste 15-20 aren har
man forsokt utvidga detta till allmidnna sa kallade metriska rum, dir man endast
kanner till avstindet mellan tva godtyckliga punkter. Metriska rum kan vara val-
digt oregelbundna (t.ex. fraktaler) s att det i sjdlva verket inte behover finnas nagra
rita linjer mellan olika punkter, vilket férhindrar tillimpning av den klassiska teo-
rin. Andé kan man ofta férbinda punkterna med kurvor. Om man néjer sig med att
mata funktionen langs kurvor, sa forenklas problemet. Finns det tillrackligt manga
kurvor, s& kan man dndé dra viktiga slutsatser om beteendet av en funktion med
hjalp av matningar langs alla mojliga kurvor. Detta dr ungefar den princip som stéar
bakom teorin om newtonrum.

Newtonrum har redan studerats for vissa typer av storleksbegrepp. Teorin i av-
handlingen byggs, mer allmént én tidigare, baserad pa kvasinormer i banachfunk-
tionslattice, vilket ger manga generaliseringar och kvalitativa forfiningar av hittills
kanda resultat.

Lat oss nu betrakta ett flertal fragor som man ofta vill fa besvarade och som
besvaras i avhandlingen. Antag att man vill undersoka en funktion som beskriver
nagon fysikalisk storhet och att funktionens variation redan har matts (eller sna-
rare uppskattats) langs alla kurvor. Man kan fraga sig huruvida det verkligen var
nodvéndigt att kolla pa funktionens beteende pa alla kurvor. Det visar sig att man
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mycket vl kunde ha struntat i ett litet antal kurvor (i en véldigt precis mening) utan
att forlora vésentliga data. Dessutom inser man att funktionen egentligen ar gans-
ka snall (absolutkontinuerlig) langs alla kurvor med undantag av ett litet antal (dér
"litet antal” har samma betydelse som ovan).

Man kan behova ta reda pa om det finns stéllen (mangder) dar funktionsvir-
dena inte styrs av métningar langs kurvor och hur stora dessa méangder egentligen
ar. I avhandlingen visas att det exakt dr de mangder vars sé kallade sobolevkapacitet
ar lika med noll. Sobolevkapaciteten kan i princip tolkas som ett volymmétt med en
finare upplosning dn det vanliga volymmattet. Strdngt taget innebar det att mang-
derna dédr man saknar kontroll 6ver funktionsvirden dr &nnu mindre 4n nir man
anvéander sig av den klassiska sobolevteorin om icke-slita funktioner i det vanliga
rummet R”.

Trots att man i de flesta fall endast 6veruppskattar funktionernas variationer, sa
kdnns det bara naturligt att forvénta sig att det finns en bésta (alltsa minsta) upp-
skattning. Fragan om huruvida den existerar ar i sjdlva verket mer komplicerad med
tanke pd att funktionernas beteende kan vara oférutsebart langs ett visst litet antal
kurvor. Dessutom beror den egentliga innebdrden av frasen “litet antal” pa storleks-
begreppet som bestims av funktionslatticets kvasinorm. For vissa storleksbegrepp
var den hir existensfragan ett 6ppet problem inom newtonteori tills den besvarades
jakande i en av avhandlingens artiklar.

Nir partiella differentialekvationer studeras, sa kriaver manga resonemang att
slata funktioner utgor bra approximationer till alla funktioner som kommer i fraga
som svaga losningar till ekvationen. Om omradet har goda geometriska egenskaper,
sa beror approximerbarheten pa storleken av sa kallade maximalfunktioner. Darfor
undersoks maximalfunktioner samt deras uppskattningar noggrant i avhandlingen.
Foljaktligen far man fram néagra enkla villkor som racker for att kunna anvéinda sig
av sldta approximationer. Dartill ges typexempel dér sddana approximationer inte
ar mojliga.

Till sist studeras det om uppskattningar av storleken av en funktions variationer
langs kurvor leder till att sjdlva funktionen dr begriansad eller till och med kontinu-
erlig. Sa ér fallet om det storleksbegrepp som anvénds vid uppskattningar (d.v.s.
kvasinormen av banachfunktionslatticet) ar tillrackligt restriktivt i jamforelse med
dimensionen av volymmaéttet. Man inser namligen att det da inte kan finnas nagra
icke-tomma méngder som har sobolevkapacitet noll. Det innebar i sin tur att funk-
tionen ar kontrollerad 6verallt av sina variationer som enbart mitts eller uppskattats
ldngs néstan alla kurvor.
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INTRODUCTION 3
Background

The aim of this thesis is to define and build up the theory around Newtonian spaces
based on quasi-Banach function lattices, eventually proving some interesting prop-
erties in this setting. Newtonian spaces present perhaps the most fruitful general-
ization of first-order Sobolev spaces to abstract metric measure spaces. Such gen-
eralizations have been under intensive study since the mid-1990s. We refer the
reader interested in analysis on metric spaces, for example, to Ambrosio and Tilli [3],
Bjorn and Bjorn [6], Cheeger [12], Heinonen and Koskela [31], Heinonen [28], or
Heinonen, Koskela, Shanmugalingam and Tyson [32]. This theory can be applied in
diverse areas of analysis, such as linear and non-linear potential theory on Rieman-
nian manifolds or Carnot groups, first-order analysis on fractal sets, the theory of
degenerate elliptic equations and quasi-conformal mappings.

1 Sobolev spaces and variations thereupon

The theory of Sobolev spaces is an essential tool for analysis of various properties
of partial differential equations, including calculus of variations. In the Euclidean
setting, the Sobolev space W?(Q) for an open set Q c R” consists of functions
integrable in the pth power whose distributional gradient is integrable in the pth
power as well. For more details on Sobolev spaces, see, for example, Evans [19],
Maz'ya [38], Stein [50], or Ziemer [54]. The distributional derivatives are defined
via integration by parts, for which the linear structure of R” is crucial. On the other
hand, the classical Sobolev norm
lellwrsay = (1l + 194l 0y)"”

does not really depend on the vector of the weak gradient, but only on its length.
One possible approach to generalizations of Sobolev spaces is to replace |Vu| by a
function that preserves certain fundamental properties of the modulus of the gra-
dient. This is the idea that lies behind the definition of Newtonian spaces via (weak)
upper gradients. Some other approaches make use of various characterizations of
Sobolev functions as in Theorems 1 and 2 below.

First, let us introduce some notation. The open ball centered at x € P with
radius 7 > 0 will be denoted by B(x, ). Given a ball B = B(x,r) and a scalar ¢ > 0,
we let 0B = B(x, or). We define the integral mean of a measurable function u over
a set E of finite positive measure as

uE:z]gudy:ﬁ/;udy
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whenever the integral on the right-hand side exists, not necessarily finite though.
The (centered) Hardy-Littlewood maximal operator is defined as

Mf)=swpf |f()ldx, zeR, )

>0

where f : R" —» R is a measurable function (cf. Section 5 below).

Theorem 1 (cf. Hajtasz [22, Theorem 2.1]). For u € LP(R"), p € [1, 0), the following
conditions are equivalent:

e U E Wl’p(Rn);
o thereis 0 < g € LP(R") such that

][B|u—u3|dx£r]€3gdx (2)

for every ball B of radius r > 0;
o thereis 0 < g e LP(R") and o > 1 such that

1/p
]€3|u—u3|dx3r(]€3gpdx) (3)

for every ball B of radius r > 0;
o thereis 0 < g € LP(R") and o > 1 such that

_ 1/p 1/p
uz) = u(y)l < sup (][ g° dx) +  sup (][ g° dx)
|z - y| 0<r<olz—y|\ ¥ B(z7) B(y.r)

0<r<olz—y|

whenever z,y € R" \ E, z # y, where |E| = 0.

Moreover, there is ¢ > 0 such that |Vu| < cg a.e. whenever g satisfies either of the
conditions above.

Theorem 2 (cf. Hajtasz [22, Theorem 2.2]). Let u € LP(R") for some p € (1, 00).
Then, u € W"P(R™) if and only if there is 0 < h € LP(R") and E c R" with |E| = 0
such that

u(z) —u(y)l <lz-yl(h(2) + h(y)), zyeR"\E.

Furthermore, there is ¢ > 0 such that M|Vu| < ch.
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1.1 Newtonian spaces — an approach based on (weak) upper gradients

The concept of Newtonian spaces is based on the Newton-Leibniz formula in the
following way. Let Q ¢ R" be open. Suppose that u € C'(Q) and let y : [0,1,] - Q
be a C!-curve parametrized by arc length ds. Then,

() -] =| [ oy yat] < [ 19ul byl at = [ [wulds. o

Thus, the modulus of the usual gradient can be used to estimate the difference of
function values in two distinct points, which is the main idea lying behind the upper
gradients. Namely, having an extended real-valued function u defined on a metric
measure space P, we call a Borel function g : P — [0, co] an upper gradient of u if
it satisfies

u(y(1,)) - u(y(0))| < /y gds (5)

for every rectifiable curve y : [0,1,] — P. Obviously, the upper gradient is not
given uniquely as we can add a non-negative Borel function to an upper gradient
of u obtaining another upper gradient of u. Upper gradients, under the name very
weak gradients, were first defined and studied by Heinonen and Koskela in [30, 31].

Given a space X of measurable functions endowed with a quasi-seminorm |- | x,
we define the Newtonian space N'X as the space of extended real-valued functions
(not equivalence classes) that belong to X and have an upper gradient in X. The
Newtonian space N'X can also be characterized as the set of measurable functions
u: P — R with finite N'X quasi-seminorm, i.e.,

[ ullox = lulx +inf g]x < oo, (6)

where the infimum is taken over all upper gradients g of u. Note that if there are no
rectifiable curves in the metric space, then the constant zero function is an upper
gradient of any function whence the Newtonian space is rendered trivial in the sense
that N'X = X.

The theory of Newtonian spaces becomes more flexible if we relax the definition
of upper gradient by allowing (5) to fail for a family of curves with so-called modulus
equal to zero. This relaxation gives rise to the weak upper gradients, which were
introduced by Koskela and MacManus [35] and can be considered a standard tool
in the area of Newtonian spaces.

We have already mentioned that upper gradients are not given uniquely. The
same holds for weak upper gradients. Nevertheless, among all weak upper gradi-
ents, there are significant ones, namely minimal weak upper gradients. They are
minimal both pointwise a.e., and normwise, hence the infimum in (6) is attained.
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Existence of minimal weak upper gradients has been established for L?, p € (1, o),
by Shanmugalingam in [48], and for p € [1, c0) by Hajlasz in [22]. Tuominen has
shown the existence in the setting of reflexive Orlicz spaces in [51]. Using a similar
approach as Shanmugalingam and Tuominen, Mocanu [39] has applied the James
characteristic of reflexive spaces to prove that minimal weak upper gradients exist in
any strictly convex Banach function space. Even though reflexivity of the underly-
ing function space is crucial for the argument in Mocanu’s paper, it is not mentioned
there. Newtonian spaces based on quasi-Banach function lattices (see Section 2 be-
low) were introduced in [I] and minimal weak upper gradients were proven to exist
in this very general setting in [II].

1.2 Hajlasz spaces and Hajlasz gradients

Hajtasz [21] proposed a Sobolev-type space M"P (P) using a “gradient” that satisfies
another pointwise inequality, inspired by the characterization of Sobolev functions
in Theorem 2. Namely, a function u € L?(P) belongs to M>?(P) if there is a non-
negative function g € L?(P) and a set E c P with y(E) = 0 such that

u(x) - u(y) < d(x, y)(g(x) + £(y))

holds for every x,y € P \ E. The symbol d(x, y) denotes the distance between the
points x and y. Such a function g is called a Hajlasz gradient of u. Since Hajtasz
gradients are defined via an inequality (and hence not uniquely), the norm on the
Hajtasz space M™P ('P) needs to be established by a minimization process, i.e.,

lullarr = ullze +inf g]r,

where the infimum is taken over all Hajtasz gradients g of u. In [22], Hajtasz showed
that for every u € M (P), 1 < p < oo, there is & € N*?(P) = N'LP(P) such
that u = i a.e. Therefore, M®?(P) c N“P(P) as long as the Newtonian space
is equipped with a.e.-equivalence classes. If there are no rectifiable curves, then
M"P(P) is usually a proper subset of N"?(P) = LP(P) for every p € [1, 00], apart
from some pathological cases such as when P is a finite set.

We could see in (4) that the notion of upper gradient is inspired by the length of
the vector of the ordinary gradient. On the other hand, the Hajlasz gradient in the
Euclidean setting can be understood as the Hardy-Littlewood maximal function of
the ordinary gradient as we have seen in Theorem 2. Therefore, when working with
a.e.-equivalence classes, it can be shown that M (R") = N> (R") = WP (R™) for
p > 1, but MM (R") ¢ NM(R") = WH(IR"). Aissaoui extended Hajtasz’s approach
to define Orlicz-Sobolev spaces on metric measure spaces in [1].
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1.3 Calderén-Sobolev spaces and fractional sharp maximal functions

Calderén’s characterization of u € W-?(R") in [11] motivated Shvartsman [49] to
define Calderén-Sobolev spaces using the fractional sharp maximal function

1
ul(x) = sug; B0r) lu—up(enldu, xeP.
r> >

Provided that 1 < p < oo, a function u € L?(IR") belongs to W"?(R") if and only if
ul € LP(R™). 1t follows from the Poincaré inequality for Sobolev functions, i.e., (2)
with ¢ = ¢|Vul, that uf < cM|Vu|, where M is the Hardy-Littlewood maximal
operator defined in (1).

The Calderén-Sobolev space is CWP(P) = {u € LP(P) : u} € LP(P)}. Haj-
lasz and Kinnunen [23] showed that cu} is a Hajtasz gradient of u for some ¢ > 1,
provided that the metric measure space is equipped with a doubling measure (see
Section 3 below). On the other hand, direct calculation shows that we can estimate
ul < cMg, where g is a Hajtasz gradient of u. If 1 < p < oo and if the measure is
doubling (whence M : L? — L? is bounded), then M"?(P) = CW:P(P).

1.4 Other approaches

Heikkinen, Koskela, and Tuominen [27] defined a Sobolev-type space by means
of a generalized Poincaré inequality, extending the ideas of Franchi, Hajtasz, and
Koskela in [20], and relate this space to the corresponding Newtonian space. Func-
tion spaces based on a weak p-Poincaré inequality analogous with (3) were also dis-
cussed by Hajlasz and Koskela in [24, 25]. Koskela and MacManus [35] studied the
role of (weak) upper gradients in the Poincaré inequality.

Cheeger [12] defined Sobolev-type spaces consisting of such u € LP(P) that
can be approximated by a sequence {u;}:°, of L? functions with upper gradients
gi € LP(P) in the sense that u; - u in L? as i — oo, while liminf; o | gi[1r < c0.
Shanmugalingam showed in [47] that for p > 1 the Newtonian space N** with a.e.
equivalence classes coincides with the corresponding Cheeger space. On the other
hand, if p = 1, then the Cheeger approach yields a generalization of the space of
functions of bounded variation.

For comparison of various approaches to generalization of Sobolev spaces, see
e.g. Hajlasz [22], Bjorn and Bjorn [6, Appendix B], or Heinonen, Koskela, Shanmu-
galingam and Tyson [32, Chapter 9]. The presented thesis however focuses solely on
the theory of Newtonian spaces.
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2 Quasi-Banach Function Lattices

Newtonian spaces have been studied for various underlying function norms in the
past two decades. First, Shanmugalingam [47] studied the Newtonian spaces built
upon the L? norm for p € [1, 00). Since then, a rich theory based on L? has been
developed. Thorough treatises on the Newtonian space theory in the L? setting with
p € [1, 00) have been given by Bjérn and Bjorn [6], and Heinonen, Koskela, Shan-
mugalingam and Tyson [32]. Durand-Cartagena [16], together with Jaramillo [17],
discussed the case p = co. Tuominen [51] and Aissaoui [2] investigated Orlicz-
Newtonian spaces. Harjulehto, Histd, and Pere [26] examined Newtonian spaces
based on Orlicz-Musielak variable exponent spaces. Newtonian theory built upon
the Lorentz LP*9 spaces was studied by Podbrdsky [41] and Costea and Miranda [14].
Mocanu [39, 40] tried to generalize the concepts to the setting of Banach function
spaces. In some of her results, uniform convexity or reflexivity of the underlying
function space is however necessary. The theory that is developed in this thesis en-
compasses all these results and goes even further.

In the thesis, we assume that the function space X is a quasi-Banach function
lattice, i.e., a complete quasi-seminormed linear space of measurable functions that
has the lattice property. It can be described by the axioms its quasi-seminorm | - | x
needs to satisfy:

| - ||x determines the set X, i.e., X = {u : ||ulx < oo };

| - || x is a quasi-seminorm giving rise to a.e. equivalence classes, i.e.,

¢ |u|x =0ifand onlyifu = 0 a.e.,

o |lau|x = |a||u|/x for every a € R and every function u,

o there is a constant c, > 1, the so-called modulus of concavity, such that
[u+v|x < ca(l|ulx + |v||x) for all functions u, v;

| - |x satisfies the lattice property, i.e., if |u| < |v| a.e., then ||u| x < ||v]x;

| - ||x satisfies the Riesz—Fischer property, i.e., if u, > 0 a.e. for all n € N, then

|52y HX < Y2 c¥|un| x, where ca > 11is the modulus of concavity. Note
that the function ., u, needs be understood as a pointwise (a.e.) sum.

e |- |lx is continuous, i.e., if |u, — u|x = 0asn — oo, then |u,|x — ||ux.

The Riesz-Fischer property is for continuous quasi-seminorms equivalent to com-
pleteness of the function space (see Zaanen [53, Lemma 101.1] or Maligranda [36,
Theorem 1.1]). Moreover, the assumption of continuity of | - ||x is not really re-
strictive since every discontinuous quasi-seminorm has an equivalent continuous
quasi-seminorm (while the lattice property is preserved) such that

Ju+ ] < Jul” + vl
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with r = 1/(1 + log, c.) € (0,1], due to the Aoki-Rolewicz theorem, cf. Benyamini
and Lindenstrauss [5, Proposition H.2]. If ¢, = 1, then the functional | - |x is a
seminorm. We then drop the prefix quasi and hence call X a Banach function lattice.

If X c Y are quasi-Banach function lattices over the same measure space, then
it follows from the Riesz-Fischer property that X is continuously embedded in Y,
cf. Bennett and Sharpley [4, Theorem 1.1.8].

2.1 Quasi-Banach function spaces

Quasi-Banach function spaces, and Banach function spaces in particular, form an
important (and still very general) subclass of (quasi)Banach function lattices. In
addition to the aforementioned axioms, (quasi)Banach function spaces satisfy the
following ones as well:

o | - | x has the Fatou property, i.e.,if 0 < u, ~ ua.e., then |u,|x ~ |u]x;

« if a measurable set E c P has finite measure, then | yg|x < oo;

o for every measurable set E c P with u(E) < oo there is Cg > 0 such that
Ji luldu < Cgllu|x for every measurable function u.

The Fatou property implies the Riesz-Fischer property, and it can be interpreted
as the monotone convergence theorem. The other two conditions describe “local”
continuous embeddings L < X and X — L!, where “local” actually means on
sets of finite measure. A thorough treatise on Banach function spaces is given in
Bennett and Sharpley [4, Chapter 1].

Example3. (a) The Lebesgue LP (P, u) spaces with p € [1, oo] are Banach func-
tion spaces.

(b) The intersection of the Lebesgue spaces (L n L) (P, u) with (quasi)norm
givenas ||-||z»+|| L4, where p € [1, c0] and g € (0, p), is a (quasi)Banach func-
tion space. Roughly speaking, the functions lying in this space have peaks
controlled by the L? norm, whereas their rate of decay “at infinity” (provided
that y(P) = oo) is controlled by the L7 norm. If g < 1 and u(P) = oo,
then these spaces are not normable. On the other hand, if u(P) < oo, then
LP n L1 = L? with equivalent (quasi)norms due to the Holder inequality.

(c) The Lebesgue LP(P, u) spaces with p € (0,1) are not quasi-Banach function
spaces as they fail the embedding L? < L' on sets of finite measure. However,
they are quasi-Banach function lattices.

Example 4 (cf. Rao and Ren [42]). Let @ : [0,00) — [0, 0o] be a Young function,
i.e., a convex function such that

ltirr(}CD(t) =0 and tlim D(t) = oo.
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Then, the Orlicz space L® (P, u) consists of measurable functions whose Luxemburg

] o = inf{)t>0: /;DQD(W(A—xN)d‘u(x) g1}

is finite. Orlicz spaces are Banach function spaces, providing a generalization of the

norm

Lebesgue spaces. Namely, if ®(t) = t” with p € [1,00) and ¥ = oo y[; o), then
L® =L and LY = L*. The notion of a Young function however allows us to make
finer distinction of function spaces.

The Zygmund spaces Llog L and Ly, can be defined as Orlicz spaces L® and L¥,
respectively, where ®(t) = t max{0,logt} and ¥(¢) = min{t, e''}.

Example 5 (cf. Diening, Harjulehto, Histo, Razicka [15]). Let p : P — [1,00] be
a measurable function. The variable exponent space LP() consists of measurable
functions whose Luxemburg norm

p(x)
. u(x
Jul s :=mf{A>o: /{pm}(Q) du(x) <1 & ||u||Loo<{p=oo}><A}

is finite. If p is constant, then the variable exponent space coincides with the usual
Lebesgue L? space. The L? () spaces can be understood as a special case of Orlicz—
Musielak spaces, which are Banach function spaces.

Apparently, the Luxemburg norm of an Orlicz space (unlike a variable exponent
space) does not depend on the exact distribution of function values in P. Thus,
Orlicz spaces belong to a wide class of spaces, the so-called rearrangement-invariant
spaces (see [4, Chapter 2]), where the (quasi)norm of a function is invariant under
measure-preserving transformations. For a measurable function f : P — R, we
define its distribution function yy and its decreasing rearrangement f* by

up(t) =pu{x e P:[f(x)| >t} and f*(t)=inf{s>0:pus(s)<t}, t>0.
The Cavalieri principle implies that HfHLl('p,y) = HMfHLI(RﬂM) = ”f*”Ll(RerAl).

Example 6 (cf. [4, Chapters 4 and 5]). The real interpolation method applied to
the Lebesgue spaces gives rise to the so-called Lorentz spaces. The Lorentz space
LPA(P, u) with p, g € [1, 00) is defined by

1/q
q [0« di
|| ppa = (;/(; (u (t)tl/p)qT) < 00.

The Lorentz space LP*°, also called the weak-L? space, is for p € [1, 00 ) given via

||| oo = sup u* (£)£/2 < oo.
t>0
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The LP1 spaces are Banach function spaces whenever 1 < g < p, but only (normable)
quasi-Banach function spaces if 1 < p < g. The L spaces are not quasi-Banach
function spaces if g € (1, 00] since they are not locally embedded in L!. They are
mere quasi-Banach function lattices.

The Lorentz spaces L”1 form a finer scale of spaces that in some sense lie close
to LP. Namely, it holds that L?*? = L? and LP*T" — L% whenever 1< q; < g, < oo.
Moreover, if 4(P) < oo, then also LP*?" — LP>9> whenever 1 < p; < p; < oo
regardless of the exact values of g1, ¢ € [1, o0 ].

Some rudimentary properties of a rearrangement-invariant space X = X (P, )
(where y is non-atomic) can be described by its fundamental function, which is de-
fined for t € [0, u(P)) as ¢x(t) = | x&,|lx, where E; c P is an arbitrary measur-
able set with y(E;) = t. In general, the fundamental function of a rearrangement-
invariant Banach function space (.i. space) X is quasi-concave, but X may be equiv-
alently renormed so that ¢ x is concave. Moreover, ¢x is absolutely continuous ex-
cept perhaps at the origin, where there may be a jump discontinuity.

Example 7. Given an r.i. space X with concave fundamental function ¢ x, we define
the Lorentz space A(X) and the Marcinkiewicz space M (X) by their norms

lulagn = [ w0 (1) dgx(0) = [ulu=(00) + [~ w ()50t
lul ey = sup M*u* () (6) = sup x (1) f " () ds,
>0 >0 0

where M* is the non-centered Hardy-Littlewood maximal function (cf. (1); in fact,
M* = M, defined in (10) below). The Lorentz and the Marcinkiewicz spaces are
the smallest and the largest spaces, respectively, among all r.i. spaces of the same
fundamental function ¢y, i.e., A(X) — X — M(X) whenever X is an r.i. space.

2.2 Other quasi-Banach function lattices

We have already seen in Examples 3 and 6 that the L? (P, u) spaces with 0 < p < 1
and the L% (P, u) spaces with g € (1, oo] are mere quasi-Banach function lattices
as they fail to be locally embedded in L!.

Example 8. Let X be an arbitrary (quasi)Banach function space. We can define a
subspace Y of X by posing an additional condition that forces the function value to
be zero at some point xj € P, e.g.,

= du.
by =+ 32 f, Il
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Then, Y is not a (quasi)Banach function space since L* is not locally embedded in
Y. It is however a (quasi)Banach function lattice.

Example 9. Spaces of continuous, C¥-smooth, or Sobolev functions are not quasi-
Banach function lattices as they fail to comply with the lattice property.

2.3 Absolute continuity of the quasi-norm

The quasi-norm | - | x in a quasi-Banach function lattice X is absolutely continuous
if |uxg, |x = 0as n - oo whenever u € X and {E, } 2, is a decreasing sequence of
measurable sets with (32, E» ) = 0. The notion of absolute continuity of the quasi-
norm turns out crucial for the results on approximability of Newtonian functions
by Lipschitz continuous functions obtained in [III]. It is possible to find examples
of function spaces X = X(R") lacking this property such that (locally) Lipschitz
functions are not dense in the corresponding Newtonian space N'X(R").

The dominated convergence theorem vyields that the L? (quasi)norm is abso-
lutely continuous for p € (0, c0). On the other hand, the weak-L? (i.e., the Lorentz
LP* spaces) and L™ spaces lack this property apart from a few pathological cases.
In quasi-Banach function spaces, the dominated convergence theorem is in fact
equivalent to the absolute continuity of the quasi-norm.

It is worth noting (even though it will not be used in the thesis) that the ab-
solute continuity of the norm plays a vital role for establishing a connection be-
tween functional-analytic and measure-theoretic approaches to dual spaces of Ba-
nach function spaces (see [4, Sections 1.3 and I.4]). Namely, the Banach space dual
X* that consists of bounded linear functionals on a Banach function space X is iso-
metrically isomorphic to the associate space

X':{veM(P,y): [v|x = sup uvd[,t<oo}

Julx=1"7
if and only if the norm of X is absolutely continuous. The relation between T € X*
and v € X' is then given by the representation Tu = [, uv dy, where u € X.

3 Doubling measures

Some of the results on regularity and regularization of Newtonian functions in [III,
IV] make use of the assumption that the measure is doubling, i.e., there is cqp > 1
such that y(2B) < cqpp(B) for every ball B c P, where 2B denotes the ball of the
same center as B but twice the radius. Roughly speaking, the doubling condition
of the measure guarantees that the metric measure space has certain properties of
finite-dimensional spaces. In particular, the Hardy-Littlewood maximal operator
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is a bounded mapping from L'(P) to L>*°(P), whence Lebesgue’s differentiation
theorem holds true.

In general, it is however not possible to define the dimension of the space (re-
lated to the measure) unambiguously. On the other hand, if 4 is doubling, then
there are ¢; > 0 and s > 0 such that

W(By.r) ()
W(B(x ) > (E) 7

for every x € P, 0 < r < R < 0o, and y € B(x, R). If (7) holds with some s, then it
holds with all s" > s. By an iteration argument, it can be shown that (7) holds with
s = log, cqpl, which however need not be the optimal value. The set of admissible
exponents may be open (see Bjorn, Bjorn, and Lehrbéck [7]), whence there need not
exist an optimal value of s. The exponent s plays a fundamental role in [IV] when
establishing sufficient conditions for Newtonian functions to be locally bounded
and (Holder) continuous. Roughly speaking, s is as significant as the dimension n
is for the embeddings W' (R") — L (R") and WP (R") — C*%(R").

If P is connected (which in particular holds if P supports a Poincaré inequality,
see Section 4 below) and y is doubling, then there are ¢; > 0 and 0 < o < s such that

wBwr)  (rY
u(B(x. R) (R) ®

for every x € P, 0 < r < R < o0, and y € B(x, R). Similarly as above, if (8) holds
with some o, then it holds with all ¢’ < ¢. Note however that it may happen that
0 < s even if both ¢ and s are the best possible exponents (provided that these
exist). Inequalities (7) and (8) may be used to estimate the Hausdorff dimension
of the metric space as dimy P € [0, s]. The metric measure space is called Ahlfors
Q-regular if both (7) and (8) are satisfied with o = s =t Q. Ahlfors regularity is a very
restrictive condition that fails even in weighted R", unless the weight is bounded
away both from zero and from infinity.

If a metric space is endowed with a doubling measure, then the metric space
is doubling, i.e., there is N < oo such that every ball of radius r can be covered
by at most N balls of radius r/2. Consequently, bounded sets in such a metric
space are totally bounded. Conversely, a doubling metric space may be equipped
with a measure that is not doubling. However, if the doubling metric space is com-
plete, then one can construct a doubling measure thereon (see Volberg and Konya-
gin [52]). Roughly speaking, doubling metric spaces possess certain properties of
finite-dimensional linear spaces since they are bi-Lipschitz equivalent to a subset of
R" equipped with a metric that however need not be equivalent with the Euclidean
one, see Semmes [45].
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4 Poincaré inequalities

A metric space P supports a p-Poincaré inequality with p € [1, 00) if there exist
constants cpy > 0 and A > 1 such that for all balls B ¢ P, all functions u € L} _(P)
and all (p-weak) upper gradients g of u, we have

1/p
][B|u—u3|dySCPIdiam(B)(fAngd‘u) . (9)

Roughly speaking, if the metric space supports a Poincaré inequality, then there
are plentiful curves forcing the upper gradient to be sufficiently large so that the
volume integral of an upper gradient can be used to control the mean oscillation of
a function. The Poincaré inequality allows us to do an advanced first-order analysis
in metric spaces.

Regularity of Newtonian functions (such as continuity, Holder continuity, ap-
proximability by Lipschitz functions) as well as Sobolev-type embeddings can be
established if the metric space is endowed with a doubling measure and supports a
Poincaré inequality.

Furthermore, a p-Poincaré inequality together with the doubling condition of
the measure enables us to establish a relation between (weak) upper gradients, Haj-
tasz gradients and fractional sharp maximal functions that are used to define New-
tonian, Hajtasz and Calderén-Sobolev spaces, respectively. Namely, it is easy to
see that the p-Poincaré inequality implies that u! < c(M;g?)"/?, where M, is the
Hardy-Littlewood maximal operator (see (10) below) and g is an upper gradient
of u. Hajtasz and Kinnunen [23] showed that there is ¢ > 0 such that cu{1 is a Haj-
tasz gradient of every u € L|__(P), provided that y is doubling (even if P does not
support any Poincaré inequality).

Obviously, if (9) holds for some p € [1, ), then it holds for every p’ € [p, o)
by the Holder inequality. On the other hand, Keith and Zhong [34] showed that the
Poincaré inequality is a self-improving property if the metric space P is complete
and y is doubling. Namely, if (9) holds for some p € (1, c0), then there is € > 0 such
that it holds for every p’ € (p — ¢, 00).

It is often difficult to check whether a metric measure space supports a Poincaré
inequality. The list of known examples includes Euclidean spaces with the Lebesgue
measure, weighted Euclidean spaces with p-admissible weights (e.g., weights of the
Muckenhoupt class A,), complete Riemannian manifolds with non-negative Ricci
curvature, Heisenberg groups, Carnot-Carathéodory spaces, and Loewner spaces,
see [9, 25, 28, 29, 31, 37, 43]. Poincaré inequalities are preserved under bi-Lipschitz
mappings and they survive the Gromov-Hausdorff limits. Semmes [44] established
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that n-Ahlfors regular complete metric spaces (where n € N) support a 1-Poincaré
inequality if there are sufficiently many rectifiable curves.

There are some geometric constraints imposed on a metric space P if it supports
a Poincaré inequality. First of all, it is necessarily connected. Roughly speaking, the
following example shows that P cannot have any slits.

Example 10. Suppose that there exists an open ball B = B(z,r) c P such that
3B = U3 U V3, where Us and V; are disjoint and open, while both U; := U3 n B and
Vi := V3 N B have positive measure, and dist(Uj, V) = 0. Let

max {O, d(;’z) - 1} for x € Us,

r
u(x) = min{l,Z— d(x,z)} for x € Vs,
2r
% forx e P\ (Usu V).

Then, u = 0 in U, := U3 N 2B while u = 1in V; := V3 N 2B. Moreover, g = y3p28/2r
is an upper gradient of u. We will now show by contradiction that # and g do not
fulfill (9) and hence P does not support any p-Poincaré inequality.

Suppose on the contrary that there are p € [I,00), A > 1, and ¢p; > 0 such
that (9) holds. Since dist(Uj, Vi) = 0, we can find a ball B c 2B such that AB c 2B,
#(Uy N B) > 0, and (V5 n B) > 0. For such a ball B, the right-hand side of (9) is
equal to zero. However, the left-hand side is equal to 4(U>nB) u(V2nB) /u(B)? > 0.

Similarly, narrow passages or cusps may destroy the Poincaré inequality. If P
is complete, endowed with a doubling measure, and supports a Poincaré inequality,
then it is quasi-convex, i.e., every two points can be connected by a curve whose
length is comparable with the distance of these two points.

5 Maximal operators of Hardy-Littlewood type

The classical Hardy-Littlewood maximal operator is a central tool in harmonic anal-
ysis. It can be also used in studying partial differential equations and Sobolev func-
tions, see e.g. Bojarski and Hajtasz [10]. Given1 < p < oo, we define the non-centered
maximal operator by

, 1/p
Mpf(X)=;g§(][Blf| dy) , xeP, (10)

where f : P — R is a measurable function. Coifman and Weiss [13] showed that
My : LN(P,u) - LY (P, u) is bounded, given that y is a doubling measure. As
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a direct consequence, we see that M, : LP(P,u) — LP*(P,u) is bounded for
all p € [1,00). Apparently, M, : L*°(P,u) - L*(P, u) is bounded as well. The
Marcinkiewicz interpolation theorem then yields that M, : LI(P, u) - L1(P, u)
is bounded whenever 1 < p < g < co.

It has been mentioned earlier that the maximal operator M; conveys the rela-
tion between fractional sharp maximal functions and Hajlasz gradients in metric
spaces endowed with a doubling measure. If the metric space in addition supports a
p-Poincaré inequality, then the maximal operator M, creates a link between (weak)
upper gradients on one side, and fractional sharp maximal functions and Hajtasz
gradients on the other side.

Hence in doubling measure spaces, the Hajtasz space M' X (that consists of func-
tions u € X that have a Hajtasz gradient g € X) coincides with the Calderén-Sobolev
space C WX (that consists of functions u € X with u{‘ € X) whenever M; : X - X
is bounded. In doubling p-Poincaré spaces, the Newtonian space N'X (with a.e.-
equivalence classes) coincides with M'X and CW'X whenever M, : X — X is
bounded.

When applying the method of Lipschitz truncations in [III], weak boundedness
of maximal operators of Hardy-Littlewood type is used in conjunction with the
Poincaré inequality to prove that Lipschitz functions are dense in the Newtonian
space both in the Newtonian norm and in the Luzin sense, i.e., restriction of a New-
tonian function to the complement of a set of arbitrarily small measure is Lipschitz
continuous. Such a result goes back to Shanmugalingam [46] in the L? setting. Sim-
ilar results were also obtained by Tuominen [51] in the Orlicz setting, by Harjulehto,
Hésto and Pere [26] in the setting of variable exponent spaces, and by Costea and
Miranda [14] for the Lorentz—Newtonian spaces N'L”4(P) with 1< g < p < oo,

6 Quasi-continuity

In the theory of first-order Sobolev spaces (and spaces of Sobolev type), quasi-
continuity plays an analogous role as Luzin’s theorem in zeroth-order analysis. A
function is called quasi-continuous if an open set of arbitrarily small Sobolev capac-
ity can be found so that the restriction of the function to the complement of that
set is continuous. The notion of quasi-continuity is closely related with the Sobolev
capacity Cx whose definition depends on the used Sobolev-type function norm. In
the Newtonian setting, it is customary to define Cx(E) = inf{|u|yix : u > 1on E}
for E c P, which turns out to correspond well with the natural equivalence classes
in N'X. Unfortunately, when the capacity is defined this way, it is not a priori outer
regular. Roughly speaking, the capacity is an outer capacity if and only if all New-
tonian functions are quasi-continuous, cf. Bjorn, Bjérn and Shanmugalingam [8]
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and [IV]. Note also that Cx(E) = 0 implies that u(E) = 0, but not vice versa.

In the Euclidean setting, Sobolev functions in W"?(R", w(x) dx), where w is a
p-admissible weight, have quasi-continuous representatives, cf. Heinonen, Kilpeldi-
nen, Martio [29]. For a thorough treatise of the unweighted case, see e.g. Maly and
Ziemer [37]. In metric spaces, it suffices that continuous functions are dense in
the Newtonian space N'X in order to obtain existence of quasi-continuous repre-
sentatives of N'X functions, cf. [8, 47, IV]. In fact, there is a qualitative difference
between W-?(R") and N"?(R"). Namely, the space N (R") corresponds to the
refined Sobolev space (see [29]) since all the representatives are quasi-continuous in
this case.

Summary of papers

Paper I: Newtonian spaces based on quasi-Banach function lattices

In the first paper, we define Newtonian spaces based on quasi-Banach function lat-
tices using the notion of upper gradient. We investigate generalizations of stan-
dard tools in the theory of Newtonian functions. Namely, we define and study the
Sobolev capacity based on the quasi-norm of the function lattice. It serves as a finer
(0-quasi-additive) outer measure for sets of zero measure.

Asin the L? case, we see that a function has Newtonian quasi-seminorm equal to
zero if and only if the function is equal to zero quasi-everywhere, i.e., with exception
of a set of capacity zero. The natural equivalence classes are thus given by equality up
to sets of capacity zero and it is exactly these sets that do not carry any information
about a Newtonian function.

We also define the modulus of a family of curves and prove that Newtonian
spaces can be equivalently defined using weak upper gradients. We show that all
these objects retain their properties, well-known in the L? and the Orlicz cases,
even in our general setting. Most importantly, the Newtonian space with equiva-
lence classes given by equality quasi-everywhere is a complete quasi-normed space.
Moreover, all Newtonian functions are absolutely continuous along almost every
rectifiable curve, where “almost every curve” means that the exceptional family of
curves has zero modulus.

Paper II: Minimal weak upper gradients in Newtonian spaces
based on quasi-Banach function lattices

Given an extended real-valued function, there is a corresponding (weak) upper gra-
dient. It is, however, not unique. The definition of the Newtonian quasi-norm uses
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minimization of an energy functional over all (weak) upper gradients. In this paper,
we use a method similar to that of Hajlasz [22] to show that in the fully general set-
ting of quasi-Banach function lattices, there is a minimal weak upper gradient and
thus the infimum in the Newtonian quasi-norm is indeed attained. This result ap-
plies, in particular, to the N>* := N'L* spaces, where the question of existence of a
minimal weak upper gradient was still open. Afterwards, we find a family of repre-
sentation formulae for the minimal weak upper gradient under the assumption that
Lebesgue’s differentiation theorem holds in the underlying metric measure space P.
For example, it suffices that the measure satisfies the doubling condition.

Next, we study the sets of upper gradients and weak upper gradients. We show
that the latter is the closure of the former in the convex cone of non-negative func-
tions in the corresponding quasi-Banach function lattice. Furthermore, we inves-
tigate convergence properties of sequences of Newtonian functions and their weak
upper gradients.

Paper I1I: Regularization of Newtonian functions on metric spaces
via weak boundedness of maximal operators

Analysis of partial differential equations frequently makes use of approximability of
Sobolev functions by smooth functions. As usual partial derivatives (and hence the
notion of C*-smoothness with k > 1) are unavailable in metric spaces, we consider
Lipschitz continuity as the regularity concept of interest.

First, we look into the question when bounded functions are dense in the New-
tonian space. It turns out that absolute continuity of the quasi-norm of the base
function space X is crucial for the density. We observe that bounded functions are
not dense in weak Marcinkiewicz (weak Lorentz) spaces. As a particular conse-
quence, (locally) Lipschitz functions are shown not to be dense in N'X(R") when-
ever X is a weak Marcinkiewicz space whose fundamental function, roughly speak-
ing, is not concave enough relative to the dimension ».

The regularizations in N'X that are investigated in the paper are constructed
via Lipschitz truncations, provided that Hajlasz gradients of Newtonian functions
satisfy certain weak norm estimates. Interplay between the Hajtasz, the Calderén
and the Newtonian approaches is employed to study the problem in metric spaces
endowed with a doubling measure supporting a p-Poincaré inequality. Then, the
regularization problem reduces to establishing sufficient conditions for a maximal
operator of Hardy-Littlewood type to be weakly bounded on sets of finite measure.

Therefore, such a weak boundedness of the maximal operators is explored as
well. Particular focus is given to the situation when X is a rearrangement-invariant
space. Then, the desired boundedness can be obtained, e.g., if X is locally embedded
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in certain classical Lorentz spaces or if the reciprocal for the fundamental function
of X is comparable with its L?-means.

Paper IV: Fine properties of Newtonian functions and
the Sobolev capacity on metric measure spaces

Regularity of Newtonian functions based on quasi-Banach function lattices is the
object of interest of this paper. Two interlinked concepts of regularity are studied,
namely, quasi-continuity and continuity. The former can be understood as a Luzin-
type condition, where a set of arbitrarily small capacity can be found for each New-
tonian function so that its restriction to the complement of that set is continuous.

Furthermore, the quasi-continuity bears a close relation to outer regularity of
the Sobolev capacity. In the Euclidean setting, the Sobolev capacity is defined in
such a way that it is automatically an outer capacity (see [29, Definition 2.35]). This
is however not the case when the Sobolev capacity is built via the Newtonian func-
tion (quasi)norm so that it corresponds well to natural equivalence classes in the
respective Newtonian space. If continuous functions are dense in the Newtonian
space, then we prove that all Newtonian functions are quasi-continuous if and only
if the Sobolev capacity is an outer capacity.

Applying the results on quasi-continuity and on outer regularity of the capacity,
locally Lipschitz functions are shown to be dense in a Newtonian space on an open
subset of a proper metric space, provided that (locally) Lipschitz functions are dense
in the Newtonian space on the whole metric space. The noteworthy part of this claim
is that no hypotheses are put on this open subset. In particular, the open subset as
a metric space need not support any Poincaré inequality, nor does the restriction of
the measure need to be doubling.

Given that the metric space is endowed with a doubling measure and supports a
Poincaré inequality, Newtonian functions can be proven to be essentially bounded
if the summability of (weak) upper gradients, in terms of the function norm, ex-
ceeds the “dimension” s of the measure defined in (7). This is a well-known result
for N*? := N'L?, where p > s. On the other hand, there are unbounded Newto-
nian functions in N*? if p = 5. Since the theory in the paper is built considering
general quasi-Banach function lattices, it is possible to analyze the borderline case
using a finer scale of function spaces. It suffices that the gradient lies in the Zyg-
mund space L*(log L)® with & > 1 - 1/s or in the Lorentz space L*! to see that the
Newtonian functions are locally essentially bounded. In the unweighted Euclidean
spaces R” (where s = n), it is known (cf. [18]) that the Lorentz space L™! is the
optimal rearrangement-invariant Banach function space to obtain the embedding
WIL™(Q) = L*®(Q) for |Q] < co. The methods applied in the current paper differ
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significantly from those used in the Euclidean case. Here, all the estimates are based
on Poincaré inequalities, whereas pointwise estimates by the Riesz potential and
symmetrization of the Riesz kernel (cf. [33]), or the Plya-Szegé principle (cf. [18])
can be used in R".

The estimates for local essential boundedness are uniform in a certain way so
that one can conclude that Newtonian functions have continuous representatives if
the gradient is summable in a sufficiently high degree. If the metric space is in ad-
dition complete, then all representatives are continuous, which illustrates yet again
the qualitative difference between the usual Sobolev and the Newtonian spaces.

Furthermore, several technical tools are established in the paper. In the area of
calculus of weak upper gradients, the product and the chain rule are proven and
the minimal weak upper gradient is shown to depend only on the local behavior of
a function. The Vitali-Carathéodory theorem (i.e., approximability of the norm of
a function by the norms of its lower semicontinuous majorants) for general quasi-
Banach function lattices is also looked into.
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