Zinc-Vacancy–Donor Complex: A Crucial Compensating Acceptor in ZnO

Jan Eric Stehr, K. M. Johansen, T. S. Bjørheim, L. Vines, B. G. Svensson, Weimin Chen and Irina Buyanova

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
http://dx.doi.org/10.1103/PhysRevApplied.2.021001
Copyright: © 2014 American Physical Society
http://journals.aps.org/

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-109930
Zinc-Vacancy–Donor Complex: A Crucial Compensating Acceptor in ZnO

J. E. Stehr,1,* K. M. Johansen,2 T. S. Bjørheim,3 L. Vines,2 B. G. Svensson,2 W. M. Chen,1 and I. A. Buyanova1,†

1Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
2Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, N-0316 Oslo, Norway
3Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, N-0318 Oslo, Norway

(Received 6 May 2014; revised manuscript received 26 July 2014; published 22 August 2014)

The aluminum–zinc-vacancy (Al\textsubscript{Zn}–V\textsubscript{Zn}) complex is identified as one of the dominant defects in Al-containing n-type ZnO after electron irradiation at room temperature with energies above 0.8 MeV. The complex is energetically favorable over the isolated V\textsubscript{Zn}, binding more than 90% of the stable V\textsubscript{Zn}’s generated by the irradiation. It acts as a deep acceptor with the (0/−) energy level located at approximately 1 eV above the valence band. Such a complex is concluded to be a defect of crucial and general importance that limits the n-type doping efficiency by complex formation with donors, thereby literally removing the donors, as well as by charge compensation.

DOI: 10.1103/PhysRevApplied.2.021001

Transparent conductive oxides (TCOs) are currently employed in a wide variety of applications ranging from light emission and light harvesting to touch screens. At the moment, the most commonly used TCO is indium tin oxide, but a steep increase of the indium price in recent years, partly because of a limited abundance, has urged a search for alternative materials. One of the most promising candidates is ZnO [1–3], since it is transparent to visible light, nontoxic, widely abundant, and cheap. Device applications of ZnO require reliable and precise control of its electrical and optical properties, which can be largely affected by intrinsic defects and impurities. Here, the key point defects to be considered include zinc vacancies (V\textsubscript{Zn}), zinc interstitials (Zn\textsubscript{i}), oxygen vacancies (V\textsubscript{O}), and oxygen interstitials (O\textsubscript{i}). Among them, V\textsubscript{Zn} is probably the most relevant defect, since it has the lowest formation energy among native point defects in n-type ZnO [1] and is commonly found in bulk and nanostructured materials [4–8]. V\textsubscript{Zn} is also suggested to be the origin of the observed n-type doping limit in ZnO [9,10] by forming complexes with donors leading to their compensation [11–13]. Therefore, it is crucial to understand the formation of intrinsic defects, especially V\textsubscript{Zn}, and their interaction with extrinsically important impurities such as shallow dopants in ZnO, which remains far from complete.

In this study, we use electron irradiation with variable energies to generate point defects either solely on the O sublattice (when the irradiation energy \(E_{\text{irr}} = 0.45–0.8 \text{ MeV} \)) or on both Zn and O sublattices (when \(E_{\text{irr}} > 0.8 \text{ MeV} \)) [14,15]. The atomic structure and chemical composition of the defects are then identified by employing electron paramagnetic resonance (EPR) spectroscopy [16].

Nominally undoped melt-grown and monocrystalline ZnO from Cermet Inc. with an electron concentration of \(1 \times 10^{17} \text{ cm}^{-3} \) at room temperature (RT) is utilized, subjected to electron irradiation performed at RT by using \(E_{\text{irr}} \) of 0.4, 0.6, 0.8, and 1.2 MeV and fluences \(\Phi = (4–5) \times 10^{17} \text{ cm}^{-2} \) [15]. The dominant residual impurities are found to be Al, Fe, and Si with atomic concentrations of approximately \(3.5 \times 10^{16} \text{ cm}^{-3} \), approximately \(5.3 \times 10^{16} \text{ cm}^{-3} \), and \(2–3 \) \(\times 10^{17} \text{ cm}^{-3} \), respectively, by using secondary ion mass spectrometry (SIMS). No other impurities are found with a concentration above approximately \(5 \times 10^{15} \text{ cm}^{-3} \), with a possible exception of H being below its detection limit of \(5 \times 10^{17} \text{ cm}^{-3} \), consistent with reported values for a similar type of ZnO [17]. EPR measurements are carried out at 4.2–77 K with a microwave frequency of 9.4 GHz. For photo-EPR, a high-pressure Hg lamp is used together with appropriate filters to select illumination wavelengths. Light intensity is kept constant within the whole wavelength range. To ensure the same initial conditions, the samples are cooled down in the dark from RT prior to 5-min light illumination. In recharging experiments, the EPR signal intensity is monitored as a function of time at a fixed magnetic field.

Figure 1 illustrates effects of electron irradiation on the EPR spectra. Several sets of EPR signals can be distinguished from RT prior to 5-min light illumination. In recharging experiments, the EPR signal intensity is monitored as a function of time at a fixed magnetic field.

Figure 1 illustrates effects of electron irradiation on the EPR spectra. Several sets of EPR signals can be distinguished from RT prior to 5-min light illumination. In recharging experiments, the EPR signal intensity is monitored as a function of time at a fixed magnetic field.

\[\mathcal{H} = \mu_B \mathbf{B} \mathbf{S} + \text{SAI} + \text{SDS}. \] (1)

Here \(\mathbf{S} \) is an effective electron spin, \(\mathbf{I} \) the nuclear spin, and \(\mathbf{B} \) an external magnetic field. \(\mu_B \) is the Bohr magneton, and \(\mathbf{g} \) and \(\mathbf{A} \) are the electron \(g \) tensor and hyperfine (hf)
The spectrum of the reference sample contains two EPR signals. The Hamiltonian parameters are summarized in Table I. The observation of six EPR lines for each set implies resolved hf interaction between an electron spin $S = 1/2$ and a nuclear spin $I = 5/2$ of 100% natural abundance. Only three relevant chemical elements fulfill this requirement, namely, Al, Mn, and I. According to our SIMS data, however, both Mn and I are below approximately 1×10^{15} cm$^{-3}$ and only Al is present with a sufficient concentration to account for the deduced concentrations of the EPR-active centers (see below). Thus, we are dealing with a defect that contains an Al atom.

Further insight into the defect structure is obtained from angular-dependent EPR studies performed by rotating \mathbf{B} in the (110) and the (1120) planes of the ZnO crystal. The results, shown by the open circles in Figs. 2(b) and 2(c), are found to exhibit a pattern characteristic for a nonaxial defect with an angle $\varphi = 22^\circ$ between the defect axis z and the c axis. The simulated angular dependences using the full set of spin-Hamiltonian parameters given in Table I are shown by the solid lines in Figs. 2(b) and 2(c) and are in excellent agreement with the experimental data. The obtained g values (>2) are typical for acceptor-type defects and are very close to those reported for the isolated nonaxial V_{Zn}^-. This result strongly suggests that the defect is a complex involving both V_{Zn}^- and an Al atom where the spin density is mainly localized at V_{Zn}^-. By taking into account the fact that the hole trapped at V_{Zn}^- [21] is centered close to one of the four O$^-$ ions surrounding V_{Zn}^-, the observed tilting angle of 22° of the defect axis implies that the isolated Al atom resides at the next-nearest Zn site (i.e., Al$_{\text{Zn}}$) as shown in Fig. 2(d). As the overall character of this defect is acceptorlike, the Al$_{\text{Zn}}$ (a donor in its isolated form) must have lost an electron to its partner and is in the form of Al$_{\text{Zn}}^+$. This result also justifies hole localization near the farthest O atom from Al$_{\text{Zn}}^+$ [Fig. 2(d)], in view of their electrostatic repulsion. It can therefore be concluded that the EPR-active paramagnetic charge state of the defect is (Al$_{\text{Zn}}^+-V_{\text{Zn}}^-)^0$. This defect structure is similar to the so-called A centers in other II-VI materials reported in the literature [22–24].

The paramagnetic (Al$_{\text{Zn}}^+-V_{\text{Zn}}^-)^0$ center contains a hole trapped in the $2p$ orbital of an O$^-$ ion, which is subjected to a Stark effect arising from the V_{Zn}^- and the Al atom.

![Figure 1](image-url)

Figure 1. Effects of electron irradiation on EPR spectra of the investigated samples. The spectra are measured at 30 K under white-light illumination with an applied magnetic field oriented perpendicular to the c axis of the ZnO crystal. In the case of the untreated sample, the same EPR spectrum could also be detected in the dark.

Table I. Summary of the spin-Hamiltonian parameters of the defects discussed in this work.

| Center | S | I | g_z (g_{A_z}) | g_\perp (g_{\perp}) | $|A_{\perp}|$ | $|A_{\parallel}|$ | D | φ (deg) |
|-----------------|-----|-----|------------------|-------------------------|-------------|-----------------|-----|----------------|
| V_{Zn}^- (axial) | 1/2 | 1/2 | 2.0193 | 2.0041 | | | 110.75 | |
| V_{Zn}^- (nonaxial) | 1/2 | 1/2 | 2.0173 2.0183 | 2.0041 | | | 110.75 | |
| (Al$_{\text{Zn}}$-V_{Zn})0 | 1/2 | 5/2 | 2.0243 2.0143 | 2.0045 26.1 26.1 | | | 22 | |
| V_{O}^+ | 1/2 | 1/2 | 1.9960 | 1.9945 | | | 22 | |
| Al$_{\text{Zn}}^0$ | 1/2 | 5/2 | 1.9563 | 1.9577 2.010 2.010 | | | 22 | |
| Mn$^{2+}$ | 5/2 | 5/2 | 2.0016 | 2.0016 227.8 227.8 | | | 650.2 | |

The tensor \mathbf{D} describes the fine-structure splitting for $S > 1/2$. The obtained spin-Hamiltonian parameters are summarized in Table I. The spectrum of the reference sample contains two EPR signals that can be attributed to Mn$^{2+}$ [18] and a Shallow donor, Al$_{\text{Zn}}^0$ [19]. The Mn$^{2+}$ signal is present in all the studied samples before and after irradiation with the same concentration. The Al$_{\text{Zn}}^0$ signal intensity, on the other hand, decreases with increasing irradiation energy. When $E_{\text{irr}} \geq 0.6$ MeV, V_{O}^+’s are generated, leading to the appearance of a single-line EPR signal from a positively charged V_{O}^+ [20]. V_{Zn}^-’s, on the other hand, start to be formed when $E_{\text{irr}} > 0.8$ eV [14,15] and can be detected only after the 1.2-MeV irradiation. We note that the EPR signals from the isolated V_{Zn}^- are rather weak and can be resolved under monochromatic illumination with photon energies ranging between 2.1 and 2.4 eV (not shown in Fig. 1).

Under white-light illumination, the EPR spectrum is dominated by a new signal consisting of three sets of six equidistant lines, denoted as (Al$_{\text{Zn}}$-V_{Zn})0 in Fig. 1, which indicates that they stem from a dominant defect formed after the 1.2-MeV irradiation. The observed spin density is mainly localized at V_{Zn}^- and can be detected only after the 1.2-MeV irradiation. We note that the EPR signals from the isolated V_{Zn}^- are rather weak and can be resolved under monochromatic illumination with photon energies ranging between 2.1 and 2.4 eV (not shown in Fig. 1).
The defect with $g_x > g_y > g_z$ is the spin-orbit coupling constant of the O$^-$ ion. By using $\lambda = -16$ meV [25], Eq. (2) yields a positive shift from the free-electron g factor that is expected for an acceptor-type defect with $g_x > g_y > g_z \approx g_0$, consistent with the experimentally determined g values for the Al$\text{Zn}-V\text{Zn}$ complex. $\Delta_\perp (\Delta_y)$ can be estimated as being 2.6 (1.44 eV), which is comparable to the values deduced by Schirmer for the substitutional Li acceptor [25].

The distribution of the spin density within the Al$\text{Zn}-V\text{Zn}$ complex can be further evaluated based on the determined hf coupling parameter A. By employing a one-electron linear combination of the atomic orbital scheme [26] and the charge density of the 3s electron $|\psi_{3s}(0)|^2 = 3911$ MHz for a free neutral Al atom [27], the localization of the electron wave function at the Al ion is estimated to be 0.7%, i.e., rather weak. This result is consistent with the strong localization of spin density at the $V\text{Zn}^-$ part of the complex. In principle, the p-type character of the hole wave function should lead to an anisotropic hf tensor, which is not observed in this case. However, previous studies of the A centers in other II-VI materials [22] and of vacancy-donor pairs in Si [28] show that this anisotropy is rather weak and is not always resolved experimentally.

The energy level position of the Al$\text{Zn}-V\text{Zn}$ complex can be determined from photo-EPR measurements. The corresponding EPR signal can be detected only when the photon energy exceeds 2.4 eV, as shown in Fig. 3(a). Moreover, the recharging process exhibits a monoeponential behavior [Fig. 3(b)] which proves that it is a result of a single photoionization process. Since the EPR signal from the isolated AlZn^0 also increases under the light illumination with the same photon energy, the responsible photoionization process should be connected with the conduction band, i.e.,

$$\text{(Al}_{\text{Zn}}-V_{\text{Zn}})^0 \rightarrow h\nu \rightarrow \text{(Al}_{\text{Zn}}-V_{\text{Zn}})^0 + e,$$

(3)

This process places the $(0/-)$ level of the Al$\text{Zn}-V\text{Zn}$ complex at approximately 1 eV above the top of the valence band (E_v) and confirms that the defect is a deep acceptor. Indeed, these results are consistent with the data obtained from density-functional theory (DFT) calculations by Thienprasert et al. [11] and our calculations [29], which predict Al$\text{Zn}-V\text{Zn}$ to be a deep single acceptor with a lower formation energy relative to the sum of that of the two individual constituents (see Refs. [29,30] for more details on our DFT calculations).

To further shed light on the formation of the Al$\text{Zn}-V\text{Zn}$ center, we carry out a quantitative EPR study. The total
of 1.4 eV for the concentration of the AlZn-...determined by SIMS is about 3×10^{13} cm^{-3} in the untreated material—see Fig. 4. These values are in good agreement with the results of positron annihilation spectroscopy (PAS) [15] which show that the concentration of the open-volume defects related to V_{Zn} is below the PAS detection limit of 1×10^{15} cm^{-3} prior to the irradiation but increases up to approximately 6×10^{15} cm^{-3} after the 1.2-MeV irradiation. The formation of the AlZn-V_{Zn} center implies migration of Al_{Zn} and/or V_{Zn}. Al_{Zn} is, however, known to be practically immobile at temperatures below approximately 800°C [31], and V_{Zn} is stable at RT [4,32] with the calculated migration energy barrier of 1.4 eV for V_{Zn}^{2-} [33]. Though the electron irradiation of our samples is performed at RT, the energy required for migration of the constituting species may be provided by the irradiation itself, promoting the formation of the AlZn-V_{Zn} center. Such irradiation-enhanced migration is well documented in other semiconductors, e.g., Si [34].

Most importantly, our quantitative EPR measurements prove that the AlZn-V_{Zn} complex is one of the most energetically favorable defects in ZnO in the presence of both V_{Zn} and Al_{Zn}. The formation of this complex binds more than 90% of the stable V_{Zn}^{2-}’s which survive Frenkel pair recombination—see Fig. 4. This process is accompanied by a sharp decline in the concentration of the isolated AlZn, giving further evidence that AlZn is indeed a partner of the complex. We note that the total Al concentration determined by SIMS is about 3×10^{16} cm^{-3}, which is comparable, within the experimental error, with the concentration of the AlZn-V_{Zn} center. The formation of the AlZn-V_{Zn} complex should thus suppress the n-type conductivity, since the complex not only acts as a compensating acceptor but also binds one shallow Al_{Zn} donor during its formation, thereby literally deactivating the n-doping function of Al_{Zn}. Such a decline in the electron concentration has indeed been observed from Hall-effect measurements [15]. We thus suggest that such donor-vacancy complexes could severely degrade performance of highly doped n-type ZnO films as TCO, since the formation energy of V_{Zn} is reduced in n-type materials, especially when they are grown under O-rich conditions [12,13,33,35]. This conclusion is further supported by both our [29] and other DFT calculations of the formation energy of the AlZn-V_{Zn} complex [11]. In addition, such performance degradation was observed not only in ZnO highly doped with Al [9], but also for other group-III elements [10]. This observation is further evidence that donor-vacancy centers play a crucial role for controlling the n-type doping limit in ZnO in general.

Finally, the general validity of the present results is further corroborated by comparison with data obtained by other authors for the evolution of point defects on the Zn sublattice using different types of ZnO materials and different characterization techniques. Especially, in a comprehensive series of PAS studies of MeV electron-irradiated ZnO samples grown by the seeded vapor phase technique, with H and Al as the most likely residual impurities having concentrations in the 10^{17}-cm^{-3} range, Tuomisto et al. [7,8] investigate the introduction and thermal stability of open-volume defects. Similar to our findings, they report (i) a relatively low introduction rate of defects on the Zn sublattice, indicating strong recombination between V_{Zn} and Zn interstitials, (ii) a deep-acceptor behavior of V_{Zn} with an ionization level located approximately 2.3 eV below E_c, and (iii) V_{Zn}’s to be part of two different defects. The latter is inferred from isochronal annealing data, showing that the V_{Zn}’s disappear in two separate stages at approximately 400 and 550 K with activation energies of approximately 1.3 and 1.8 eV, respectively. Since the PAS signature of the AlZn-V_{Zn} defect configuration shown in Fig. 2(d) is anticipated to be very similar (or even indistinguishable within the experimental accuracy) to that of the isolated V_{Zn}, the two-stage annealing of V_{Zn} can be explained readily as follows: the first stage is due to migration of V_{Zn} and subsequent trapping or annihilation by other defects or impurities, while the second stage arises from dissociation of the AlZn-V_{Zn} complex followed by migration and trapping or annihilation of the released V_{Zn}’s. As discussed previously, an activation energy of approximately 1.3 eV is in the range of that expected for the migration of V_{Zn} [4,32,33], and with a binding energy of approximately 0.5 eV for the AlZn-V_{Zn} complex, as predicted by DFT calculations (see Refs. [11,29]), the second stage will exhibit a total energy barrier of approximately 1.8 eV, in perfect agreement with the experimental value in Ref. [8].

In summary, we employ EPR spectroscopy to investigate properties of Al_{Zn} and intrinsic defects that were introduced in monocrystalline ZnO in a controlled manner by electron irradiation. For irradiation energies exceeding the displacement threshold for the Zn sublattice, one of the dominant irradiation-induced defects is unambiguously identified as the AlZn-V_{Zn} complex. The complex is concluded to be energetically preferable over the isolated V_{Zn}, and most of the available Al_{Zn} and V_{Zn} are bound during its formation.

FIG. 4. Concentrations of the V_{Zn}^{−}, (AlZn-V_{Zn})^{0}, V_{O}^{+}, Al_{Zn}^{0}, and Mn^{2+} centers determined from the quantitative EPR measurements as a function of the electron irradiation energy.
The center is further shown to act as a deep acceptor and has the $(0/\text{--})$ energy level located at about 1.0 eV above E_v. We further show that our results are of general relevance, irrespective of the type of ZnO material used. Our findings underline the important role of such donor vacancy complexes in limiting n-type doping efficiency and thus the performance of ZnO as TCO. In fact, similar effects caused by interaction with V_{Zn} are also anticipated for other shallow n-type dopants in ZnO, and the present results could serve as a general guideline for future steps to improve n-type doping efficiency and conductivity during materials growth.

ACKNOWLEDGMENTS

Discussions with Dr. K. E. Knutsen and Professor A. Yu. Kuznetso during the initial stage of this work are highly appreciated. Financial support by the Swedish Research Council (Grant No. 621-2010-3971) and Norwegian Research Council through the FRINATEK program (WEDD and DYNAZOX projects) is gratefully acknowledged.

