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We show that for two-qubit chained Bell inequalities with an arbitrary number of measurement settings,
nonlocality and entanglement are not only different properties but are inversely related. Specifically, we
analytically prove that in absence of noise, robustness of nonlocality, defined as the maximum fraction of
detection events that can be lost such that the remaining ones still do not admit a local model, and concurrence
are inversely related for any chained Bell inequality with an arbitrary number of settings. The closer quantum
states are to product states, the harder it is to reproduce quantum correlations with local models. We also show
that, in presence of noise, nonlocality and entanglement are simultaneously maximized only when the noise level
is equal to the maximum level tolerated by the inequality; in any other case, a more nonlocal state is always
obtained by reducing the entanglement. In addition, we observed that robustness of nonlocality and concurrence
are also inversely related for the Bell scenarios defined by the tight two-qubit three-setting I3322 inequality, and
the tight two-qutrit inequality I3.

DOI: 10.1103/PhysRevA.89.012102 PACS number(s): 03.65.Ud, 03.67.Bg, 42.50.Xa

I. INTRODUCTION

Nonlocality and entanglement are two core concepts in
quantum information. If pρ(ab) is the joint probability that
Alice obtains a = 1 and Bob b = 1 on a system prepared in
state ρ, nonlocality is the impossibility of expressing pρ(ab)
as

∑
λ pρ(λ)pρ(a,λ)pρ(b,λ), where λ are preestablished

classical correlations [1]. Entanglement is the impossibility
of expressing a quantum state as a convex combination of
separable states. Nonlocality and entanglement are related
concepts in the sense that, to have nonlocality, entanglement
is needed [2]. The difference between both concepts has been
pointed out before. First, it was noticed that there are entangled
states which do not violate specific Bell inequalities [3].
Then, in Ref. [4], the statistical strength of Bell tests was
studied, showing that stronger tests (for a given family of Bell
inequalities) require nonmaximally entangled states. Similarly,
it was shown in [5] that nonmaximally entangled states allow
for larger violations (or equivalently a stronger resistance
to noise) of the I3 two-qutrit inequality [6]. In [7] it was
demonstrated that, for general bipartite Bell inequalities with
n inputs, n outputs, and n-dimensional Hilbert spaces, the
entropy of entanglement of the state is essentially irrelevant
in obtaining large violation. Finally, in [8,9], it is shown that,
for certain inequalities, weakly entangled states outperform
maximally entangled ones of arbitrary dimension.

One difficulty in reaching a general conclusion about
the relationship between nonlocality and entanglement is
that of finding a general scenario where incontrovertible
measures of nonlocality and entanglement can be compared.
Bipartite scenarios have the advantage that any of the many
measures of entanglement assign zero entanglement to product
states and maximum entanglement to maximally entangled

states [10,11]. Nonlocality is a more delicate issue since
different restrictions on the number of measurement settings
usually lead to different measures of nonlocality. This suggests
that to study such relationship, one needs to consider a general
scenario in which each party can perform an arbitrary number
of local measurements.

The structure of the paper is the following: In Sec. II we de-
fine a measure of nonlocality called robustness of nonlocality
that will be used through all the paper. In Sec. III we discuss a
general bipartite scenario in which both parties have the same
number of settings and prove that, no matter the number of set-
tings, robustness of nonlocality and entanglement are inversely
related. We then study how noise affects this conclusion. In
Sec. IV we numerically explore the second simplest tight
bipartite Bell inequality I3322 [12], which has three settings
per party, each with two outcomes. In Sec. V, we study a
tight two-qutrit Bell inequality I3 [6]. In all cases considered
we observe the same behavior, namely, that entanglement and
robustness of nonlocality are inversely related.

II. ROBUSTNESS OF NONLOCALITY

For an ensemble of entangled particles in a state |ψ〉
and a given Bell inequality, we define the robustness of
nonlocality R against loss of local information as the maximum
fraction of random particles per observer that can be lost such
that the remaining ones can violate the Bell inequality. The
robustness of nonlocality is related to the minimum detection
efficiency ηcrit required for a loophole-free violation of the Bell
inequality [13] as R ≡ 1 − ηcrit.

The idea behind this measure of nonlocality is simple: A
violation of a Bell inequality with perfect detection efficiency
implies that no local model can reproduce the observed joint
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probabilities. If the minimum detection efficiency is ηcrit, this
means that no local model exists, even if one locally rejects a
fraction R of the events. Therefore, the larger R, the harder it is
to reproduce the observed results with local models. Therefore,
R may be taken as a measure of nonlocality. As a measure of
entanglement we will use the concurrence [10,11].

Any bipartite Bell inequality involving mA and mB di-
chotomic (±1) observables Aj and Bk on Alice’s and Bob’s
sides, respectively, can be written in the following form:

〈S〉ρ � SLHV, (1)

where 〈S〉ρ is the expectation value of S in the state ρ and

S =
mA∑
j=1

mA∑
k=1

cjkp(ajbk) +
mA∑
j=1

αjp(aj ) +
mB∑
k=1

βkp(bk). (2)

In the previous expression, p(ajbj ) = p(Aj = 1,Bk = 1) are
the joint probabilities of detecting the +1 eigenvectors |aj 〉
and |bk〉 of the observables Aj and Bk . If the observables have
dA and dB outcomes, any Bell inequality can be expressed
in a similar way by using only the first dA − 1 and dB − 1
outcomes.

Let us now evaluate the effect of detection inefficiency.
For inequalities involving only +1 outcomes such as (2),
it is customary to assume that no-detection events do not
contribute to the inequality (they can be seen as detection
on the “−1” outcome). However, in order to compute the
robustness of nonlocality, it is necessary to optimize over all
possible strategies for the no-detection events; for instance,
whenever Alice does not get a detection, she can choose
to always output +1 for observables A1 and output −1 for
all other observables [14]. It is worth noting that, instead
of grouping inconclusive events with one of the outcomes,
different strategies can be used. For instance, a further
outcome, corresponding to nondetections, can be added to the
observables, [15], or one can also choose to treat nondetections
as simply “undefined” [16]. However, these strategies will
require a modification of the Bell inequality. In the present
paper we will study the robustness of nonlocality by assigning
one of the observable outcomes to inconclusive events.

Each strategy giving a definite output to each observable
is completely equivalent to relabeling the inputs or outputs of
a Bell inequality and using the “−1” outcome in the case of
nondetection for any observable. To give an example, the in-
equality (2) with Alice giving output +1 only for observable A1

in the case of no detection is equivalent to replacing p(a1bk) →
p(bk) − p(a1bk) and p(a1) → 1 − p(a1) and using the −1
outcome in the case of a no-detection event for any observable.

It can also be noted that from the experimental viewpoint,
assigning −1 outcomes for nondetection gives a simple way to
handle these events. This is because with this assignment, no-
detection events do not contribute to the inequality, so that there
is no need to distinguish whether there was a pair produced but
no detection, or if there was no pair produced. Distinguishing
these are sometimes nontrivial, for example in a continuously
pumped experiment, but this is not needed with the suggested
assignment.

Thus, since any no-detection strategy is equivalent to
rewrite the Bell inequality, the robustness of nonlocality R can
be evaluated by optimizing over all possible ways of rewriting

the inequality and using the −1 outcome in the case of non-
detection (in the case of observable with d outcomes, the last
outcome is typically used in the case of nondetection). In order
to violate a Bell inequality written as (2), in the case of detec-
tion efficiencies ηA and ηB , the following relation must hold:

ηAηB

mA∑
j=1

mA∑
k=1

cjkp(ajbk) + ηA

mA∑
j=1

αjp(aj )

+ ηB

mB∑
k=1

βkp(bk) > SLHV. (3)

Eberhard first showed that states with lower entanglement
allow a violation of the Clauser-Horne-Simony-Holt (CHSH)
inequality [17] with lower required detection efficiency [18]
with respect to maximally entangled states. Low entangled
states tolerate smaller efficiencies when one of the two
particles is always detected [19,20]. The same occurs in the
n-site Clauser-Horne inequality [21]. In [22], it was noticed
that nonmaximally entangled states of two qudits can lower
the required detection efficiency with respect to maximally
entangled states. Recently, it was shown that states with low
entanglement can be also useful for Einstein-Podolsky-Rosen
(EPR) steering with low detection inefficiencies [23,24].

In the following sections we will demonstrate that
states with low entanglement can tolerate lower detection
inefficiency for the violation of different Bell inequalities. In
particular, we will show that the robustness of non locality R

and the entanglement are inversely correlated for the studied
inequalities.

III. ROBUSTNESS OF NONLOCALITY VS
CONCURRENCE FOR CHAINED BELL INEQUALITIES

Pearle [13] and Braunstein and Caves (BC) [25,26] intro-
duced a generalization of the CHSH [17] and Clauser-Horne
(CH) [27] Bell inequalities, known as chained Bell inequali-
ties, in which Alice and Bob choose among M � 2 settings.
Chained Bell inequalities have some interesting applications:
The case M = 3 fixes a loophole that occurs in some experi-
ments based on the CHSH inequality [28]. Besides, it reduces
the number of trials needed to rule out local hidden variable
theories [29], and improves the security of some quantum key
distribution protocols [30]. In the case in which M tends to
infinity, the inequality allows one to discard nonlocal hidden
variable theories with a nonzero local fraction [31]. Chained
Bell inequalities have been experimentally tested using pairs of
photons, with M = 3 [32], 4 [33], and 21 [34]. It was recently
shown than they can be used for randomness expansion [35].

The version of the chained Bell inequalities introduced
in [33], which is symmetric under the permutation of Alice
and Bob, reads [by using the notation of (2)]

〈SM〉ρ � 0, (4)

where

SM = p(aMbM ) +
M∑

k=2

[p(akbk−1) + p(ak−1bk)]

− p(a1b1) −
M∑

k=2

[p(ak) + p(bk)]. (5)
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The minimum detection efficiency required for a loophole-free
violation of chained Bell inequalities for any M � 2 using
maximally entangled states has been obtained in [36]. The fact
that the maximum quantum violation of chained Bell inequal-
ities is always achieved with maximally entangled states [37]
might suggest that the minimum detection efficiency occurs
for maximally entangled states, but no proof exists of whether
the detection efficiency for the chained Bell inequalities can
indeed be reduced when one considers more general classes
of entangled states. Indeed, for case M = 2, corresponding to
the CH inequality (that is equivalent the CHSH), the minimum
detection efficiency occurs for almost product states [18,21].

In the following we will show that, in absence of noise
(e.g., considering pure states), the states with higher robustness
of nonlocality (or the minimum detection efficiency) for any
chained Bell inequality written in the form of (5) are almost
product states for which the robustness of nonlocality tends to

RM = 1

2M − 1
. (6)

The important point here is that this value is larger than
the maximum value of RM for maximally entangled states
(MES) [36], namely,

RM
MES = M cos

(
π

2M

) − M + 1

M cos
(

π
2M

) + M − 1
. (7)

Moreover, for Bell inequalities of the form (4) with fixed
M , we will show that the value in (6) is the maximum
achievable robustness of nonlocality for any quantum state.
This shows that, for all chained Bell inequalities, entanglement
and nonlocality of pure states are inversely related.

Theorem. The maximum of the robustness of nonlocality
of inequality (4) is RM = 1

2M−1 and can be obtained by almost
product state.

Proof. Assuming the same detection efficiency for every
party and setting, i.e., ηA = ηB = η, the value of SM becomes

η2(SM )ρ − η(1 − η)
M∑

k=2

[pρ(ak) + pρ(bk)], (8)

where pρ(ak) is the expectation value of p(ak) in the state ρ.
Therefore, inequality (4) is violated when η > η

(M)
crit , with

η
(M)
crit =

∑M
k=2[pρ(ak) + pρ(bk)]

(SM )ρ + ∑M
k=2[pρ(ak) + pρ(bk)]

. (9)

Since pρ(a1b1) � 0, it is easy to show that (SM )ρ +∑M
k=2[pρ(ak) + pρ(bk)] � pρ(aMbM ) + ∑M

k=2[pρ(akbk−1) +
pρ(ak−1bk)]. Then,

η
(M)
crit �

∑M
k=2[pρ(ak) + pρ(bk)]

pρ(aMbM ) + ∑M
k=2[pρ(akbk−1) + pρ(ak−1bk)]

.

(10)
Clearly,

0 � pρ(ajbk) � min[pρ(aj ), pρ(bk)], (11)

and the lowest possible bound of the right-hand side of (10) is
obtained when pψ (ajbk) = pψ (aj ) = pψ (bk) for j and k not

both equal to 1. We obtain

η
(M)
crit � (2M − 2)pψ (a1)

(2M − 1)pψ (a1)
= 2M − 2

2M − 1
, (12)

which cannot be achieved exactly, but arbitrarily close by the
following procedure: Any generic two-qubit pure states ρ =
|ψ〉〈ψ |, can be written (in a suitable basis) as

|ψ〉 = sin
γ

2
|00〉 − cos

γ

2
|11〉, (13)

with 0 � γ � π/2. Let us consider the following eigenstates:

|a1〉 = |b1〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉, (14a)

|ak〉 = |bk〉 = |0〉, with k = 2, . . . ,M, (14b)

and choose θ such that tan2 θ
2 = tan γ

2 . Then, pρ(a1b1) = 0
and the critical efficiency becomes

η
(M)
crit = 2M − 2

2M − 3 + 2
1+tan γ /2

, (15)

which, when γ tends to zero (i.e., when the state tends to a
product state), tends to

η
(M)
crit

γ→0−−→ 2M − 2

2M − 1
⇒ RM

γ→0−−→ 1

2M − 1
, (16)

concluding our proof. �
We have numerically obtained, by using the method of

conjugate gradient, RM as a function C of the pure state used to
violate the inequality and compared it with the corresponding
maximal achievable violation of the Bell inequality SM .
Moreover, through exhaustive numerical searches, we have
obtained that the form (5) gives the maximum R for any given
state (in the specific case of a maximally entangled state this
is analytically demonstrated in the Appendix). Note that, for
nonmaximally entangled states such as (13), the concurrence
is given by C = sin γ . The results for M = 2,3,4 are shown
in Fig. 1. We observe that larger violations of SM correspond
to lower values of RM . From Fig. 1 one can clearly see see that
nonlocality (measured by R) and entanglement (measured by
C) are inversely related: Larger concurrence, allowing larger
violation of the inequality, implies lower R.

A. Adding noise

How does noise affect this conclusion? In the presence
of white noise, the state becomes ρ = (1 − q)|ψ〉〈ψ | + q

41
and the threshold detection for the chained Bell inequalities
efficiency is changed to

η
(M)
crit =

∑M
k=2[pρ(ak) + pρ(bk)] + q

1−q
(M − 1)

(SM )ρ + ∑M
k=2[pρ(ak) + pρ(bk)] + q

2(1−q) (M − 1)
.

(17)

In Fig. 2 we show, for three different values of noise (q = 0.01,
q = 0.05, and q = 0.1), the dependence of R2 and R3 and the
maximum values of S2 and S3 with the degree of entanglement
of the initial pure state. We observe that, when the noise is
different from 0, the best quantum state giving the lowest
threshold is not an almost separable state, but a nonmaximally
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FIG. 1. (Color online) (a) Robustness of nonlocality R as a
function of the concurrence C. (b) Maximum values of (SM )ρ
violating the chained Bell inequality as a function of C.

entangled state depending on q. However, the lower the noise
q, the smaller the entanglement required to obtain the optimal
threshold.

Furthermore, in Fig. 2(b) we observe that, the lower M

is, the more resistant to noise is the violation of the Bell
inequality. In fact, it is possible to calculate the maximum
tolerated noise to violate the chained Bell inequalities. Given
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FIG. 2. (Color online) (a) Values of RM and (b) maximum vio-
lation of the chained Bell inequality for different number of settings
and different degree of noise (q) as a function of the concurrence.
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FIG. 3. (Color online) Maximal value of RM in the presence of
noise for the S2 and S3 Bell inequalities. The value of C giving the
best R is shown for each q.

γ and the maximal violation of SM defined as smax
M (γ ), the

maximum tolerated noise is qmax = 2smax
M (γ )

2smax
M (γ )+M−1 .

Using the method of conjugate gradient to minimize
Eq. (17), it is also possible to obtain the threshold and the
required entanglement for any value of the noise q. The
results are shown in Fig. 3. We observe that, for chained Bell
inequalities, nonlocality and entanglement are simultaneously
maximized only in the case of extreme noise, namely the
maximum noise level tolerated by the inequality. A better
threshold detection efficiency is obtained by lowering the
noise and suitably decreasing the entanglement. From this we
conclude that nonlocality and entanglement are synonymous
only for extremely noisy scenarios.

IV. ROBUSTNESS OF NONLOCALITY VS CONCURRENCE
FOR I3322 BELL INEQUALITY

After the results presented in the previous section, a natural
question is whether or not the same behavior occurs for other
bipartite Bell inequalities. In this section we present the results
for the second simplest tight bipartite Bell inequality, namely,
I3322 [12,38,39], involving three dichotomic measurements on
both A and B sides (the simplest tight bipartite Bell inequality
is the CHSH inequality or S2, studied in the previous section).

The I3322 inequality may be written as

〈I3322〉ρ � 0, (18)

where I3322 was defined in [12] as I3322 = p(a1b1) +
p(a1b2) + p(a1b3) + p(a2b1) + p(a2b2) + p(a3b1) −
p(a2b3) − p(a3b2) − 2p(a1) − p(a2) − p(b1). However, this
form will not lead to the best R. We have numerically checked
that the forms giving the best R are the following:

I
(1)
3322 = p(a1b1) − p(a1b2) + p(a1b3) + p(a2b1)

−p(a2b2) + p(a3b1) − p(a2b3) + p(a3b2)

−p(a1) − p(a3) − p(b1), (19)

that can be obtained from I3322 by replacing p(aib2) →
p(ai) − p(aib2) and

I
(2)
3322 = −p(a1b1) − p(a1b2) + p(a1b3) − p(a2b1)

−p(a2b2) − p(a3b1) − p(a2b3) + p(a3b2)

+p(a2) + p(b1) − 1, (20)
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C

R
I

C

FIG. 4. (Color online) (a) Robustness of nonlocality R as a
function of the concurrence C and (b) maximum violation of the
I3322 inequality as a function of C.

obtained from I
(1)
3322 by p(aib1) → p(ai) − p(aib1) and

p(b1) → 1 − p(b1).
Figure 4 shows the R and the violation of the I3322 inequality

as a function of the degree of entanglement measured by C.
We observe that, in the absence of noise, almost product states
are again those that require lower detection efficiencies. For
C � 0.9507 the optimal R is obtained with I

(2)
3322, while for C <

0.9507 the optimal R is obtained with I
(1)
3322. The optimality of

I
(2)
3322 can be analytically shown for maximally entangled states

(see the Appendix).
The minimum required efficiency with maximally entan-

gled states is 0.8284 as reported in Ref. [14]. Indeed, this
value can be obtained analytically. For two-qubit systems, the
maximum violation of I3322 is 1/4, and can be achieved with
a maximally entangled state, as was previously shown in [12].
Given a maximally entangled state ρ ′ that maximally violates
I

(2)
3322 and symmetric efficiencies η, to violate the inequality it

is necessary that

η2〈I3322〉ρ ′ + η(1 − η)[pρ ′(a2) − 1]

+ η(1 − η)[pρ ′(b1) − 1] − (1 − η)2 > 0. (21)

Remembering that for a maximally entangled state (MES)
pρ ′(ai) = 1

2 , we obtain

η > 2(
√

2 − 1) 	 0.828 ⇒ RMES 	 0.172. (22)

The maximal robustness of nonlocality R = 1
4 can be

achieved for almost product states. If we consider the I
(1)
3322

form of the inequality, the critical efficiency can be writ-
ten as ηc = pρ (a1)+pρ (a3)+pρ (b1)

〈I (1)
3322〉+pρ (a1)+pρ (a3)+pρ (b1)

. Let us choose |a1〉 =
|b1〉 = |a3〉 = |0〉, |a2〉 = cos θ

2 |0〉 + sin θ
2 |1〉, |b2〉 = |b3〉 =

sin θ
2 |0〉 + cos θ

2 |1〉, |ψ〉 = sin γ

2 |00〉 + cos γ

2 |11〉. By using θ

such that cos θ = 1+cos γ

2(1+sin γ ) we obtain

ηcrit = 12(1 + sin γ )

13 + 3 cos γ + 12 sin γ
, (23)

which, when γ tends to zero tends to

η
(M)
crit

γ→0−−→ 3
4 ⇒ R

γ→0−−→ 1
4 . (24)

We observe that the maximum R for the I3322 is greater than
the one for the S3 inequality, which has the same number of
local settings.

V. ROBUSTNESS OF NONLOCALITY VS CONCURRENCE
FOR THE I3 TWO-QUTRIT INEQUALITY

For the two-qubit Bell inequalities discussed above we
have observed that nonlocality and entanglement are inversely
related. Here we show that this is also true for other bipartite
scenarios. For this purpose we repeat our analysis but now for
a tight bipartite inequality maximally violated by two-qutrit
states, the I3 inequality [6].

The inequality is given by Ĩ3 = P (A1 = B1) + P (B1 =
A2 + 1) + P (A2 = B2) + P (B2 = A1) − P (A1 = B1 − 1) −
P (B1 = A2 − P (A2 = B2 − 1) − P (B2 = A1 − 1) � 2,

where P (Am = Bn + k) = ∑3
j=1 P (aj

mb
j+k mod3
n ). Here, n

and m (n,m = 1,2) denote the settings that the parties may
choose for the local measurements, and the index j denotes
each measurement outcome (j = 1,2,3). The inequality can
be rewritten in the form of (2) as 〈I3〉ρ � 0, with

I3 = p(a1b1) + p(a1b2) + p(a2b1) − p(a2b2) + p(ā1b̄1)

+p(ā1b̄2) + p(ā2b̄1) − p(ā2b̄2) + p(a1b̄1) + p(ā1b2)

+p(ā2b1) − p(ā2b2) − p(a1) − p(ā1) − p(b1) − p(b̄1).

(25)

In the previous expression aj and bj denote the 1 eigenstates
of the observables Aj and Bk , while āj and b̄j denote
the 2 eigenstates. Note that no probability containing the 3
eigenstate is present. Moreover, Ĩ3 = 3I3 + 2.

In Fig. 5 we show the maximal achievable violation of
I3 in function of the concurrence C while considering the
initial two-qutrit state given by |ψ〉 = cos θ1

2 cos θ2
2 |11〉 +

cos θ1
2 sin θ2

2 |22〉 + sin θ1
2 |33〉, where θk ∈ [0,π ]. The maxi-

mally entangled state is obtained when θ2 = π/2 and θ1 =

FIG. 5. (Color online) Maximum violation of the I3 qutrit
inequality as a function of the concurrence C.
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FIG. 6. (Color online) R as a function of the concurrence C for
the I3 qutrit inequality.

2 arcsin 1√
3
. The concurrence for the two-qutrit state described

above is given by C =
√

sin2 θ1 + sin2 θ2 cos4 θ1
2 and ranges

from 0 to 2√
3

[11]. As was first observed in [5], the maximal
violation of I3 is obtained with partially entangled states. The
maximal value achievable with MES is IMES

3 = 2
27 (4

√
3 −

3) 	 0.291 and one can clearly see that it does not correspond
to the maximum of I3.

We then numerically optimized the robustness of nonlo-
cality R in a function of C, by obtaining the results shown
in Fig. 6: the form of I3 given in (25) is the optimal
form for maximizing the R parameter. The optimality can
be analytically shown for maximally entangled states (see
the Appendix). Also in this case R and entanglement are
negatively correlated.

The maximal R is 1
3 and can be obtained for almost product

states, as in the previous inequalities. Let us consider the
following entangled state:

|ψ〉 = cos
γ

2
|11〉 + sin

γ

2
|33〉, (26)

and the following measurements: |a1〉 = |b1〉 = |3〉,
|ā1〉 = |b̄1〉 = |2〉, |a2〉 = cos θ

2 |1〉 + sin θ
2 |3〉, |b2〉 =

sin θ
2 |1〉 + cos θ

2 |3〉, |ā2〉 = |b̄2〉 = |2〉. In the form (25)
the threshold efficiency becomes (nondetection events
correspond to 3 eigenvalues and thus does not contribute to
the inequality)

ηc = pρ(a1) + pρ(ā1) + pρ(b1) + pρ(b̄1)

〈Ĩ3〉ρ + pρ(a1) + pρ(ā1) + pρ(b1) + pρ(b̄1)
. (27)

With the above measurement the critical efficiency becomes

ηc = 4(1 − cos γ )

3 − cos θ (2 + cos θ ) − 4 cos γ + sin2 θ sin γ
. (28)

If we choose cos θ = − 1
sin γ+1 and let γ go to zero we get

ηc

γ→0−−→ 2
3 ⇒ R

γ→0−−→ 1
3 . (29)

For maximally entangled states, for which p(aj ) = p(āj ) =
p(bj ) = p(b̄j ) = 1

3 , the R is given by

RMES = IMES
3

IMES
3 + 4/3

= 4
√

3 − 3

4
√

3 + 15
	 0.1791. (30)

VI. CONCLUSIONS

We would argue that robustness of nonlocality R is a
good measure of nonlocality, since it marks the border where
local hidden variable descriptions become possible: The larger
robustness of nonlocality is, the harder it is to express the joint
probabilities with local models.

We have shown that, for the two-party M-setting chained
Bell scenario (for any M � 2 finite), for a tight two-qubit
Bell inequality I3322, and a tight two-qutrit Bell inequality I3,
robustness of nonlocality and concurrence are, in the absence
of noise, inversely related.

The main result of this paper is the observation that,
for many distinct types of Bell scenarios, larger nonlocality
requires smaller entanglement; in the absence of noise, almost
product states are the most nonlocal ones. We analytically
showed that the maximal R can be achieved with almost
product state. The maximal values of R (related to the
minimum required detection efficiency as ηc = 1 − R) are
given by R = 1

2M−1 , R = 1
4 , and R = 1

3 for the SM chained
Bell inequality, the I3322 inequality and the I3 inequality
respectively.

When noise is present, the most nonlocal states acquire
some amount of entanglement; however, the smaller the noise
is, the lower their entanglement becomes.

Some questions naturally arise: Are the nonlocality and
entanglement inversely related in any Bell inequality involving
mA, mB observables with dA and dB outcomes? If yes, is there
some physical mechanism for such counterintuitive behavior?
These questions require further research.
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APPENDIX: OPTIMALITY OF DETECTION STRATEGY
FOR MAXIMALLY ENTANGLED STATES

In this section we will demonstrate which is the optimal
way of rewriting the Bell inequalities analyzed in the main
text in case of maximally entangled states. We start by giving
the general framework to solve the optimization.

Let us consider a general bipartite Bell inequality involving
mA and mB observables Aj and Bk on the Alice and Bob
side. The observables have dA and dB outcomes respectively,
μ = 1,2, . . . ,dA and ν = 1,2, . . . ,dB . Any Bell inequality can
be written as (2)

〈S〉ρ � SLHV, (A1)
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with

S =
mA∑
j=1

mA∑
k=1

dA−1∑
μ=1

dA−1∑
ν=1

c
μν

jk p
(
a

μ

j b
μ

k

)

+
mA∑
j=1

dA−1∑
μ=1

α
μ

j p
(
a

μ

j

) +
mB∑
k=1

dB−1∑
ν=1

βν
k p

(
bν

k

)
. (A2)

In the previous expression p(aμ

j bν
j ) = p(Aj = μ,Bk = ν) are

the joint probabilities of detecting the μ and ν eigenvectors
|aμ

j 〉 and |bν
k 〉 of the observables Aj and Bk . Note that only the

first dA − 1 and dB − 1 outcomes are involved in the inequality.
When inefficiencies are present it is necessary to give a

strategy for the nondetection events. Let us suppose that the
strategy on Alice’s side is the following. If Alice is measuring
the observable Aj and the particle is not detected, she assigned,
with probabilityA(μ)

j , the outcome μ. Clearly,
∑dA

μ=1 A
(μ)
j = 1.

The same happens at Bob’s side, with probabilities B(ν)
k . If we

consider Alice and Bob inefficiencies as ηA and ηB , the Bell
inequality is violated if

ηAηB〈S〉ρ + (1 − ηA)ηBTA + ηA(1 − ηB)TB

+ (1 − ηA)(1 − ηB)XAB > SLHV, (A3)

with

TA =
∑

j,k,μ,ν

c
μν

jk A
(μ)
j pρ

(
bν

k

) +
∑
j,μ

α
μ

j A
(μ)
j +

∑
k,ν

βν
k pρ

(
bν

k

)
,

TB =
∑

j,k,μ,ν

c
μν

jk pρ

(
a

μ

j

)
B(ν)

k +
∑
j,μ

α
μ

j pρ

(
a

μ

j

) +
∑
k,ν

βν
kB

(ν)
k ,

XAB =
∑

j,k,μ,ν

c
μν

jk A
(μ)
j B(ν)

k +
∑
j,μ

α
μ

j A
(μ)
j +

∑
k,ν

βν
kB

(ν)
k .

(A4)

The sum is taken over i = 1, . . . ,mA and j = 1, . . . ,mB while
μ = 1, . . . ,dA − 1 and ν = 1, . . . ,dB − 1: also in the previous
expression the outcomes dA and dB of each observable are not
present.

We start with the chained Bell inequalities, and then analyze
the I3322 and I3 inequalities.

1. Chained Bell inequalities

For the chained Bell inequalities of Sec. III, we have
dichotomic observables. Then, in the case of nondetection on
the observable Aj , Alice chooses to output the +1 outcome
with probability Aj and the −1 outcome with probability
1 − Aj . The same happens to Bob. Remembering that, for
MES, pρ(aj ) = pρ(bk) = 1

2 we have

TA = TB = M − 1

2

XAB = AMBM +
M∑

k=2

(AkBk−1 + Ak−1Bk) (A5)

−A1B1 −
M∑

k=2

(Ak + Bk).

Since XAB corresponds to the chained Bell inequality applied
to the classical probabilities Ak and Bk , we have XAB � 0. In
order to maximize the Bell parameter it is necessary to choose
the Ak’s and Bk’s that maximize XAB . The trivial choice Ak =
Bk = 0, ∀k satisfies this requirement. It is worth noticing that
the choiceAk = Bk = 0, ∀k, corresponds precisely to consider
all nondetections as −1 outputs for the inequality written as (4).

2. I3322 inequality

Let us consider the I3322 inequality written in its original
form I3322 = p(a1b1) + p(a1b2) + p(a1b3) + p(a2b1) +
p(a2b2) + p(a3b1) − p(a2b3) − p(a3b2) − 2p(a1) − p(a2) −
p(b1). In the case of inefficiencies with nonmaximally
entangled states we have

TA = − 1
2 (A1 + A2 + 1), TB = 1

2 (B1 + B2 − 3),

XAB = A3(B1 − B2) + B3(A1 − A2) + A1B1 + A1B2

+A2B1 + A2B2 − 2A1 − A2 − B1. (A6)

Since the maximal value of 〈I3322〉 with maximally entangled
state is 1/4, the Bell parameter in the case of detection
inefficiencies ηA = ηB = η becomes

1
4η2 + 1

2η(1 − η)(B1 + B2 − A1 − A2 − 4) + (1 − η)2XAB.

(A7)

The choice that minimizes the critical efficiency is given by
B1 = B2 = 1 and B3 = A1 = A2 = A3 = 0, giving XAB =
−1, TA = TB = − 1

2 , and

1
4η2 − η(1 − η) − (1 − η)2 > 0, (A8)

solved by

η > 2(
√

2 − 1) 	 0.828. (A9)

The choice of the A’s and B’s corresponds to choosing for the
nondetection events the outcome −1 for the inequality written
as I

(2)
3322.

3. Two-qutrit I3 inequality

For this two-qutrit inequality Alice has three outcomes
for each observable Aj . In the case of nondetection she
assigns with probability A(1)

j the outcome 1, with probability

A(2)
j the outcome 2, and with probability 1 − A(1)

j − A(2)
j the

outcome 3. The same applies to Bob. For maximally entangled
states p(aj ) = p(bj ) = p(aj ) = p(bj ) = 1

3 , and we have

TA = TB = − 2
3 ,

XAB = A(1)
1 B(1)

1 + A(1)
1 B(1)

2 + A(1)
2 B(1)

1 − A(1)
2 B(1)

2

+A(2)
1 B(2)

1 + A(2)
1 B(2)

2 + A(2)
2 B(2)

1 − A(2)
2 B(2)

2

+A(1)
1 B(2)

1 + A(2)
1 B(1)

2 + A(2)
2 B(1)

1 − A(2)
2 B(1)

2

−A(1)
1 − A(2)

1 − B(1)
1 − B(2)

1 . (A10)
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The optimal choice of A(μ)
k ’s and B(μ)

k ’s is the one that
maximizes XAB . This term is clearly upper bounded by
0 (it corresponds to the Bell inequality). Then the choice

A(μ)
j = B(ν)

k = 0 saturates the bound. This choice corresponds
to choosing for the nondetection events the outcome 2 for the
inequality written as (25).
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