Introduction

This project aims to develop a gamma-ray spectrometry system with an unmanned aircraft system (UAS). This system fills a gap between portable measurement systems and full-sized airborne systems, and complements the car-borne measurement systems. Sources can be approached closely, providing good sensitivity with a relatively small instrument. The operating range allows for measurements to cover a large area in less time than e.g. portable systems. Urban environments are applicable. A test flight with the microdrone MD4-1000 [1] was performed in 2011 [2]. UAS of this size can carry a payload mass of about 1 kg, which limits the choice of detectors. The evaluation of a candidate detector is presented here.

Applications

- Survey NPPs
- Search for orphan sources
- Secure public areas
- Identify sources with high dose rate
- Survey accident sites
- Survey container sites
- Geophysical surveys

The UAS also provides footage of the source and site.

Detector evaluation

The IGEM Spectroscopy System [3] was considered a suitable detector given the low weight (288 g) and the turnkey configuration. The system uses a CdZnTe detector. The evaluation approach was to calculate the MDA for a given speed and altitude for the system. Count rate efficiencies were measured with two sources (\(^{137}\text{Cs}\) and \(^{131}\text{I}\)) to cover a wider energy range. The count rates at specific positions passing a point source were calculated by distance and air attenuation. A scenario was setup to give an idea of the detection limit for the system. The detector was compared with a handheld RIID, the GR-135 [4], with a 4 cu. in. NaI detector.

Detector evaluation results

	IGEM	MDA (\(^{137}\text{Cs}\))	38 MBq
Line spacing	0.25 km\(^2\)	MDA (\(^{131}\text{I}\))	19 MBq
Speed	10 m	GR-135	8 MBq
Altitude	5 m	MDA (\(^{137}\text{Cs}\))	8 MBq
Total distance	25500 m	MDA (\(^{131}\text{I}\))	4 MBq
Total time	85 min		

References

[5] Nuclear Data Center, Korea Atomic Energy Research Institute, atom.kaeri.re.kr

Future Work

- Aircraft vehicle evaluation
- Scandicraft [6]
- Detector evaluations
- Multidetector system
- \(\beta/n\) detection
- Air sampling
- Search strategies
- Validation
 - Exercises
 - Calibrations
- Data management and presentation
 - Deviation display [7]
 - Presentation in Google Maps/Earth
 - Info sharing
- Monte Carlo simulation of the system

Acknowledgements

The authors thank Graeme Catto at GC Technology GmbH for providing the detector for testing.