Formation of RuO(OH)(2) on RuO2-Based Electrodes for Hydrogen Production

Lars-Åke Näslund, Arni Sigurdur Ingason, Susanne Holmin and Johanna Rosén

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
http://dx.doi.org/10.1021/jp503960q
Copyright: American Chemical Society
http://pubs.acs.org/

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-109369
Formation of RuO(OH)$_2$ on RuO$_2$-Based Electrodes for Hydrogen Production

Lars-Åke Näslund, *† Árni S. Ingason, † Susanne Holmin, †§ Johanna Rosen †

†Materials Design, Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden

‡Permascand AB, SE-840 10 Ljungaverk, Sweden

§Department of Natural Sciences, Mid-Sweden University, SE 870 10 Sundsvall, Sweden

KEYWORDS: Hydrogen evolution, Ruthenium dioxide coatings, XPS, XRD, Phase transformation, Ruthenium oxyhydroxide

ABSTRACT: The catalytic and durable electrode coating of ruthenium dioxide (RuO$_2$), applied on nickel (Ni) substrates, is today utilized as electrocatalytic cathodes for hydrogen production, e.g., in the chlor-alkali process and alkaline water electrolysis. The drawback is, however, the sensitivity to reverse currents obtained during power shutdowns, e.g. at maintenance, where the RuO$_2$-based electrodes can be severely damaged unless polarization rectifiers are employed. Through the material characterization techniques X-ray diffraction and X-ray photoelectron
spectroscopy we can now reveal that RuO$_2$ coatings, when exposed to hydrogen evolution at industrially relevant conditions, transforms into ruthenium oxyhydroxide (RuO(OH)$_2$). The study further shows that as the hydrogen evolution proceeds the formed RuO(OH)$_2$ reduces to metallic ruthenium (Ru).

1. INTRODUCTION

The catalytic and durable electrode coatings of ruthenium dioxide (RuO$_2$) or mixtures of RuO$_2$ and other metal oxides, e.g. titanium dioxide (TiO$_2$) and iridium dioxide (IrO$_2$), are widely employed in a large variety of industrial electrochemical processes, such as chlor-alkali and chlorate processes, water treatment, electrowinning, and water electrolysis.1,2 As a functionalized anode, RuO$_2$-based electrodes are often referred to as dimensionally stable anodes (DSA®) and has been utilized for more than four decades. In addition, these types of electrodes have also found practical applications as electrocatalytic cathode for hydrogen production, e.g., in the chlor-alkali process and alkaline water electrolysis,3,4 where the latter represents a promising candidate for a convenient route for energy storage and conversion.5

However, as a RuO$_2$-based cathode for hydrogen production there is a stability issue manifested as a coating loss when the cathode is exposed to reverse currents at power shutdowns, e.g. for maintenance. Several studies have, in addition, reported loss of coating material when performing polarity inversion tests, i.e. repetitive cycling of the current or potential between the hydrogen and oxygen evolution reaction or by applying an anodic current after extensive hydrogen evolution.6-9 The reason for the loss of coating material has, to our knowledge, not previously been investigated, although it has been suggested that during hydrogen evolution in alkaline media RuO$_2$ reduces through hydration or hydroxylation processes.$^{8,10-12}$
The aim of the present work is to reveal the chemical process behind the destabilization of the RuO\textsubscript{2} coating when extensively exposed to hydrogen evolution. The material characterization techniques employed in the study are X-ray diffraction (XRD) for crystal structure information of the electrode material and X-ray photoelectron spectroscopy (XPS) for chemical environment information around the probed element. While the bulk probing XRD provides phase-specific information on the array of atoms in the material, the surface probing XPS provides element-specific information on the electronic structure of the examined components.

An X-ray diffraction study of RuO\textsubscript{2}/Ni electrodes for hydrogen production has previously been performed by Iwakura et al.,8 which showed that the intensity of the RuO\textsubscript{2} (110) peak decreased with time when the cathode was exposed to hydrogen evolution at 3 kA/m2 and 90 °C in 10 M NaOH electrolyte. In addition the peak in the RuO\textsubscript{2} (110) region was shifted toward lower angles, which the authors speculated being caused by a partial reduction of the RuO\textsubscript{2} to lower valence oxides such as RuOOH. While the former study followed the RuO\textsubscript{2} (110) peak progress for 18 h, Hachiya et al.12 spent 180 days of hydrogen evolution at 6 kA/m2 and 90 °C in 32 w-% NaOH electrolyte. In the end of the study it was concluded that the RuO\textsubscript{2} peaks in the XRD diffractogram were replaced with peaks that were assigned to hydrated RuO\textsubscript{2}. In addition there was a weak feature indicating the presence of metallic Ru. Earlier studies have, thus, shown that RuO\textsubscript{2} transforms into a new phase, although it has not yet been unambiguously identified.

To identify the phase transformation the RuO\textsubscript{2}/Ni electrodes have previously been investigated through XPS10,13,14 and the studies suggest a hydroxylation process, mainly because of the observed intensity redistribution in the O 1s spectrum. As for many transition metal oxides, interpretation of the Ru 3d spectrum of RuO\textsubscript{2} is not a straightforward procedure. Figure 1 shows the Ru 3d XPS spectra for Ru-metal and for a RuO\textsubscript{2}/Ni coating which are obtained according to
Section 2.3. The Ru 3d XPS spectrum for the Ru-metal shows 3d$_{5/2}$ and 3d$_{3/2}$ at 280.2 and 284.3 eV binding energies, respectively, while the RuO$_2$/Ni coating features the two primary spin-orbit components at 280.7 and 284.9 eV, respectively. Most noticeable is that the full with at half maximum (fwhm) for the Ru 3d$_{3/2}$ peak is about twice as large as the Ru 3d$_{5/2}$ peak, which is attributed to a Coster-Kronig broadening.15 The larger fwhm is, thus, ascribed to the Ru 3d$_{3/2}$ photoelectron process that opens up an M4M5N45 Coster-Kronig decay channel, i.e. the electron core hole in the M shell is filled by an electron from a higher subshell of the same shell while releasing energy through an Auger electron from the N-shell. The inner shell decay channel will reduce the lifetime of the Ru 3d$_{3/2}$ hole state leading to an increased core hole lifetime broadening of the Ru 3d$_{3/2}$ peak, i.e. a 3d$_{3/2}$ peak that has a larger fwhm compare to the 3d$_{5/2}$ peak. Furthermore, the XPS spectrum for the RuO$_2$/Ni coating shows, in addition to the dominant low binding energy spin-orbit doublet, two satellites at 282.5 and 286.8 eV, respectively, which are attributed to final-state screening effects derived from the strong Coulomb interaction between valence electrons and the core hole produced in the photoionization process.16,17 Metallic transition metal components can undergo a change in the core hole screening from mainly extended sp-band screening to mainly localized d-level screening that results in two different final states, very often denoted unscreened and well-screened, respectively.18 The photoelectron can leave the atom before or after the change in the core hole screening and subsequently show main lines and satellites as complex features in the XPS spectrum, where the more efficient localized d-level screening gives rise to the low binding energy spin-orbit doublet that in this work is identified as main peaks.

With a confident assignment of all features in the Ru 3d XPS spectra of Ru-metal and RuO$_2$/Ni coating it has in the present work been possible to identify the chemical process involved when
RuO₂ coatings, exposed to hydrogen evolution at industrially relevant conditions, degenerates and forms new chemical species sensitive to reverse current.

Figure 1. Ru 3d XPS of (a) the reference RuO₂/Ni coating and (b) Ru-metal, fitted with four and two asymmetric Gaussian-Lorentzian curves, respectively, on Shirley backgrounds. The peak fitting is performed according to Section 2.4.

2. EXPERIMENTAL SECTION

2.1. RuO₂ coating preparation. Most RuO₂-based electrodes are produced through thermal decomposition of ruthenium chloride (RuCl₃) salt solutions on a conductive metal substrate electrode and for alkaline water electrolysis the most common substrate is nickel (Ni), mainly
because of its high corrosion resistance to highly concentrated alkaline electrolyte at elevated temperatures. A precursor solution containing 0.60 M Ru was prepared from RuCl₃·nH₂O salt from Heraeus (40.27 wt % Ru, analytical reagent grade) and 1-propanol from Fischer Scientific (analytical reagent grade). Ni disks (Ni-201) with a diameter of 25 mm and thickness of 1 mm were pre-treated to achieve acceptable adhesion strength of the RuO₂ coating to the Ni substrate. The pre-treatment included blasting with Al₂O₃ particles (diameter: 50-75 µm), ultrasonically cleaning in Milli-Q water for 10 min at 30 °C, and rinsing in acetone.

The RuO₂ coating was prepared by a conventional multistep precursor solution application/calcination method. 100 µl of the precursor solution was applied on the Ni disks and left for 2.5 min. Spin coating was then performed at 4500 rpm for 30 s. Thereafter the sample was dried in air for 5 min at room temperature and 5 min at 80 °C followed by 12 min calcinations at 500 °C. This procedure was repeated four times to obtain superimposed layers of RuO₂ with a thickness of 0.4 to 1.4 µm at the thinnest and thickest regions, respectively. On the fourth application cycle the heat treatment at 500 °C was prolonged to 1 h. Using the described spin coating application technique, the obtained metal loading became 4.5±0.2 g Ru/m².

2.2. Electrochemical set-up. The electrochemical cell consisted of three electrodes where the RuO₂-coated Ni disk (cut to a size of 3.1 cm²), a Ni mesh, and a standard calomel electrode (sat. KCl) from Radiometer Copenhagen were used as a working electrode, a counter electrode, and a reference electrode, respectively. The RuO₂-coated Ni disks and the Ni mesh were attached to conductors in the form of 25 cm long Ni rods (diam. 1.5 mm) welded to the top end of the electrodes and mounted in the electrochemical cell at a distance of four cm from each other. The reference electrode, on the other hand, was operated through a Luggin capillary connected from an external assembly.
The electrochemical cell was prepared with a newly made RuO$_2$/Ni electrode, fresh 8 M NaOH electrolyte and heated to 90.0±0.2 °C prior to each hydrogen evolution run. The electrolyte was prepared from NaOH pellets obtained from Scharlau (reagent analytical grade) dissolved in Milli-Q water. To minimize the effect of mass transport limitation on the electrode surface caused by strong gas evolution, the electrolyte was stirred continuously during each run. The hydrogen evolution was obtained through galvanostatic polarization at -6.4 kA/m2.

2.3. Material characterization. XRD for phase analysis was performed with an X’pert XRD system from Panalytical using Ni-filtered Cu Kα radiation. Symmetric θ-2θ scans were operated using normal Bragg-Brentano geometry. Calibration of the 2θ scale was obtained through the Al$_2$O$_3$ (012)-peak, located at 25.577°. The observed Al$_2$O$_3$ peak is assigned to 50-75 µm particles incorporated into the surface of the Ni substrates prior to application of the precursor solution.

Chemical bonding states were probed through Ru 3d and O 1s XPS, which were performed with the AXIS UltraDLD system from Kratos using monochromatic Al Kα radiation. The binding energy scale of all XPS spectra presented here was calibrated against the Fermi-edge (E$_f$), which was set to a binding energy of 0 eV. The overall energy resolution obtained was better than 0.5 eV. Normalization of all spectra was performed at the background on the low binding energy side of the main peak/peaks.

2.4. XPS spectrum peak fitting. XPS spectrum peak fitting of the Ru 3d XPS spectra for Ru-metal and for a RuO$_2$/Ni coating are performed using asymmetric Gaussian-Lorentzian (asym-GL) curves. The peak fitting procedure is constrained using an approach where the two main peaks, Ru 3d$_{5/2}$ and Ru 3d$_{3/2}$, have the same Gaussian but different Lorentzian contributions caused by the increased core hole lifetime broadening of the Ru 3d$_{3/2}$ peak.15 For the RuO$_2$/Ni coating the satellite features are fitted with asym-GL curves where the Lorentzian contribution is
the same as obtained for the main peaks Ru 3d$_{5/2}$ and Ru 3d$_{3/2}$, respectively, but with twice as large Gaussian contribution compared to the main peaks. In addition, the two satellite features need to have the same binding energy shift relative to their main peak. Within these constraints the asym-GL curves were free to adjust position, height, Gaussian and Lorentzian contributions, and asymmetry.

Results from XPS spectrum peak fitting of the Ru-metal and the RuO$_2$/Ni coating are included in Figure 1, which shows that it is enough to use two and four asym-GL curves, respectively, for a reasonable good fit to the two Ru 3d XPS spectra. Since the samples have been exposed to air it is plausible that carbon contamination is present on the surfaces and therefore show contributions of C 1s components, i.e. carbon (graphite) at 284.5 eV, hydrocarbon (-CH$_2$- & CH$_3$) at 285.7 eV, and carboxylate (-COO) at 289.2 eV. However, GL curves representing possible C 1s components were suppressed down to zero intensity when they were included. This might indicate that the carbon contamination on the Ru-metal and the RuO$_2$/Ni coating sample is at a very low level or it might suggest that the C 1s features from carbon contamination are shifted toward higher binding energy compare to what expected and therefore is hidden under the Ru 3d$_{3/2}$ component in the spectra. That C 1s contribution might be hidden under the Ru 3d$_{3/2}$ of the RuO$_2$ spectrum may explain why the intensity distribution over the Ru 3d region shows a 3d doublet peak ratio of 3:3.8 instead of 3:2. On the other hand, the 3d doublet peak ratio of the Ru-metal is 3:2.1, which supports the suggestion of negligible amount of C 1s contamination on the samples. Alternative explanations for the extra high intensity in the Ru 3d$_{3/2}$ region of the RuO$_2$/Ni coating could then be that: the Shirley loss function, which is used for the background subtraction, does not represent the intrinsic loss structure well enough to completely remove the background contribution before the peak fitting; the Ru 3d$_{3/2}$ region of the RuO$_2$/Ni coating
also consists of intensity from Ru 3d$_{5/2}$ features, e.g. because of final-state screening effects18 or the electrode coating consists of hydrated or hydroxylated (or oxyhydroxylated) Ru-species with the Ru 3d$_{5/2}$ component shifted into the Ru 3d$_{3/2}$ region of RuO$_2$. The present study suggests the last.

The peak fitting of an XPS spectrum of a RuO$_2$/Ni electrode that has been exposed to hydrogen evolution was performed with a fitting procedure that included the experimentally obtained spectra of the reference RuO$_2$/Ni coating and the Ru-metal shown in Figure 1, four spectra of the RuO$_2$ main peaks obtained from the peak fitting of the reference RuO$_2$/Ni coating, an experimentally obtained spectrum of C 1s contamination on TiO$_2$, and a Shirley background for the peak fitted background-free RuO$_2$ main peaks. The experimentally obtained spectra of the reference RuO$_2$/Ni coating, the Ru-metal, and the C 1s contamination on TiO$_2$ were only free to adjust their intensity while the RuO$_2$ main peaks (Ru 3d$_{5/2}$ and Ru 3d$_{3/2}$) obtained from the peak fitting of the reference RuO$_2$/Ni coating were free to adjust both their intensity and position on the binding energy (BE) scale (the intensity ratio and the BE difference between the Ru 3d$_{5/2}$ and Ru 3d$_{3/2}$ peaks were the same as obtained in the peak fitting of the reference RuO$_2$/Ni coating). No peaks were allowed to change their fwhm. This peak fitting procedure reduced the number of parameters significantly without loosing meaningful information about the chemical environment around the probed Ru atoms and at the same time retaining the constrains used in the peak fitting of the RuO$_2$ reference, i.e. with the same Gaussian and Lorentzian contributions, peak asymmetries, and the relative binding energy positions and heights of the Ru 3d$_{5/2}$ and Ru 3d$_{3/2}$ spin-orbit components intact.

The peak fitting of the O 1s spectra assumed that six asym-GL curves must be included in the peak fitting procedure: one asym-GL curve that represents RuO$_2$, one asym-GL curve that
represents H$_2$O, two asym-GL curves that represent the Ni-O components,22 and two asym-GL curves that represent the unknown phase. In addition, the peak fitting were constrained in the way that each asym-GL curve, with the same shape and location, must be present in all fitted O 1s spectra.

Since the spectra originate from samples with a complex mixture of components, e.g. different chemical components, different core hole lifetime broadening for the different chemical components as well as for the 3d$_{3/2}$ and the 3d$_{5/2}$ spin-orbit components, different final state screening of the produced core hole, etc., the fit to the spectrum would be better with more peaks and with variations in peak shapes. However, the drawback would be that the important information for this study would be harder to extract from the crowd of peaks that would fill the figures. We have therefore selected to use the minimum number of peaks and peak shapes to highlight the important information gained from the peak fitting.

3. RESULTS AND DISCUSSION

3.1. X-ray diffraction. Six newly made RuO$_2$/Ni electrodes were, with a current density of -6.4 kA/m2, exposed to hydrogen evolution in a fresh 8 M NaOH electrolyte at 90.0 °C. The durations for hydrogen production for each RuO$_2$/Ni electrode were 0.5, 3, 6, 12, 18, and 24 h. The XRD diffractograms of the RuO$_2$ (110) peak region, presented in Figure 2, show that while exposed to hydrogen evolution the electrode coating transforms from the rutile phase RuO$_2$ into another phase. This phase transformation has previously not been identified, to our knowledge, although it has been observed in earlier studies.8,12

Included in Figure 2 is the RuO$_2$ (110) peak from a reference electrode, i.e. a RuO$_2$/Ni electrode that has not been exposed to electrolyte. The rutile RuO$_2$ (110) peak of the reference electrode is located at 27.96°. However, while exposed to hydrogen evolution the electrode
coating absorbs hydrogen, which is incorporated into the rutile RuO$_2$ crystal structure.23 The incorporation of hydrogen, which causes a lattice expansion, is not totally reversible when the cathodic polarization is removed.23 Hence, after 0.5 h exposure to hydrogen evolution the rutile RuO$_2$ (110) peak is shifted to 27.90°, i.e. because of the residual hydrogen in the electrode material there is a 20 shift of 0.06° for the rutile RuO$_2$ (110) peak. As the duration of the hydrogen evolution proceeds the rutile RuO$_2$ (110) peak shows an increasing shift to lower 20, accompanied by a decrease in intensity. Simultaneously, a peak from an unknown crystal phase appears, which increases in intensity with the duration of hydrogen evolution. The inserts in Figure 2 show Gaussian-Lorentzian (GL) curves obtained from curve fitting of the rutile RuO$_2$ (110) peak in the XRD diffractograms. The peak position, full width at half maximum, and normalized integrated area of the presented GL curves are summarized in Table 1 and 2 for the peaks of RuO$_2$ and the unknown phase, respectively. The GL curves for the RuO$_2$ (110) peak verify a continuous decrease of the integrated intensity and a shift to lower 20. The GL curves for the peak of the unknown phase show initially an increase of the integrated intensity and simultaneously a shift to lower 20. However, at extended exposures to hydrogen evolution, i.e. after 6 h, the integrated intensity suggests no further significant growth of the unknown phase.
Figure 2. X-ray diffractograms of RuO$_2$/Ni electrodes exposed to hydrogen evolution. The 2θ scale is calibrated against the Al$_2$O$_3$ (012)-peak observed at 25.577° and the intensity is normalized at the low 2θ side of the peaks. The inserts show Gaussian-Lorentzian curves fitted to the two main features in the diffractogram and represent the peaks of (a) an unknown phase and (b) rutile RuO$_2$.

The integrated intensity for the GL curves of the peaks of the RuO$_2$ (110) and the unknown phase are shown in Figure 3. The most prominent observation is that while the peak of the unknown phase shows no significant increase in size after 6 h of hydrogen evolution, the decrease of the RuO$_2$ (110) peak continues exponentially. Assuming that the continued consumption of the crystalline RuO$_2$ after 6 h of hydrogen evolution remains to be because of
formation of the unknown crystalline phase, which is reasonable since the exponentially decrease of the RuO$_2$ (110) peak is not affected when the increase of the peak for the unknown phase levels out, then the lack of increase of the amount of unknown phase suggest that this too is consumed by a second process forming a second unknown phase and after 6 h of hydrogen evolution these two processes will reach a stage when the rate of formation and the rate of the consumption of the unknown phase are equal. A wide θ-2θ scan does not indicate any formation of a second unknown phase, which implies that the second unknown phase does not form a crystal phase or that the amount is not large enough to be detected by the present XRD settings. Hence, while the consumption of crystalline RuO$_2$ occurs through the whole coating, the formation of the second unknown phase suggests being limited to the near surface region of the electrode coating.

Table 1. Parameters Obtained for the Gaussian-Lorentzian Curve Fitting of the RuO$_2$ (110) Peak

<table>
<thead>
<tr>
<th>duration [h]</th>
<th>2θ-value [°]</th>
<th>fwhma [°]</th>
<th>normalized integrated area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27.96 ±0.01</td>
<td>0.63 ±0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>27.90 ±0.01</td>
<td>0.62 ±0.01</td>
<td>0.83 ±0.01</td>
</tr>
<tr>
<td>3</td>
<td>27.83 ±0.01</td>
<td>0.76 ±0.01</td>
<td>0.58 ±0.01</td>
</tr>
<tr>
<td>6</td>
<td>27.68 ±0.01</td>
<td>0.90 ±0.02</td>
<td>0.41 ±0.01</td>
</tr>
<tr>
<td>12</td>
<td>27.45 ±0.04</td>
<td>1.09 ±0.07</td>
<td>0.25 ±0.01</td>
</tr>
<tr>
<td>18</td>
<td>27.45 ±0.07</td>
<td>1.21 ±0.14</td>
<td>0.21 ±0.02</td>
</tr>
</tbody>
</table>
24 | 27.22 ±0.15 | 1.32 ±0.31 | 0.18 ±0.03

*a*full width at half maximum

Table 2. Parameters Obtained for the Gaussian-Lorentzian Curve Fitting of the Peak of the Unknown Phase

<table>
<thead>
<tr>
<th>duration [h]</th>
<th>2θ-value [°]</th>
<th>fwhm [°]</th>
<th>normalized integrated area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>27.10 ±0.01</td>
<td>1.41 ±0.26</td>
<td>0.25 ±0.01</td>
</tr>
<tr>
<td>3</td>
<td>26.91 ±0.01</td>
<td>1.34 ±0.04</td>
<td>0.71 ±0.07</td>
</tr>
<tr>
<td>6</td>
<td>26.69 ±0.01</td>
<td>1.18 ±0.04</td>
<td>0.96 ±0.10</td>
</tr>
<tr>
<td>12</td>
<td>26.50 ±0.01</td>
<td>1.00 ±0.05</td>
<td>0.99 ±0.09</td>
</tr>
<tr>
<td>18</td>
<td>26.55 ±0.04</td>
<td>0.97 ±0.06</td>
<td>0.97 ±0.07</td>
</tr>
<tr>
<td>24</td>
<td>26.48 ±0.03</td>
<td>0.93 ±0.05</td>
<td>1</td>
</tr>
</tbody>
</table>

*a*full width at half maximum
Figure 3. Normalized integrated intensity of the Gaussian-Lorentzian curves that represent the peaks of (a) the unknown phase and (b) the rutile RuO$_2$.

3.2. X-ray photoelectron spectroscopy. From the XRD study we can conclude that the electrode coating, exposed to hydrogen evolution in alkaline media, is subjected to a transformation from the rutile RuO$_2$ phase into two unknown phases that previously have not been identified. To identify the new phases we have employed the chemical specific and local geometry sensitive XPS technique.

Figure 4 shows the Ru 3d XPS spectra for the RuO$_2$/Ni electrodes that have been exposed to hydrogen evolution for 0.5, 3, 6, 12, 18, and 24 h together with the spectra of the reference RuO$_2$/Ni coating and the Ru-metal. As clearly illustrated in the figure, exposing the RuO$_2$/Ni electrode to hydrogen evolution promotes changes in the material, manifested as an intensity redistribution in the Ru 3d XPS spectrum. The redistribution of intensity toward higher binding energies culminates at a hydrogen evolution duration of 12 h and thereafter the intensity shifts back toward the lower binding energy region. More specific, the trends that are observed, as the hydrogen evolution proceeds, are that the Ru 3d$_{5/2}$ peak becomes broader, the Ru 3d$_{5/2}$ satellite
Figure 4. Ru 3d XPS of RuO$_2$/Ni electrodes exposed to hydrogen evolution for (b) 0.5 h, (c) 3 h, (d) 6 h, (e) 12 h, (f) 18, and (g) 24 h. Included are also the spectra of (a) the reference RuO$_2$/Ni coating and (h) the Ru-metal.
peak decreases in intensity, the intensity around the Ru 3d\textsubscript{3/2} peak increases at first but decreases after 12 h, the Ru 3d\textsubscript{3/2} peak becomes broader, a growth of a peak at 289.2 eV that reduces in intensity after 12 h, and a growth of a peak at 280.2 eV.

To identify the origin of the intensity redistribution observed in Figure 4, peak fitting is performed for the Ru 3d XPS spectrum of the RuO\textsubscript{2}/Ni electrode that has been exposed to hydrogen evolution for 3 h. The spectrum is peak fitted with the use of the experimentally obtained Ru 3d spectra of the reference RuO\textsubscript{2}/Ni electrode and the Ru-metal shown in Figure 1, the RuO\textsubscript{2} main peaks obtained from the peak fitting of the reference RuO\textsubscript{2}/Ni electrode (see Figure 1), a spectrum of C 1s contamination on TiO\textsubscript{2}, and a Shirley background for the peak fitted RuO\textsubscript{2} main peaks. The motivation of including the experimentally recorded spectra of the RuO\textsubscript{2}/Ni coating, the Ru-metal, and C 1s contamination on TiO\textsubscript{2} in the peak fitting is based on the fact that the coating still consists of unaltered RuO\textsubscript{2}, the position of the growing peak at 280.2 eV line up with the position of the Ru 3d\textsubscript{5/2} for Ru-metal, and C 1s contamination can be expected on samples that have been exposed to atmosphere.19 The obtained main peaks from the peak fitting of the reference RuO\textsubscript{2}/Ni electrode, shown in Figure 1, are included in the peak fitting of the RuO\textsubscript{2}/Ni electrode that has been exposed to hydrogen evolution. RuO\textsubscript{2} that has lost charge shows a significant reduction of the satellite feature and the obtained satellite peaks from the peak fitting of the reference RuO\textsubscript{2}/Ni electrode, shown in Figure 1, should therefore not be included.24

The result of the peak fitting is presented in Figure 5 and shows that the broadening of the Ru 3d\textsubscript{5/2} can be fitted with three spectra of RuO\textsubscript{2} main peaks that are shifted toward higher binding energies by 0.5-1.3 eV, which indicates a charge transfer away from the Ru atom. The charge transfer is most likely a consequence of the incorporated hydrogen that needs to be screened and
because of small variations in the position of the hydrogen the interaction with the surrounding Ru atoms will be affected leading to different degree of shift for the Ru 3d$_{5/2}$ as well as Ru 3d$_{3/2}$. Furthermore, among all the Ru 3d$_{3/2}$ components that contribute to the intensity in the region of the Ru 3d$_{3/2}$ peak, there is one spectrum of RuO$_2$ main peaks that is shifted by 4.3 eV, i.e. the RuO$_2$ 3d$_{5/2}$ peak is moved into the RuO$_2$ 3d$_{3/2}$ region. The result from the peak fitting is summarized in Table 3 and suggests that after 3 h of hydrogen evolution 2/3 of the RuO$_2$ in the probed volume remains unaltered, about 13% of the RuO$_2$ has lost charge, about 8% of the RuO$_2$ has transformed into the unknown phase, about 10% of the RuO$_2$ has been reduced to metallic Ru and about 2% of the intensity contribution originates from C 1s contamination (in addition to C 1s contribution that might be hidden in the spectra of RuO$_2$).

![Ru 3d XPS](image)

Figure 5. Ru 3d XPS of the RuO$_2$/Ni electrode exposed to 3 h of hydrogen evolution fitted with spectra of the reference RuO$_2$/Ni coating (black) and the Ru-metal (green), as shown in Figure 3, the RuO$_2$ main peaks obtained from the peak fitting of the reference RuO$_2$/Ni electrode (blue –
short BE shift, red – large BE shift), a spectrum of C 1s contamination on TiO$_2$ (black), and a Shirley background for the peak fitted RuO$_2$ main peaks (blue).

A feature that is not included in the peak fitting of the spectrum in Figure 5 is the high binding energy feature around 292.9 eV. This peak is probably a satellite feature of the Ru 3d$_{3/2}$ of the unknown phase and a corresponding Ru 3d$_{5/2}$ satellite feature would then contribute to intensity around 288 eV where the fitted result now shows a deviation from the XPS spectrum. Except that they most likely have the same origin as the satellite features of RuO$_2$ and, if so, would contribute to the fraction of the unknown phase, we will not further speculate about the nature of these satellites.

The peak fitting of the Ru 3d spectrum shown in Figure 5 indicates that the unknown phase consists of Ru atoms that, compared to RuO$_2$, have lost charge and, thus, suggests an increase of oxidation state or hydroxylated (or oxyhydroxylated) Ru species, although the former suggestion can be excluded considering the experimental conditions. The observed shift toward higher binding energy is contra-intuitive since the electrode is operative in a reducing environment. Further chemical information is therefore needed and that can be obtained from the O 1s XPS. It is, however, clear that the unknown phase is an intermediate and the electrode material will in the end reduce down to metallic Ru as shown by the intensity redistribution toward lower binding energy (see the intensity increase at 280.2 eV in Figure 4).
Table 3. The Result from the Ru 3d Spectrum Peak Fitting of the RuO$_2$/Ni Electrode that has been Exposed to Hydrogen Evolution for 3 Hours

<table>
<thead>
<tr>
<th>Component</th>
<th>Peak positionsa [eV]</th>
<th>Fractionb, c</th>
<th>Assigned to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference coating</td>
<td>RuO$_2$/Ni 280.7; 284.9</td>
<td>0.67</td>
<td>unaltered RuO$_2$ coating.</td>
</tr>
<tr>
<td>RuO$_2$, main peaks 1</td>
<td>281.2; 285.4</td>
<td>0.08</td>
<td>For the RuO$_2$, main peaks 1-3, the assignment is RuO$_2$ involved in charge transfer from Ru toward incorporated hydrogen.</td>
</tr>
<tr>
<td>RuO$_2$, main peaks 2</td>
<td>281.6; 285.8</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>RuO$_2$, main peaks 3</td>
<td>282.0; 286.2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>RuO$_2$, main peaks 4</td>
<td>285.0; 289.2</td>
<td>0.08</td>
<td>the unknown phase.</td>
</tr>
<tr>
<td>Ru-metal</td>
<td>280.2; 284.4</td>
<td>0.10</td>
<td>metallic Ru</td>
</tr>
<tr>
<td>C 1s contamination</td>
<td>285.7 (C 1s)</td>
<td>0.02</td>
<td>hydrocarbon (-CH$_2$- & CH$_3$) at 285.7 eV and carboxylate (-COO) at 289.2 eV.</td>
</tr>
<tr>
<td></td>
<td>289.2 (C 1s)</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

aThe peak position is determined within ±0.05 eV.

bThe intensity contribution of the added Shirley background is included in the fractions of the four RuO$_2$ main peaks.

cThe fraction of the Reference RuO$_2$/Ni coating is determined within ±3%. All other fractions are determined within ±20%.
The O 1s XPS spectra of the RuO$_2$/Ni electrodes are shown in Figure 6. The O 1s will also go through an intensity redistribution when exposed to hydrogen evolution. The main intensity shifts from 529.5 eV toward higher binding energies and after 24 h of hydrogen evolution the
dominating contribution is around 531.5 eV. In the view of the shift toward higher binding energies it is plausible to suggest that the coating material is hydroxylated (or oxyhydroxylated) and/or hydrated, because O 1s binding energies of Ru-OH and Ru-H₂O is revealed to be 530.8 and 532.8 eV, respectively; after 24 h of hydrogen evolution most of the RuO₂ has been consumed in the near surface region probed by XPS, as shown in Figure 4(g), and we can therefore expect a dominant amount of Ru-OH and Ru-H₂O components in the corresponding O 1s spectrum, see Figure 6(g).

Peak fitting is performed and presented in Figure 7 for the O 1s XPS spectra of the reference RuO₂/Ni coating and the RuO₂/Ni electrode that has been exposed to hydrogen evolution for 24 h. According to the XRD diffractogram, shown in Figure 2, the selected XPS spectrum of the latter has the highest ratio of the unknown phase compared to RuO₂, which makes the peak fitting easier. However, all oxygen containing species that are present in the near surface region probed by XPS should be included in the peak fitting of the O 1s spectra. We know that the reference electrode coating consists of RuO₂ and NiO and the electrode coating that has been exposed to 24 h of hydrogen evolution consists of RuO₂ and Ni(OH)₂; for the determination of the Ni-species, see Figure 8. In addition, adsorbed water can hardly be avoided and should therefore also be included. Finally, based on the obtained results from the Ru 3d spectra, we can expect hydroxylated or oxyhydroxylated Ru-species. Therefore, based on this, we must include one asym-GL curve representing RuO₂, two asym-GL curves representing the Ni-components, one asym-GL curve representing H₂O, and two asym-GL curves representing the unknown phase, i.e. hydroxylated or oxyhydroxylated Ru-species. The minimum number of asym-GL curves in the peak fitting of the O 1s spectra must therefore be six. The foremost outcome from the peak fitting is the remarkable decrease of the asym-GL curve that represents RuO₂. Instead
the dominating asym-GL curves are the two that represent the unknown phase, where the asym-GL curve assigned to a Ru-O component and the asym-GL curve assigned to a Ru-OH component corresponds to 27% and 51%, respectively, of all oxygen containing species in the near surface region probed by XPS.

![O 1s XPS](image)

Figure 7. O 1s XPS of (a) the reference RuO$_2$/Ni coating and (b) the RuO$_2$/Ni electrode exposed to hydrogen evolution for 24 h. The two spectra are fitted with six asymmetric Gaussian-Lorentzian curves, where one curve represents RuO$_2$ (black), one curve represent H$_2$O (blue), two curves represent the Ni-O components22 (green), and two curves represent the unknown phase (red). Shirley backgrounds are subtracted from the two spectra.
The result from the peak fitting is summarized in Table 4 and the obtained peak fitting suggests that RuO$_2$ is consumed during hydrogen evolution forming an unknown phase that consists of Ru-O and Ru-OH bonds with the ratio 1:2.

Table 4. The Result from the O 1s Spectra Peak Fitting of the Reference RuO$_2$/Ni Coating and the RuO$_2$/Ni Electrode that has been Exposed to Hydrogen Evolution for 24 Hours

<table>
<thead>
<tr>
<th>componenta</th>
<th>peak positionb [eV]</th>
<th>fractionc,d, Reference</th>
<th>fractionc,e, 24 h HE</th>
<th>assigned to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RuO$_2$</td>
<td>529.4</td>
<td>0.66</td>
<td>0.07</td>
<td>unaltered RuO$_2$ coating.</td>
</tr>
<tr>
<td>unknown phase, curve 1</td>
<td>530.2</td>
<td>0.12</td>
<td>0.27</td>
<td>Ru-O component</td>
</tr>
<tr>
<td>unknown phase, curve 2</td>
<td>531.5</td>
<td>0.12</td>
<td>0.51</td>
<td>Ru-OH component</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>532.8</td>
<td>0.03</td>
<td>0.11</td>
<td>adsorbed H$_2$Of</td>
</tr>
<tr>
<td>Ni-O, curve 1</td>
<td>529.5</td>
<td>0.04</td>
<td>0.01</td>
<td>Ni-O componentg</td>
</tr>
<tr>
<td>Ni-O, curve 2</td>
<td>531.1</td>
<td>0.03</td>
<td>0.03</td>
<td>Ni-OH componentg</td>
</tr>
</tbody>
</table>

aComponents represented by asymmetric Gaussian-Lorentzian curves.

bThe peak position is determined within ±0.05 eV.

cThe fractions of the dominant components are determined within ±3%. All other fractions are determined within ±20%.

dThe reference RuO$_2$/Ni coating.

eThe RuO$_2$/Ni electrode that has been exposed to hydrogen evolution for 24 h.

fConfirmed through ref.25

gConfirmed through ref.22
That Ni-O components must be included in the peak fitting of the O 1s spectra is motivated from the Ni 2p\(_{3/2}\) XPS spectra shown in Figure 8. The figure clearly shows that the coating of the reference RuO\(_2\) electrode contains NiO, with the main peaks at 854.2 and 855.9 eV, which after 24 h of hydrogen evolution is transformed into Ni(OH)\(_2\) with the main peak at 855.6 eV;\(^{22,26}\) the shoulder around 854.7 eV suggest that some NiO still remains. Included in the spectrum of the latter is also a metallic Ni peak at 853.0 eV,\(^{26}\) which implies reduction of the Ni(II)-component during hydrogen evolution and, thus, supporting the decrease of the Ni-O components in the O 1s spectra of Figure 7.

![Ni 2p\(_{3/2}\) XPS](image)

Figure 8. Ni 2p\(_{3/2}\) XPS of (a) the reference RuO\(_2\)/Ni coating and (b) the RuO\(_2\)/Ni electrode exposed to hydrogen evolution for 24 h. The two Ni 2p spectra indicate that NiO, which is present in the RuO\(_2\) coating, transforms into Ni(OH)\(_2\) and metallic Ni during hydrogen evolution.

3.3. Identification of the unknown phase

In addition to crystal expansion caused by hydrogen incorporation into the RuO\(_2\) rutile crystal structure,\(^{23}\) the combined XRD and XPS
study shows that RuO$_2$ coating, when exposed to hydrogen evolution in alkaline medium, is subjected to a transformation into a previously not identified phase, which in turn transforms into metallic Ru. The XRD peak position of the unknown phase is around 26.5°, which coincide with the (101)-peak position of ruthenium oxychloride, RuOCl$_2$, however, RuO$_2$ coatings prepared from ruthenium nitrosyl nitrate, Ru(NO)(NO$_3$)$_3$, confirmed that the unknown phase is not RuOCl$_2$.

Peak fitting of the Ru 3d XPS spectrum from a RuO$_2$/Ni electrode that has been exposed to hydrogen evolution for 3 h shows that the Ru atoms in the unknown phase have lost charge, in comparison to RuO$_2$, which possibly could be through a hydroxylation process. Furthermore, the peak fitting of the O 1s spectrum of a RuO$_2$/Ni electrode that has been exposed to hydrogen evolution for 24 h supports the suggestion of a hydroxylation process and that the hydroxylated or oxyhydroxylated Ru-species has twice as many Ru-OH components as the number of Ru-O components. The combined XRD and XPS study, thus, demonstrate that the unknown phase is ruthenium oxyhydroxide, RuO(OH)$_2$. The study further shows that RuO(OH)$_2$ decomposes as the hydrogen evolution proceeds and the final compound is metallic Ru, as expected from thermodynamics and anticipated in, e.g., Pourbaix-diagrams.28,29

The chemical transformation from RuO$_2$ into RuO(OH)$_2$ seems to occur in a hydrogen rich environment with a considerably low barrier and activated by the charge transfer from the RuO$_2$ toward incorporated hydrogen. It is therefore highly plausible that in practical applications, such as an electrocatalytic cathode for hydrogen production in the chlor-alkali process and alkaline water electrolysis, the electrode coating after a run in period consists of mainly RuO(OH)$_2$ through the whole electrode coating. There are, however, no indications for that RuO(OH)$_2$ is less electrocatalytic active compare to RuO$_2$. Yet, the transformation into RuO(OH)$_2$ can affect
other important properties of the electrode coating, e.g. the long-term stability. A recent study shows, for example, that the transformed electrode coating is very sensitive to reverse currents.30 Further studies are therefore motivated especially when the electrochemical conditions are industrially relevant, i.e. at highly concentrated electrolyte, high temperature, and high current density.

4. CONCLUSIONS

Material characterization of RuO\textsubscript{2}/Ni electrodes that have been exposed to hydrogen evolution was performed using X-ray diffraction and X-ray photoelectron spectroscopy. The results support the suggestion that hydrogen incorporation into the RuO\textsubscript{2} coating expands the RuO\textsubscript{2} rutile crystal structure,23 which is confirmed through a small down shift of the rutile RuO\textsubscript{2} (110) peak. The hydrogen incorporation process induces charge transfer from the RuO\textsubscript{2} toward the incorporated hydrogen. In addition, the positively charged RuO\textsubscript{2} coating transforms into RuO(OH)\textsubscript{2}, which was revealed through the intensity redistribution from known RuO\textsubscript{2} features in the XRD diffractogram and the Ru 3d and O 1s XPS spectra into features related to the oxyhydroxylated phase.

Hence, the detailed material characterization study provides evidence for RuO\textsubscript{2} consumption on DSA-type electrodes while exposed to hydrogen evolution in industrially relevant conditions, such as alkaline media and a high current density. The phase transformation is in form of a nonelectrochemical hydroxylation, forming RuO(OH)\textsubscript{2}. As the hydrogen evolution proceeds the formed RuO(OH)\textsubscript{2} reduces to metallic Ru.
AUTHOR INFORMATION

Corresponding Author

*E-mail: lars-ake.naslund@liu.se. Phone: +46 (0)13-28 5733.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The study has partly been accomplished through funding from the European Research Council under the European Communities Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement no. [258509], the Swedish Research Council (VR) grant no. 642-2013-8020, and the KAW Fellowship program. S.H. acknowledges funding from the Swedish Research Council (VR) grant no. 2007-5059.

REFERENCES

