RAO-BLACKWELLIZED PARTICLE FILTER FOR MARKOV MODULATED NONLINEARDYNAMIC SYSTEMS

Saikat Saha and Gustaf Hendeby

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Saikat Saha and Gustaf Hendeby, RAO-BLACKWELLIZED PARTICLE FILTER FOR MARKOV MODULATED NONLINEARDYNAMIC SYSTEMS, 2014, IEEE statistical signal processing workshop (SSP14), Gold Coast, Australia.

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107395
RAO-BLACKWELLIZED PARTICLE FILTER FOR MARKOV MODULATED NONLINEAR DYNAMIC SYSTEMS

Saikat Saha†,∗
† Dept. Electrical Engineering
Linköping University
SE-581 83 Linköping, Sweden.
{saha, hendeby}@isy.liu.se

Gustaf Hendeby‡
‡ Dept. of Sensor & EW Systems
Swedish Defence Research Agency (FOI)
SE-581 11 Linköping, Sweden
gustaf.hendeby@foi.se

ABSTRACT

The Markov modulated (switching) state space is an important model paradigm in statistical signal processing. In this article, we specifically consider Markov modulated nonlinear state-space models and address the online Bayesian inference problem for such models. In particular, we propose a new Rao-Blackwellized particle filter for the inference task which is our main contribution here. A detailed description of the problem and an algorithm is presented.

Index Terms— Rao-Blackwellized particle filter, Markov regime switching, switching nonlinear state space, Jump Markov nonlinear systems

1. INTRODUCTION

Many practical applications in applied science often deals with nonlinear dynamic systems involving both a continuous value target state and a discrete value regime variable. Such descriptions imply that the system can switch between different nonlinear dynamic regimes, where the parameters of each regime is governed by the corresponding regime variable. The different regimes can possibly be described in terms of different stochastic processes. The regime variable also evolves dynamically according to a finite state (assumed) Markov chain. Both the target state and regime variable are latent and are related to noisy observations. This model paradigm is often referred to as a Markov regime switching (MRS) state space, sometimes with other monikers like jump Markov, Markov modulated, or hybrid dynamic system. Due to its modeling flexibility, MRS is very popular in different disciplines and as such, has been successfully used in diverse areas like econometrics, operations research, signal processing and machine learning among others [1–3]. However, most of the studies have focused on a special case where each individual regime follows a linear Gaussian state-space model. This special case is known as the jump Markov linear system (JMLS). Nonetheless, for many practical applications of interest, including econometrics [4], signal processing [5], target tracking and localization [6, 7], the individual regimes follows nonlinear dynamics, possibly driven by non-Gaussian processes. Such a system is referred to as a Markov modulated nonlinear dynamic system (MmNDS) or a jump Markov nonlinear system (JMNS). Compared to JMLS, this class of problems is less well studied. Hence, here we consider the state inference problem for MmNDS.

For certain models, part of the state space is (conditionally) tractable. It is then sufficient to employ a particle filter (PF) for the remaining intractable part of the state space. By exploiting such analytical substructure, the Monte Carlo based estimation is then confined to a space of lower dimension. Consequently, the estimate obtained is often better and never worse than the estimate provided by the PF targeting the full state space. This efficiency as a result of the well-known Rao-Blackwell estimator. For this reason, the method is popularly known as Rao-Blackwellized particle filtering (RBPF) [8].

In this article, based on [9], we address the online inference problem for MmNDS using PF. Particularly, we propose a new RBPF framework using the conditionally analytical substructure of the regime indicator variable. It is noted that a similar solution has recently been employed in the context of an expectation-maximization algorithm [10]; our paper differs in its emphasis on the RBPF framework as an independent method.

2. PROBLEM STATEMENT

2.1. Model description

Consider a (hybrid) nonlinear state-space model evolving according to

\[\Pi(r_k|r_{k-1}), \quad p_{\theta_{r_k}}(x_k|x_{k-1},r_k), \quad p_{\theta_{r_k}}(y_k|x_k,r_k), \]

(1)

where \(r_k \in S \triangleq \{1, 2, \ldots, s\} \) is a (discrete) regime indicator variable with finite number of regimes (i.e., categorical variable), \(x_k \in \mathbb{R}^{n_x} \) is the (continuous) state variable. As the system can switch between different dynamic regimes,
for a given regime variable \(l \in S \), the corresponding dynamic regime can be characterized by a set of parameters \(\theta_l \). Both \(x_k \) and \(r_k \) are latent variables, related to the measurement \(y_k \in \mathbb{R}^n \). The time behavior of the regime variable \(r_k \) is commonly modeled as a homogeneous (time-invariant) first order Markov chain with a transition probability matrix (TPM) \(\Pi = [\pi_{ij}]_{ij} \) such that

\[
\pi_{ij} \triangleq \mathbb{P}(r_k = j|r_{k-1} = i) \quad (i, j \in S), \tag{2}
\]

where \(\pi_{ij} \geq 0 \) and \(\sum_{i=1}^s \pi_{ij} = 1 \). This model is represented graphically in Fig. 1. The following examples illustrate some real life applications where the above model is used.

Example 1: Consider the Markov switching stochastic volatility model [4], where \(x_k \) is the latent time varying log-volatility, \(y_k \) is the observed value of daily return of stock price or index. The regime variable \(r_k \) is modeled as a \(K \)-state first order Markov process. The model is further specified as

\[
\begin{align*}
 p_{\theta_{r_k}}(x_k|x_{k-1}, r_k) &= \mathcal{N}(\alpha_{r_k} + \phi x_{k-1}, \sigma^2), \tag{3a} \\
 p(y_k|x_k, r_k) &= \mathcal{N}(0, e^{x_k}/2), \tag{3b}
\end{align*}
\]

where the parameter vector is given by \(\theta_{r_k} \triangleq \{ \alpha_{r_k}, \phi, \sigma \} \).

Example 2: Consider an altitude based terrain navigation framework [11]. To keep the description simple, assume that an aircraft is traveling in an one dimensional space (e.g., on a manifold). The aircraft is assumed to follow a constant velocity model. The state-space model is given by

\[
\begin{align*}
 x_{k+1} &= \begin{pmatrix} 1 & T \end{pmatrix} x_k + \begin{pmatrix} 0 \end{pmatrix} T w_k, \tag{4a} \\
 y_k &= h(x_k) + e_k(r_k), \tag{4b}
\end{align*}
\]

where \(T \) is the sampling period, \(w_k \) and \(e_k(\cdot) \) are the process and the measurement noise, respectively, commonly assumed to be individually mutually independent. The aircraft’s latent state \(x_k \) consists of position and velocity. The observation \(y_k \) denotes the terrain altitude measured by the aircraft at time \(k \). This is obtained by deducting the height measurement of the ground looking (on board) radar from the known altitude of the aircraft (obtained using an altimeter). The function \(h(x_k) \) relates the terrain altitude to position \(x_k \) in the form of a digital terrain database. \(h(\cdot) \) is highly nonlinear (the measured height can corresponds to different locations).

The distribution of \(w_k \) is typically modeled as Gaussian. As radar reflections can come from the ground as well as from the tree canopy, typically the observation noise \(e_k \) is modeled as a (bimodal) two component Gaussian mixture. The regime variable \(r_k \) indicates the corresponding mixture component. The sufficient statistics (\(i.e., \) mean and variance) of each component can be specified by the regime dependent parameters \(\theta_{r_k} \). The dynamics of \(r_k \) is modeled as two state first order homogeneous Markov process.

2.2. Inference objective

For the model described by (1)–(2), given the densities for the initial state \(\{ r_0, x_0 \} \) and the measurements up to time \(k \) \((Y_k \triangleq (y_1, \cdots, y_k)) \), our interest lies in estimating sequentially the latent states \(\{ r_k, x_k \} \). More precisely, for the statistical inference purpose, we target the series of filtering distributions \(\mathbb{P}(r_k|Y_k) \) and \(p(x_k|Y_k) \) recursively over time. However, the above posteriors are in general, computationally intractable. Given this intractability, PF is a suitable candidate for this approximate (real time) inference task. We note that conditioned on the sequence \(X_k \triangleq x_{1:k}, r_k \) follows a finite state hidden Markov model (HMM), implying that \(\mathbb{P}(r_k|X_k, Y_k) \) is analytically tractable. Using this analytical substructure, it is possible to implement an efficient RBPF scheme which can reduce the variance of the estimation error. In the sequel, we detail this RBPF framework for the MmNDS.

3. A NEW RBPF FOR MARKOV MODULATED NONLINEAR STATE-SPACE MODEL

3.1. Description of the RBPF approach

The initial densities for the state and the regime variables are given by \(p(x_0) \) and \(\mathbb{P}(r_0) \triangleq \mathbb{P}(r_0|x_0) \), respectively, these can be arbitrary but are assumed to be known. We further assume favorable mixing conditions as in [12].

Suppose that we are at time \(k-1 \). We consider the extended target density \(p(r_{k-1}, X_{k-1}|Y_{k-1}) \) which can be decomposed as

\[
p(r_{k-1}, X_{k-1}|Y_{k-1}) = p(r_{k-1}|X_{k-1}, Y_{k-1}) p(X_{k-1}|Y_{k-1}). \tag{5}
\]

The posterior propagation of the latent state \(x_{k-1} \) can then be targeted through a PF, where \(p(X_{k-1}|Y_{k-1}) \) is represented by a set of \(N \) weighted random particles as

\[
p(X_{k-1}|Y_{k-1}) \approx \sum_{i=1}^N w_{k-1}^{(i)} \delta(X_{k-1} - X_{k-1}^{(i)}). \tag{6}
\]

Conditioned on \(\{ X_{k-1}, Y_{k-1} \} \), the regime variable \(r_{k-1} \) follows a finite state-space HMM, making \(p(r_{k-1}|X_{k-1}, Y_{k-1}) \)}
analytically tractable, which is represented as
\[
q_{k \mid k-1}(l) \triangleq \mathbb{P}(r_k = l \mid X_{k-1}^{(i)}, Y_{k-1}),
\]
for \(l \in S \) and \(i = 1, \ldots, N \). Now using (6) and (7), the extended target density in (5) can be represented as
\[
\begin{bmatrix}
X_k^{(i)}, w_k^{(i)}, \{q_{k \mid k-1}(l)\}
\end{bmatrix}_{l=1}^{N},
\]
(8)

Now having observed \(y_k \), we want to propagate the extended target density in (5) to time \(k \). This can be achieved in the following steps (a)–(d):

(a) **Prediction step for conditional HMM filter**: this is easily obtained as
\[
q_{k \mid k-1}^{(i)}(l) \triangleq \mathbb{P}(r_k = l \mid X_{k-1}^{(i)}, Y_{k-1}) = \sum_{j=1}^{s} \pi_{jl} q_{k-1 \mid k-1}^{(i)}(j), \quad (l, j) \in S.
\]
(9a)

(b) **Prediction step for particle filter**: at this stage, generate \(N \) new samples \(x_k^{(i)} \) from an appropriate proposal kernel as
\[
x_k^{(i)} \sim \pi(x_k \mid X_{k-1}^{(i)}, Y_k).
\]
(10)

Then set \(X_k^{(i)} = \{X_{k-1}^{(i)}, x_k^{(i)}\} \), for \(i = 1, \ldots, N \), representing the particle trajectories up to time \(k \).

(c) **Update step for conditional HMM filter**: noting that
\[
\mathbb{P}(r_k = l \mid X_k, Y_k) \propto p(y_k, x_k \mid r_k = l, X_{k-1}, Y_{k-1}) \mathbb{P}(r_k = l \mid X_{k-1}, Y_{k-1}),
\]
(11)

we have
\[
q_{k \mid k}^{(i)}(l) \propto p(y_k, x_k^{(i)} \mid r_k = l, X_{k-1}^{(i)}, Y_{k-1}) q_{k \mid k-1}^{(i)}(l)
\]
\[
\propto p(y_k \mid x_k^{(i)}, r_k = l) p_0(x_k^{(i)} \mid x_{k-1}^{(i)}, r_k = l) q_{k \mid k-1}^{(i)}(l).
\]
(12)

Now defining
\[
\alpha_k^{(i)}(l) \triangleq p(y_k \mid x_k^{(i)}, r_k = l) p_0(x_k^{(i)} \mid x_{k-1}^{(i)}, r_k = l) q_{k \mid k-1}^{(i)}(l)
\]
(13)

we obtain
\[
q_{k \mid k}^{(i)}(l) = \alpha_k^{(i)}(l) / \sum_{j=1}^{s} \alpha_k^{(i)}(j),
\]
(14)

for \(l \in S \) and \(i = 1, \ldots, N \).

(d) **Update step for particle filter**: as the continuous state can be recursively propagated using the following relation:
\[
p(X_k \mid Y_k) \propto p(y_k, x_k \mid X_{k-1}, Y_{k-1}) p(X_{k-1} \mid Y_{k-1}),
\]
(15)

the corresponding weight update equation for the particle filtering is given by
\[
w_k^{(i)} = p(x_k^{(i)}, y_k \mid X_{k-1}^{(i)}, Y_{k-1}) / \sum_{j=1}^{N} w_j^{(i)},
\]
(16a)

where \(\{w_l^{(i)}\}_{l=1}^{N} \) are the normalized weights. The numerator
\[
p(x_k^{(i)}, y_k \mid X_{k-1}^{(i)}, Y_{k-1}) = \sum_{l=1}^{N} p(x_k^{(i)}, y_k \mid r_k = l, X_{k-1}^{(i)}, Y_{k-1}) \mathbb{P}(r_k = l \mid X_{k-1}^{(i)}, Y_{k-1}),
\]
(17)

which is basically given by the normalizing constant of (14). Note that the marginal density \(p(x_k \mid Y_k) \) can be obtained as
\[
p(x_k \mid Y_k) = \sum_{i=1}^{N} w_k^{(i)} \delta(x_k - x_k^{(i)}).
\]
(18)

The posterior probability of the regime variable can now be obtained as
\[
\mathbb{P}(r_k = l \mid Y_k) \approx \sum_{i=1}^{N} w_k^{(i)} \tilde{w}_k^{(i)}. \quad (19)
\]

Let \(\tilde{m}_k^{(i)} \) and \(\tilde{V}_k^{(i)} \) denote the mean and variance of the conditional HMM filter. They are now obtained as
\[
\tilde{m}_k^{(i)} = \sum_{l=1}^{N} (r_k = l) q_{k \mid k}^{(i)}(l), \quad (20a)
\]
\[
\tilde{V}_k^{(i)} = \sum_{l=1}^{N} ((r_k = l) - \tilde{m}_k^{(i)}) (\cdot)^T q_{k \mid k}^{(i)}(l), \quad (20b)
\]

where \((A) (\cdot)^T \) is shorthand for \(AA^T \). As noted earlier, the posterior of the regime variable is given by (19). Let \(\hat{m}_k \) and \(\hat{V}_k \) denote the corresponding mean and variance, which can be obtained as
\[
\hat{m}_k = \sum_{i=1}^{N} \tilde{w}_k^{(i)} \tilde{m}_k^{(i)}, \quad (21a)
\]
\[
\hat{V}_k = \sum_{i=1}^{N} \tilde{w}_k^{(i)} \left(\tilde{V}_k^{(i)} + (\hat{m}_k - \tilde{m}_k^{(i)}) (\cdot)^T \right). \quad (21b)
\]

Remark 1 For PF, a popular (but less efficient) choice for the proposal kernel is given by the state transition density \(p(x_k \mid x_{k-1}) \), which in this case can be obtained in the form of a weighted mixture density:
\[
p(x_k \mid x_{k-1}) = \sum_{l=1}^{N} p_{\theta x_{k-1}}(x_k \mid x_{k-1}, r_k = l) q_{k \mid k-1}^{(i)}(l), \quad (22)
\]

where \(p_{\theta x_{k-1}}(x_k \mid x_{k-1}, r_k = l) \) is specified in (1).

The new RBPF for the MmNDS is summarized in Alg. 1

4. RELATION TO OTHER SIMILAR MODELS

Conditionally finite state-space HMM similar to the one presented here have previously been considered by [13] and [14].
proved performance over a standard particle filter in terms of
able using the conditional HMM structure. This results in im-

Alg. 1 RBPF for MmNDM

Initialization:
For each particle $i = 1, \ldots, N$ do
 • Sample $x^{(i)}_0 \sim p(x_0)$.
 • Set initial weights $w^{(i)}_0 = \frac{1}{N}$.
 • Set initial $q^{(i)}_{0|0}(l) \triangleq P(r_0 = l|x^{(i)}_0), \ l = 1, \ldots, s$

Iterations:
Set the resampling threshold η;
For $k = 1, 2, \ldots$ do
 • For each particle $i = 1, \ldots, N$ do
 – Compute $q^{(i)}_{k-1|k-1}(l)$ using (9b)
 – Sample $x^{(i)}_k \sim \pi(x_k|\cdot)$ using (10)
 – Set $X^{(i)}_k \triangleq (X^{(i)}_{k-1}, x^{(i)}_k)$
 – Compute $\alpha^{(i)}_{k|k}(l)$ using (13)
 – Compute $q^{(i)}_{k|k}(l)$ using (14)
 – Compute $w^{(i)}_k$ using (16a) and (17) as
 $$w^{(i)}_k = \sum_{j=1}^{N} \frac{\alpha^{(i)}_{k}(j)}{\pi_k(x^{(i)}_k|X^{(i)}_{k-1}, Y_k)} \cdot \tilde{w}^{(i)}_{k-1}$$
 – Normalize the weights using (16b)
 • Compute $N_{\text{eff}} = 1/\sum_{k=1}^{N} (\tilde{w}^{(i)}_k)^2$.
 – If $N_{\text{eff}} \leq \eta$, resample the particles. Let the resampled
 particles be $i^* = 1, \ldots, N$.
 – Copy the corresponding $q^{(i^*)}_{k|k}(l)$ and set $\tilde{w}^{(i^*)}_{k} = \frac{1}{N}$.

although, each framework is fundamentally different. The

The model in this paper, (x_k, y_k) follows a nonlinear

5. CONCLUDING REMARKS

Markov modulated nonlinear state-space model, although less
well explored, appears naturally in many applications of

References

[2] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman

[14] C. Andrieu and A. Doucet, “Particle filtering for partially ob-

...