The placenta in toxicology. Part III: Pathologic assessment of the placenta

J Mark Cline, Darlene Dixon, Jan Ernerudh, Marijke M Faas, Claudia Göhner, Jan-Dirk Häger, Udo R Markert, Christiane Pfarrer, Judit Svensson-Arvelund and Eberhard Buse

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
http://dx.doi.org/10.1177/0192623313482207
Copyright: SAGE Publications (UK and US)
http://www.uk.sagepub.com/home.nav

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-108396
The Placenta in Toxicology. Part III.

Pathologic Assessment of the Placenta

J. Mark Cline¹, Darlene Dixon², Jan Ernerudh³, Marijke M. Faas⁴, Claudia Göhner⁵, Jan-Dirk Häger⁶, Udo R. Markert⁵, Christiane Pfarrer⁶, Judit Svensson-Arvelund³, Eberhard Buse⁷

¹ Department of Pathology/Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
² National Institute of Environmental Health Sciences, National Toxicology Program (NTP), Molecular Pathogenesis, NTP Laboratory, Research Triangle Park, North Carolina, USA
³ Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
⁴ Immunoendocrinology, Div of Medical Biology, Department of Pathology and Medical Biology, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
⁵ Placenta-Labor, Department of Obstetrics. University Hospital Jena, Jena, Germany
⁶ Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
⁷ Covance Laboratories GmbH, Muenster, Germany
Corresponding Author:

J. Mark Cline DVM PhD DACVP
Department of Pathology/Section on Comparative Medicine
Wake Forest School of Medicine
Medical Center Boulevard
Winston-Salem, NC 27157-1040
336 716 1564
jmcline@wakehealth.edu
Keywords

Macaca; Mus; Rodent Pathology; Primate Pathology; Placenta; Toxicology

Abbreviations

NK Natural Killer

Conflict of Interest/Disclosures

The Authors declare no conflicts of interest and have no financial interests to disclose
Abstract

This short review is derived from the peer-reviewed literature and the experience and case materials of the authors. Brief illustrated summaries are presented of the gross and histologic normal anatomy of rodent and macaque placentas, including typical organ weights, with comments on differences from the human placenta. Common incidental findings, background lesions, and induced toxic lesions are addressed, and a recommended strategy for pathologic evaluation of placentas is provided.

Introduction

This paper offers a brief review of the gross and histologic anatomy of the rodent and nonhuman primate placenta, a discussion of common lesions and published toxic effects, and guidance regarding appropriate strategy for pathologic assessment of the organ. For additional information on the rodent placenta, the reader is referred to several excellent detailed recent reviews, addressing the development of the normal rat placenta (de Rijk et al., 2002), the comparative anatomy of mouse placenta (Georgiades et al., 2002), toxic injury to the rat placenta (Furukawa et al., 2011), and pathologic evaluation of the mouse fetoplacental unit (Ward and Elmore, 2012). The development and anatomy of the macaque placenta has also recently been described in detail (de Rijk and van Esch, 2008; Enders, 2007). Comparative placental anatomy is best explored through the works of Dr. Kurt Benirschke, particularly his textbook on the pathology of the human placenta (Benirschke et al., 2006), and his web site at the University of California at San Diego, devoted to comparative placentation (http://placentation.ucsd.edu/homefs.html).
Rodents

Gross Anatomy

Mice and rats have hemochorial, discoid placentas. The weight of the placenta at term is approximately 1/10th of the fetal body weight; during the development of the fetus and placenta, placental growth precedes fetal development. Normal values for CD-1 outbred mice have been published based on an ultrasound validation study (Mu et al., 2008). Figure 1 assembles data from several sources to illustrate a similar pattern in Sprague Dawley and Wistar rats (Bartholomeuz and Bruce, 1976; Bruce and Cabral, 1975; Furukawa et al., 2008; Jones, 2010; Zambrana and Greenwald 1971)

Histologic Anatomy

The cellular components of the rodent placenta are similar to those of the human, but with some important distinctions; major structures are shown in Figure 2 and 3. Proceeding outward from the fetus, the layers include the amnion, the yolk sac, Reichert’s membrane, the placental labyrinth, the basal zone (trophospongium), decidua basalis, and metrial gland. Within the labyrinth, the fetal blood is separated from maternal blood by fetal endothelium, perivascular cells, fetal mesenchymal cells, and 3 thin layers of trophoblastic cells (cytotrophoblasts and two layers of syncitiotrophoblasts), thus the term “hemotrichorial” is applied to the rodent placenta. The next layer, the trophospongium, consists of spongiotrophoblasts, and a deeper layer of giant cell trophoblasts. Islands of glycogen-rich cells are admixed with the labyrinth and trophospongium. The decidua basalis consists of modified maternal endometrial stromal cells. The outermost layer of the maternofetal interface is the metrial gland, which is not glandular but consists of intermixed decidual cells, specialized natural killer (NK) cells, and vessel-associated trophoblasts. This structure spans the myometrium, extending into the mesometrium. In contrast, the term human placenta lacks a yolk sac, is villous rather than
labyrinthine, has fewer trophoblastic layers, and with the exception of low numbers of vessel-associated trophoblasts does not cross the myometrium.

Lesions of the Placenta in Rats and Mice
Among mouse strains, placental size varies by strain, and some specific strain crosses are known to result in fetal loss by degeneration and resorption of fetoplacental units. For example the CBA X DBA cross results in spontaneous abortion mediated by immunologic incompatibility (Duclos et al., 1994). A wide variety of genetically altered mouse strains have placental phenotypes (Lim and Wang, 2010). Infectious diseases of the gravid uterus are relatively uncommon in laboratory rodents, consisting generally of ascending bacterial infections near term. Placental neoplasms are rare. Yolk sac carcinomas can be induced by fetectomy in rats (Sobis et al., 1993). Reactive hyperplasia of the metrial glands is common in rats, producing the so-called “deciduoma” which is properly speaking not a neoplasm, nor does it involve the placenta; however, because it is a common lesion of the uterus mimicking an implantation site, it is important to recognize; for further discussion of this lesion see Picut et al., (2009).

Toxic lesions of the placenta in rats and mice have been reported by many investigators, and some stereotypic patterns of response have been identified. A detailed review of toxicologic lesions in the rat placenta is provided by Furukawa et al., 2011. Examples of toxicologic lesions observed in the rat placenta following exposures during pregnancy shown by Furukawa et al. include, ketoconazole induced placental hypertrophy; placental necrosis secondary to cadmium administration; cystic degeneration of glycogen cells induced by 6-mercaptopurine; busulfan induced apoptosis of placenta trophoblasts and endothelial cells; and metrial gland hypoplasia as a result of tamoxifen treatment.
Nonhuman Primates

Gross Anatomy

The macaque placenta resembles the human placenta grossly, with the exception that most macaque pregnancies result in the formation of two placental discs. The fetal surface of the placental disc is smooth and bears a radial array of large blood vessels. The maternal surface is dark red, friable, and irregularly divided into lobules by septae of maternal tissue.

The most definitive report of placental weight in macques included assessment of 490 term placentae of rhesus macaques, obtained by cesarean section (and therefore known to be complete). In this collection, 75% of the placentas were bidiscoid, and 25% had a single disk. The mean placental weight was 135 +/-32 g, and the mean fetal weight was 480 +/- 78 g. Formulae were derived from this collection for the calculation of expected placental weight (PW) when either gestational day (GD) or fetal body weight (BW) were known. These were PW = 1.3(GD) – 65.9, or PW = 0.29(BW) – 0.12, respectively (Digiacomo et al., 1978).

Histologic Anatomy

The histology of the macaque placenta is nearly identical to that of the human placenta (de Rijk and van Esch, 2008)(Figure 4). The fetus is enclosed in an amniotic sac, which is closely apposed to the chorionic membrane. The yolk sac in primates regresses by the end of the first trimester. The fetal surface of the placental disc is identifiable by its smooth surface bearing large vessels. The chorion is sparsely populated by mesenchymal cells within a loose fibrous connective tissue matrix, and penetrated by paired arteries and veins at intervals. These vessel pairs arborize into a complex lobulated branching villous network, which is anchored both on the fetal side (the chorionic plate) and the maternal side (the trophoblastic shell and decidua). The villi consist of fetal blood vessels, perivascular mesenchymal cells, cytotrophoblastic epithelial cells, and large multinucleate
syncitiotrophoblasts. The deep margin of the placental disc proper is demarcated by a layer of trophoblasts termed the trophoblastic shell. Fetal trophoblastic cells also invade the endometrium, surrounding and infiltrating the wall of maternal endometrial vessels; these are termed extravillous trophoblasts. Where the fetal villi contact the endometrium, they “root” and at these sites the mesenchymal cores contain some maternal decidual cells. With the exception of the maternal blood and this decidual cell invasion, nearly all cells comprising the placental disc are of fetal origin. Maternal blood vessels open into and drain from the intervillous space.

The non-discoid, membranous portions of the placenta lack villi and are covered by a single layer of trophoblastic epithelium. Normal non-cellular elements of the placental disc include inter-and intra-villous deposits of placental fibrinoid, which consists of fibrin, laminin and other extracellular matrix molecules (Kaufmann et al., 1996); and multifocal mineralization of the placental villi. Coagulative necrosis of the margin of the placental disc is normal near term.

Beneath the placental disc, endometrial glands are dilated and sparse; beneath the membranous portions of the placenta, the endometrial glands are dilated by fluid, and are lined by a simple cuboidal epithelium and surrounded by plump decidual cells. Throughout the gravid endometrium, stroma-derived decidual cells are abundant, as are granulated endometrial lymphocytes.

Placental Lesions in Macaques
Toxic lesions of the placenta are not well described in macaques; common background findings in the placenta of macaques are listed below in Table 1.
Recommended Strategy for Pathologic Assessment of the Placenta

The placenta is remarkable in that it is a temporary vital organ. Because it forms, functions, and becomes senescent within the course of a single pregnancy, it is a dynamic structure, which should be evaluated in the context of gestational age.

Elements of a complete examination are:

- Known or estimated gestational age
- Placental weight
- Fetal weight
- Documentation of gross findings, including photography
- Careful trimming of placenta and uterus
 - Rodents: Centered sections, inclusion of the metrial gland
 - Primates: Multiple sections, including center, margin, and non-disc regions
- Examination for presence and proportions of all cell types

Quantitative histology may be of value, because injury to the placenta may produce changes in overall placental size or the relative proportions of specific cellular regions, without overt necrosis at the time of examination. The distinct compartmentalization of the rodent placenta makes quantification of regional thicknesses or areas relatively simple (Furukawa et al., 2011), and detailed stereologic methods have been reported for evaluation of the mouse placenta (Coan et al., 2004). Strategies for quantification of injury to the macaque placenta have been published (e.g. Davison et al., 2000), and stereologic methods may also be adopted from the human literature (e.g. Mayhew, 2009).

<table>
<thead>
<tr>
<th>Finding</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralization</td>
<td>Present multifocally within villi of normal placentas</td>
<td>De Rijk and van Esch, 2008</td>
</tr>
<tr>
<td>Fibrin deposits</td>
<td>Present normally within and around villi of normal placentas</td>
<td>De Rijk and van Esch, 2008</td>
</tr>
<tr>
<td>Marginal coagulative necrosis</td>
<td>Present normally in term placentas</td>
<td>De Rijk and van Esch, 2008</td>
</tr>
<tr>
<td>Epithelial plaque response</td>
<td>A pseudo-placental epithelial lesion occurring during the luteal phase</td>
<td>Cline et al., 2008</td>
</tr>
<tr>
<td>Circumvallation</td>
<td>A constrictive fibrotic malformation of the placental margin, usually asymptomatic</td>
<td>Bunton, 2006</td>
</tr>
<tr>
<td>Variation in disc number and lobulation</td>
<td>~70% of placentas are bidiscoid</td>
<td>Digiachomo et al., 1978</td>
</tr>
<tr>
<td>Infarction</td>
<td>Marginal infarction is normal at term</td>
<td>Bunton et al., 2012</td>
</tr>
<tr>
<td>Suppurative placentitis</td>
<td>Most often caused by Listeria monocytogenes</td>
<td>Cline et al., 2012</td>
</tr>
<tr>
<td>Retained placenta</td>
<td>A medical emergency, usually fatal if untreated</td>
<td>Cline et al., 2012</td>
</tr>
<tr>
<td>Neoplasia</td>
<td>Choriocarcinomas and trophoblastic neoplasms; most commonly ovarian</td>
<td>Cline et al., 2008</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Pattern of fetal and placental growth during gestation in Wistar and Sprague-Dawley rats (Bartholomeuz and Bruce, 1976; Bruce and Cabral, 1975; Furukawa et al., 2008; Jones, 2010; Zambrana and Greenwald 1971).

Figure 2. Subgross histologic anatomy of the rat placenta.

Figure 3. Higher magnification figures showing cellular components of the rat placenta. A) umbilicus (bearing an focally keratinized plaque), amnion, yolk sac, Reichert’s membrane, and placental labyrinth; B) placental labyrinth to trophospongium; C) trophospongium to metrial gland.

Figure 4. Histology of the normal macaque placenta. A) Full-thickness section of a mid-gestation placenta; B) the villous portion of the placental disk; C) near-term placenta sectioned near the trophoblastic shell, showing normal mineralization (white arrows) and placental fibrinoid (black arrow); D) endometrium, consisting of decidual cells surrounding an endometrial vessel with a wall largely replaced by fetal trophoblasts.
Figure 2

- Fetus
- Umbilical cord
- Yolk sac
- Labyrinth
- Decidua basalis
- Metrial gland
- Trophospongium
- Amnion
- Reichert’s membrane
- Mesometrium
Figure 3

A. Umbilical cord with epithelial plaque

B. Labyrinth, Trophospongium

C. Decidua, Metrial Gland
Figure 4