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Abstract

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The CMOS
sensor has many advantages over the more conventional CCD (Charge-Coupled
Device) sensor such as lower power consumption, cheaper manufacturing and the
potential for on-chip processing. Nearly all CMOS sensors make use of what is
called a rolling shutter readout. Unlike a global shutter readout, which images
all the pixels at the same time, a rolling-shutter exposes the image row-by-row.
If a mechanical shutter is not used this will lead to geometric distortions in the
image when either the camera or the objects in the scene are moving. Smaller
cameras, like those in cell-phones, do not have mechanical shutters and systems
that do have them will not use them when recording video. The result will look
wobbly (jello effect), skewed or otherwise strange and this is often not desirable.
In addition, many computer vision algorithms assume that the camera used has a
global shutter and will break down if the distortions are too severe.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as that of a rolling-shutter camera, due
to the motion of the aircraft. If the acquired images are to be registered to maps
or other images, the distortions need to be suppressed.

The main contributions in this thesis are the development of the three-dimen-
sional models for rolling-shutter distortion correction. Previous attempts modelled
the distortions as taking place in the image plane, and we have shown that our
techniques give better results for hand-held camera motions. The basic idea is to
estimate the camera motion, not only between frames, but also the motion during
frame capture. The motion is estimated using image correspondences and with
these a non-linear optimisation problem is formulated and solved. All rows in
the rolling-shutter image are imaged at different times, and when the motion is
known, each row can be transformed to its rectified position. The same is true
when using depth sensors such as the Microsoft Kinect, and the thesis describes
how to estimate its 3D motion and how to rectify 3D point clouds.

In the thesis it has also been explored how to use similar techniques as for
the rolling-shutter case, to correct push-broom images. When a transformation
has been found, the images need to be resampled to a regular grid in order to be
visualised. This can be done in many ways and different methods have been tested
and adapted to the push-broom setup.

In addition to rolling-shutter distortions, hand-held footage often has shaky
camera motion. It is possible to do efficient video stabilisation in combination with
the rectification using rotation smoothing. Apart from these distortions, motion
blur is a big problem for hand-held photography. The images will be blurry due
to the camera motion and also noisy if taken in low light conditions. One of the
contributions in the thesis is a method which uses gyroscope measurements and
feature tracking to combine several images, taken with a smartphone, into one
resulting image with less blur and noise. This enables the user to take photos
which would have otherwise required a tripod.
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Populärvetenskaplig sammanfattning

Nästan alla mobiltelefoner och videokameror som säljs idag är utrustade med en
CMOS-bildsensor (Complementary Metal Oxide Semiconductor) och det finns
även en allmän trend att använda CMOS-sensorer i andra typer av kameror.
Sensorn har m̊anga fördelar jämfört med den mer konventionella CCD-sensorn
(Charge-Coupled Device) s̊asom lägre strömförbrukning, billigare tillverkning och
möjligheten att utföra beräkningar p̊a chippet. CMOS-sensorer i konsumentpro-
dukter använder sig av vad som kallas en rullande slutare. Till skillnad fr̊an en
global slutare, där alla pixlar avbildas samtidigt, s̊a exponerar en sensor med rul-
lande slutare bilden rad för rad. Kameror som använder rullande slutare kan liknas
vid en skanner som läser av ett papper rad för rad. Om man rör p̊a pappret un-
der tiden det skannas in s̊a kommer den slutgiltiga bilden att bli böjd eller v̊agig,
istället för rak som originalbilden. P̊a samma sätt kommer bilder och videor tagna
med en rullande slutare att uppvisa geometriska distorsioner (förvrängningar) om
antingen förem̊alen som filmas rör sig, eller om kameran själv flyttas. En meka-
nisk slutare avhjälper problemet, men dessa används inte vid videoinspelning och
mindre kameror, s̊asom de i mobiltelefoner, har ingen mekanisk slutare alls. Av-
handlingen har fokuserat p̊a metoder för att hantera de geometriska distorsioner
som uppkommer när kameran rör sig under exponering, främst genom handh̊allen
fotografering och videoinspelning. Många datorseendealgoritmer antar att den ka-
mera som används har en global slutare och kommer därför inte att fungera om
distorsionen är för stor, men med tekniker fr̊an denna avhandling blir det lättare
för forskare och konsumenter att använda kameror med rullande slutare.

De viktigaste bidragen i denna avhandling är nya tredimensionella modeller
för korrigering av distorsioner fr̊an rullande slutare. Tidigare metoder modellerade
distorsionerna i bildplanet och vi har visat att v̊ar teknik ger bättre resultat för
handh̊allna kamerarörelser. Den grundläggande idén är att uppskatta kamerans
rörelse, inte bara mellan bilder i en videosekvens, utan ocks̊a den rörelse som sker
under tiden en enskild bild tas. Rörelsen kan skattas med hjälp av matchning
av punkter mellan bilderna och genom att använda dessa kan ett matematiskt
problem formuleras och lösas. Alla rader i en bild tagen med rullande slutare
avbildas vid olika tidpunkter och när rörelsen för kameran är känd kan varje rad
flyttas till dess korrekta position.

Microsoft Kinect är ett tillbehör till Xbox 360 som registrerar människors
rörelser och tillhandah̊aller förutom färgbilder även bilder inneh̊allandes avst̊and
mellan sensorn och förem̊al i rummet. Tack vare möjligheten att erh̊alla avst̊ands-
bilder, tillsammans med det l̊aga priset har sensorn blivit populär att använda i
datorseendesystem och p̊a robotplattformar och om dessa är mobila kommer sen-
sorns rörelse att ge upphov till distorsioner b̊ade i färgbilder och i avst̊andsbilder
p̊a grund av användningen av rullande slutare. I avhandlingen beskrivs hur man
tar hänsyn till detta genom skattning av sensorns 3D-rörelse med efterföljande
korrektion av 3D-punkter.

I luftburen fjärranalys är det vanligt att använda push-broomsensorer. Dessa
sensorer uppvisar en liknande typ av förvrängning som för en kamera med rullande
slutare, p̊a grund av rörelsen hos flygplanet. I avhandlingen undersöks hur man
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använder liknande tekniker som i fallet med rullande slutare för att rätta till push-
broombilder och även olika metoder för att visualisera de korrigerade bilderna.

Förutom distorsioner uppkomna p̊a grund av rullande slutare s̊a har handh̊allna
videoupptagningar ofta skakig kamerarörelse. Avhandlingen beskriver hur man
gör effektiv videostabilisering, i kombination med borttagning av de geometriska
distorsionerna. Utöver dessa distorsioner s̊a är rörelseoskärpa ett stort problem
vid handh̊allen fotografering. Bilderna blir suddiga p̊a grund av att den som tar
bilderna inte kan h̊alla kameran stilla och bilderna blir även brusiga om de är
tagna i d̊aliga ljusförh̊allanden. Ett av bidragen i avhandlingen är en metod, som
med hjälp av gyroskopmätningar och matchning av bildpunkter kombinerar flera
bilder tagna med en mobiltelefon till en slutgiltig bild med b̊ade mindre brus och
rörelseoskärpa. Detta medför att användaren kan ta bilder som annars skulle kräva
att ett stativ används.
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Chapter 1

Introduction

1.1 Motivation

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The sensor
has many advantages over the more conventional CCD (Charge-Coupled Device)
sensor such as lower power consumption, cheaper manufacturing and the potential
for on-chip processing. Nearly all CMOS sensors make use of what is called a
rolling shutter readout. Unlike a global shutter readout, which images all the pixels
at the same time, a rolling-shutter camera exposes the image row-by-row. If a
mechanical shutter is not used this will lead to geometric distortions in the image
when either the camera or the objects in the scene are moving. Smaller cam-
eras, like those in cell-phones, do not have mechanical shutters and systems which
do have them will not use them when recording video. Figure 1.1 shows some
examples of different distortions. The top left shows skew caused by a panning
motion, the top right shows distortions caused by a 3D rotation and the bottom
left shows distortions from a fast moving object (note that the car and the wheels
are distorted differently). Almost all computer vision algorithms assume that the
camera used has a global shutter. The work in this thesis will enable people to
also use rolling-shutter cameras and is focused on distortions caused by camera
motion, e.g. top row in figure 1.1.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as a rolling-shutter camera, due to the
motion of the aircraft, see figure 1.1 bottom right for an example. If the acquired
images are to be registered with maps or other images, the distortions need to be
suppressed. In this thesis it has been explored how to use similar techniques as
for the rolling-shutter case in order to correct push-broom images.

The work leading to this thesis was conducted within the Virtual Global Shut-
ters for CMOS Cameras project, and papers D and E in collaboration with the
Swedish Defence Research Agency (FOI).

3
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Figure 1.1: Geometric distortions in images. Top left: slanted house due to camera
pan. Top right: bent pole due to camera 3D rotation. Bottom left: slanted car
and curved wheels due to fast object motion. Bottom right: curved path in push-
broom image due to aircraft motion.
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1.2 Outline

The thesis is divided into two parts. The first part gives a background to the
theory and sensors used in my work. The second part consists of six publications
covering rolling-shutter and push-broom distortions.

1.2.1 Outline Part I: Background

The background part starts with chapter 2 which describes the sensors used in the
publications. Chapter 3 introduces the camera models. Chapter 4 describes sensor
motion estimation and how to correct for geometric distortions together with the
application of video stabilisation and stacking. Chapter 5 describes the evaluation
measures used, and how the ground-truth dataset was generated. The first part
ends with chapter 6, concluding remarks.

1.2.2 Outline Part II: Included Publications

Preprint versions of six publications are included in Part II. The full details and
abstracts of these papers, together with statements of the contributions made by
the authors, are given below.

Paper A: Rectifying rolling shutter video from hand-held devices

Per-Erik Forssén and Erik Ringaby. Rectifying rolling shutter video
from hand-held devices. In IEEE Conference on Computer Vision
and Pattern Recognition, San Francisco, USA, 2010. IEEE Computer
Society.

Abstract:
This paper presents a method for rectifying video sequences from rolling shutter
(RS) cameras. In contrast to previous RS rectification attempts we model dis-
tortions as being caused by the 3D motion of the camera. The camera motion
is parametrised as a continuous curve, with knots at the last row of each frame.
Curve parameters are solved for using non-linear least squares over inter-frame
correspondences obtained from a KLT tracker. We have generated synthetic RS
sequences with associated ground-truth to allow controlled evaluation. Using these
sequences, we demonstrate that our algorithm improves over to two previously
published methods. The RS dataset is available on the web to allow comparison
with other methods.
Contribution:
This paper was the first to correct rolling-shutter distortions by modelling the 3D
camera motion. It also introduced the first rolling-shutter dataset. The author
contributed to the rotation motion model, produced the dataset, and conducted
the experiments.
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Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

Erik Ringaby and Per-Erik Forssén. Efficient video rectification and
stabilisation for cell-phones. International Journal of Computer Vision,
96(3):335–352, 2012.

Abstract:
This article presents a method for rectifying and stabilising video from cell-phones
with rolling shutter (RS) cameras. Due to size constraints, cell-phone cameras
have constant, or near constant focal length, making them an ideal application for
calibrated projective geometry. In contrast to previous RS rectification attempts
that model distortions in the image plane, we model the 3D rotation of the camera.
We parameterise the camera rotation as a continuous curve, with knots distributed
across a short frame interval. Curve parameters are found using non-linear least
squares over inter-frame correspondences from a KLT tracker. By smoothing a
sequence of reference rotations from the estimated curve, we can at a small extra
cost, obtain a high-quality image stabilisation. Using synthetic RS sequences with
associated ground-truth, we demonstrate that our rectification improves over two
other methods. We also compare our video stabilisation with the methods in
iMovie and Deshaker.
Contribution:
This paper extends paper A, by allowing camera motions that are non constant
during a frame capture, a new GPU-based forward interpolation, and the appli-
cation of video stabilisation. The author was the main source of the findings for
the importance of spline knot positions, the GPU based interpolation, and imple-
mented the stabilisation.

Paper C: Scan Rectification for Structured Light Range Sensors with
Rolling Shutters

Erik Ringaby and Per-Erik Forssén. Scan rectification for structured
light range sensors with rolling shutters. In IEEE International Con-
ference on Computer Vision, Barcelona, Spain, November 2011. IEEE
Computer Society

Abstract:
Structured light range sensors, such as the Microsoft Kinect, have recently become
popular as perception devices for computer vision and robotic systems. These
sensors use CMOS imaging chips with electronic rolling shutters (ERS). When
using such a sensor on a moving platform, both the image, and the depth map, will
exhibit geometric distortions. We introduce an algorithm that can suppress such
distortions, by rectifying the 3D point clouds from the range sensor. This is done by
first estimating the time continuous 3D camera trajectory, and then transforming
the 3D points to where they would have been, if the camera had been stationary.
To ensure that image and range data are synchronous, the camera trajectory
is computed from KLT tracks on the structured-light frames, after suppressing
the structured-light pattern. We evaluate our rectification, by measuring angles



1.2. OUTLINE 7

between the visible sides of a cube, before and after rectification. We also measure
how much better the 3D point clouds can be aligned after rectification. The
obtained improvement is also related to the actual rotational velocity, measured
using a MEMS gyroscope.
Contribution: This paper was the first to address the rolling-shutter problem
on range scan sensors. Compared to paper A and paper B, the cost function is
defined on 3D features, and the full 6 DOF motion can be estimated and corrected
for. The author contributed to the motion estimation, feature rejection steps, and
the experiments.

Paper D: Co-alignment of Aerial Push-Broom Strips using Trajectory
Smoothness Constraints

Erik Ringaby, Jörgen Ahlberg, Per-Erik Forssén, and Niclas Wadströmer.
Co-alignment of aerial push-broom strips using trajectory smoothness
constraints. In Proceedings SSBA’10 Symposium on Image Analysis,
pages 63–66, March 2010

Abstract:
We study the problem of registering a sequence of scan lines (a strip) from an
airborne push-broom imager to another sequence partly covering the same area.
Such a registration has to compensate for deformations caused by attitude and
speed changes in the aircraft. The registration is challenging, as both strips contain
such deformations.

Our algorithm estimates the 3D rotation of the camera for each scan line, by
parametrising it as a linear spline with a number of knots evenly distributed in one
of the strips. The rotations are estimated from correspondences between strips of
the same area. Once the rotations are known, they can be compensated for, and
each line of pixels can be transformed such that the ground trace of the two strips
are registered with respect to each other.
Contribution: This paper explored the possibility of using the previously in-
troduced rolling-shutter correction scheme to register push-broom strips, by using
smoothness constraints. The author contributed to the registration and conducted
the experiments.

Paper E: Anisotropic Scattered Data Interpolation for Pushbroom Im-
age Rectification

Erik Ringaby, Ola Friman, Per-Erik Forssén, Thomas Opsahl, Trym Ve-
gard Haavardsholm, and Ingebjørg K̊asen. Anisotropic scattered data
interpolation for pushbroom image rectification. IEEE Transactions in
Image Processing, 2014

Abstract:
This article deals with fast and accurate visualization of pushbroom image data
from airborne and spaceborne platforms. A pushbroom sensor acquires images
in a line-scanning fashion, and this results in scattered input data that needs
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to be resampled onto a uniform grid for geometrically correct visualization. To
this end, we model the anisotropic spatial dependence structure caused by the
acquisition process. Several methods for scattered data interpolation are then
adapted to handle the induced anisotropic metric and compared for the pushbroom
image rectification problem. A trick that exploits the semi-ordered line structure
of pushbroom data to improve the computational complexity several orders of
magnitude is also presented.
Contribution: This paper models the spatial dependence structure of push-
broom data and is shown to be anisotropic. Five methods for scattered data
interpolation are extended to handle the anisotropic nature of pushbroom data
and compared for the image rectification problem. The author contributed to the
extension of the forward interpolation method, the surface structure model and
conducted the experiments.

Paper F: A Virtual Tripod for Hand-held Video Stacking on Smart-
phones

Erik Ringaby and Per-Erik Forssén. A virtual tripod for hand-held
video stacking on smartphones. In IEEE International Conference on
Computational Photography, Santa Clara, USA, May 2014. IEEE Com-
puter Society

Abstract:
We propose an algorithm that can capture sharp, low-noise images in low-light
conditions on a hand-held smartphone. We make use of the recent ability to acquire
bursts of high resolution images on high-end models such as the iPhone5s. Frames
are aligned, or stacked, using rolling shutter correction, based on motion estimated
from the built-in gyro sensors and image feature tracking. After stacking, the
images may be combined, using e.g. averaging to produce a sharp, low-noise photo.
We have tested the algorithm on a variety of different scenes, using several different
smartphones. We compare our method to denoising, direct stacking, as well as a
global-shutter based stacking, with favourable results.
Contribution: This paper explores the possibility to use gyroscope measure-
ments to reduce rolling-shutter artifacts and register several images in order to cre-
ate an image stack, resulting in a low-noise sharp image. The author contributed
to the implementation of the iOS data collection application, gyroscope bias and
gyroscope/frame synchronisation optimisation, translation model and conducted
the experiments.

Other Publications

The following publications by the author are related to the included papers.

Gustav Hanning, Nicklas Forslöw, Per-Erik Forssén, Erik Ringaby,
David Törnqvist, and Jonas Callmer. Stabilizing cell phone video us-
ing inertial measurement sensors. In The Second IEEE International
Workshop on Mobile Vision, Barcelona, Spain, November 2011. IEEE.
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Johan Hedborg, Erik Ringaby, Per-Erik Forssén, and Michael Felsberg.
Structure and motion estimation from rolling shutter video. In The
Second IEEE International Workshop on Mobile Vision, Barcelona,
Spain, November 2011.

Johan Hedborg, Per-Erik Forssén, Michael Felsberg, and Erik Ringaby.
Rolling shutter bundle adjustment. In IEEE Conference on Computer
Vision and Pattern Recognition, Providence, Rhode Island, USA, June
2012. IEEE Computer Society.

Erik Ringaby, Jörgen Ahlberg, Niclas Wadströmer, and Per-Erik Forssén.
Co-aligning aerial hyperspectral push-broom strips for change detec-
tion. In Proceedings of SPIE Security+Defence, volume 7835, Tolouse,
France, September 2010. SPIE, SPIE Digital Library.
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Chapter 2

Sensors

All imaging sensors used in this thesis share the property of sequential acquisition
of an image frame. How the sensors work will be described in the following sections.

2.1 Rolling-shutter sensors

The function of a camera shutter is to allow light to pass through for a determined
period of time. The shutter used can either be mechanical or electronic and have
a global, block or rolling exposure method. In a global-shutter camera, all pixels
in a frame are imaged at a single time instance. Rolling shutter on the other
hand is a technique used when acquiring images by scanning the frame. Instead of
imaging the scene at a single time instance, the image rows are sequentially reset
and read out. The rows which are not being read out continue to be exposed.
Figure 2.1 shows the difference between image integration with a global-shutter
and rolling-shutter camera. The rolling-shutter method has the advantage of longer
integration times, as shown in the bottom figure, which increases the sensitivity.

The two most common image sensors used in digital cameras are the CCD
(Charge-Coupled Device) and the CMOS (Complementary Metal Oxide Semicon-
ductor) image sensors. Generally, CCD sensors use global shutters and CMOS
use rolling shutters. There are CMOS sensors with a global shutter, where all the
pixels are exposed to light at the same time and at the end of integration time
they are transferred to a light-shielded storage area simultaneously. After this the
signals are read out.

In addition to increased sensitivity, the CMOS sensors are also cheaper to
manufacture, they use less power and it is also simple to integrate other kind of
electronics on the chip. Almost all camera-equipped cell-phones make use of a
rolling shutter and the CMOS sensor is gradually replacing the CCD sensor in
other segments such as camcorders and video capable SLR’s. The rolling shutter
will however introduce distortions when the scene or camera is moving, and the
amount of these distortions depend on how fast the shutter “rolls”. A rule of thumb
is that the higher the resolution is, the slower the sensor will be, and furthermore

11
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Global shutter Rolling shutter
Frame 2Frame 1

Line 1

Frame 1

Line 2

Line 3

Line 4
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Integration Readout Integration Readout Readout

Global shutter Rolling shutter
Frame 2Frame 1
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Line 2
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Line n

Frame 2

Readout Integration Time
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Integration Readout Integration Readout Readout

Figure 2.1: Global-shutter and rolling-shutter image integration.

expensive sensors are usually faster. Almost all computer vision algorithms assume
a global-shutter camera, but techniques from this thesis allow researchers and
others to also use rolling-shutter cameras.

2.2 Kinect sensor

In 2010, Microsoft released the Kinect sensor which is designed to provide motion
input to the Xbox 360 gaming device. The sensor has gained popularity in the
vision community due to its ability to deliver quasi-dense depth maps in 30 Hz,
combined with a low price. The hardware consists of a near infrared (NIR) laser
projector (A), a CMOS colour sensor (B) and a NIR CMOS sensor (C), see figure
2.2.

The laser projector is used to project a structured light pattern onto the scene.
The NIR CMOS sensor images this pattern and the device uses triangulation to
create a depth map. The image resolution is 640 × 480 when using an update
of 30 Hz, but it is also possible to receive NIR and colour frames in 1280 × 1024
resolution. The depth map can be obtained at the same time as either the NIR
image or the colour image, but the colour and NIR images cannot be obtained at
the same time.

Both the NIR and colour sensors have electronic rolling shutters. Since the
Kinect sensor is designed to be stationary and objects in front of it do not move
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Figure 2.2: The Kinect sensor, (A) NIR laser projector, (B) CMOS colour sensor,
(C) CMOS NIR sensor

Figure 2.3: Distortions (straight pole and wall look bent) in the NIR and depth
images caused by fast sensor motion.

that fast (or very close to the sensor), the rolling-shutter distortions are usually
not a big problem. If on the other hand the sensor is used on a mobile platform
it will have noticeable distortions, see figure 2.3 for an example of a fast rotation.
The straight pole and the wall look bent due to the moving sensor. The two image
sensors are not synchronised, so the same rows in the depth image and the colour
image are, in general, not imaged at the same time.

2.3 Push-broom sensors

Push-broom sensors are commonly used in airborne remote sensing. The images,
also called strips or swaths, from a push-broom sensor have similar geometric
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Figure 2.4: Left: How the 1D sensor “paints” the image. Right: Different spectral
bands separated on the sensor using a prism.

distortions to those from a rolling-shutter sensor, but the sensors differ a great
deal in their design.

Instead of capturing a two dimensional image, the sensor has a single line of
pixels and “paints” the image by exploiting the ego-motion of the moving platform,
see figure 2.4 left. The sensor itself is two dimensional and a prism refracts the
light into different wavelengths along one of the axes of the hyper-spectral sensor
(figure 2.4, right). The number of spectral bands depends on the sensor used.

If the imaging platform (e.g. aircraft) moves in a linear trajectory we would
have to solve a simple problem, but this rarely the case. When the aircraft rotates,
or moves away from the path, geometric distortions will be present in the image,
see figure 1.1 bottom right.

There are also hyper-spectral sensors which use two spatial dimensions, but
record the different wavelengths at different time steps. In this case, the regis-
tration has to be done across different spectral bands instead, but that is not
considered here.

2.4 Gyroscope sensors

A gyroscope sensor measures angular velocities and is used in some of the work
presented in this thesis. There exist different types of gyroscopes such as mechan-
ical, solid-state ring lasers, fibre-optic and quantum gyroscopes. Many modern
smartphones today make use of Micro-Electro-Mechanical Systems (MEMS) tech-
nology where it is common that the device includes multiple-axis gyroscope and
accelerometers. A three-axis gyroscope enables the calculation of the device yaw,
pitch and roll and has been used in the experiments described in paper F.

2.5 Other sensors

Other imaging sensors with similar geometry to rolling shutter, but not covered
in this thesis are crossed-slits [28], and moving LIDAR[4, 3].



Chapter 3

Camera models

Some computer vision algorithms operate only in the image plane and do not care
which camera has been used to record the image. In this work a model for the
camera is needed, and we are using the pin-hole camera model. The following
sections will describe the standard (global-shutter) model, and our rolling-shutter
version. Lens distortions are not considered in this work.

3.1 Pin-hole camera with global shutter

The pin-hole camera model is a simple model which describes how 3D points in
the world project onto the image plane. The camera aperture corresponds to a
point and no lenses are used to describe the focusing of light. Figure 3.1 shows
how a 3D object projects onto an image plane.

The relationship seen in figure 3.1 can be expressed as:

x

f
=
X

Z
(3.1)

y

f
=
Y

Z
. (3.2)

This relationship, together with a translation of the origin, skew and aspect
ratio can also be described in matrix notation using homogeneous coordinates:



λx
λy
λ


 =



f s cx
0 fα cy
0 0 1





X
Y
Z


 (3.3)

x = KX. (3.4)

The matrix K contains the intrinsic or internal camera parameters, and de-
scribes how the camera transforms the inhomogeneous point X onto the image. cx
and cy describe the translation of the principal point required to move the origin
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Figure 3.1: The pinhole camera model projects a 3D point X onto the image plane.

into image coordinates. The focal length f , in x and y direction may be different
due to the aspect ratio α. The pixels may also be skewed, but in most cases s = 0.

Cameras used in this thesis, e.g. the one in iPhone 3GS, have a (near) constant
focal length, which enables us to calibrate the camera once. We have also seen
that transferring the intrinsic camera parameters between smartphone cameras of
the same model works well. See section 3.4 for how the parameters are calibrated.

The extrinsic or external camera parameters describe how the camera relates
to a world coordinate system. This relation, or transformation, can be described
as a translation d and a rotation R and expressed as a matrix multiplication:

x = K[R|d]X̃, (3.5)

where X̃ is a homogeneous point, i.e. X̃ = [XT 1]T .

3.2 Pin-hole camera with rolling shutter

When a rolling-shutter camera is stationary and is imaging a rigid scene, the
same model as the global-shutter case may be used. The model must however
be changed when the camera is moving. The internal camera parameters are still
the same (we have fixed focal lengths), but the external parameters are now time
dependent. By assuming that the scanning begins at the top row, down to the
bottom row we get:

x = K[R(t)|d(t)]X̃, (3.6)

where t = 0 represents the first row of the frame.
With this representation we can describe the camera’s positions and orienta-

tions during a frame capture, and correct for the geometric distortions due to this
motion.
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3.2.1 Motion models

Instead of modelling the full camera motion as the source of the distortions one can
simplify the model to three different special cases: pure rotation, pure translation
and imaging of a planar scene. By choosing one of these models the estimation is
simplified, which will be described in section 4.2. The pure rotation case assumes
that the camera only rotates around the optical centre, which simplifies equation
3.6 to:

x = KR(t)X. (3.7)

If the camera is imaging a planar scene the motion can be described by:

x = KR(t)(X + d(t)) = KR(t)D(t)X̂ , (3.8)

where D =




1 0 d1

0 1 d2

0 0 d3


 , (3.9)

and X̂ is a three element vector containing the non-zero elements of X, and a 1 in
the third position. If the motion is a pure translation, 3.8 simplifies to:

x = KD(t)X̂ . (3.10)

In paper A we came to the conclusion that the rotation model was the best
for hand-held camera motions. When a user holds the camera, the main cause for
the motion (and also the cause for the distortions) is rotation. If we only look at
changes during a short time interval, e.g. 2-3 frames, the camera does not translate
significantly. There are however notable exceptions to this, where the translation
is the dominant component e.g. footage from a moving platform, such as a car.

3.3 Motion Blur

Other than rolling-shutter distortions, motion blur is a big problem for hand-
held footage. Motion blur becomes apparent when something changes during the
integration of the image and can be due to camera motion or moving objects, just
as for the rolling-shutter case. If the exposure time is shortened, the blur will
be reduced but at the same time more noise will be present. Therefore this is
mostly an issue during image capture in low light conditions and is present both
for cameras with global and rolling shutters.

Many methods try to estimate the camera motion during image capture, or the
blur kernel, in order to deblur the image and obtain a sharp version. In this thesis
the camera motion is estimated for several frames, which are then registered and
stacked together in order to get one sharp image, called video stacking. Instead of
using one long exposure, with resultant blurring, many short exposures are used
in sequence. When the photographer has a static aim (i.e. tries to aim at a fixed
point in space), these individual exposures tend to have blur smears in a random
distribution of directions. This means that when the frames are aligned we obtain
an effective point spread function (PSF) that is much more compact than one from
a single long exposure, as can be seen in figure 3.2.
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Figure 3.2: Illustration of video stacking idea. Top left: Trace of central pixel
where colours indicate time, ranging from red to green. Thick segments indicate
individual exposures. Top right: Alignment of the exposure segments. Bottom
left: Iso contours of the effective PSF. Bottom right: Corresponding iso contours
for a Gaussian with σ = 0.5.

3.4 Camera calibration

The algorithms in this thesis require calibrated cameras. We use the OpenCV
implementation of Zhang’s method [27] for camera calibration, which requires a
number of images of a planar checkerboard pattern from different orientations.
The intrinsic parameters K, see section 3.1, are acquired this way and the lens
distortion parameters are neglected.

On a rolling-shutter camera, an additional parameter also needs to be esti-
mated, the readout time. The rolling-shutter chip frame period 1/f (where f is
the frame rate) is divided into a readout time tr, and an inter-frame delay, td as:

1/f = tr + td . (3.11)

Figure 3.3 shows this relation. The inter-frame delay is useful to know when the
continuous camera motion is estimated. For more details on the readout time
calibration, see Appendix A in paper B.
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Figure 3.3: Relation between the frame period 1/f , readout time tr, and inter-
frame delay td.

3.5 Push-broom model

The push-broom sensor exploits the ego-motion of the moving platform when
creating the image. We do however neglect the translational component of the
motion and model the distortion of a strip as a sequence of rotation homographies:

H(t) = KR(t)K−1 . (3.12)

This means that we model the sensor as rotating purely about its optical centre
and thus the imaged ground patch is modelled as being on the interior surface of
a sphere. This will cause some distortions in the reconstruction, but if the radius
of the sphere (i.e. the aircraft altitude) is large enough (compared to the strip
length), this distortion is small.
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Chapter 4

Geometric distortion
correction

The distortions corrected for in this thesis are those caused by motion of the sensor.
This is done by exploiting the continuity of the camera motion in rolling-shutter
video. Feature points are detected and tracked across frames and used to estimate
the camera ego-motion, or synchronisation with a gyroscope. The distortions are
more severe when shooting video compared to pictures, since the user usually tries
to hold the camera steady for pictures, but it is still necessary to do correction
when combining several images or when high precision is needed. When depth is
available, as for the Kinect sensor, the 3D points can also be used to estimate the
motion.

Co-alignment of push-broom strips is a bit different since each strip comes from
a single flight and we typically only have a few strips (compared to many frames
in a video). Also, they might not overlap as much as two consecutive frames in a
video, but within each strip the sensor has a continuous motion.

4.1 Point correspondences

For rolling-shutter video we detect points using the good features to track detector
[24]. These are then tracked using the KLT-tracker [14] in order to acquire cor-
respondences across frames. The KLT-tracker uses an image patch in one image
and estimates the patch position in the next frame. It does so by using a spatial
intensity gradient search which minimises the Euclidean distance between the cor-
responding patches. To be able to cope with large motions we use a scale pyramid
approach.

We employ a cross-checking step, as in [2], which uses an additional tracking
from the second image back to the first one. Only those points which return to
their original position are regarded as inliers. Figure 4.1 shows points rejected
using a threshold of 0.5 pixels in red and accepted points in green.

21
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Figure 4.1: Tracked points between two frames. Rejected points in red, and ac-
cepted points in green.

Since push-broom strips are acquired at different times, tracking is difficult to
do. Less overlap than between video frames and also larger changes in illumination
makes feature matching a more suitable method for correspondence search than
e.g. KLT. We use SIFT features [13] and match them to acquire correspondences
for an initial registration of the strips.

4.2 Camera Motion estimation

The sparse point correspondences can be used to estimate the camera motion.
The assumption is that the camera is moving in a static scene, so all displacement
vectors are due to camera motion.

The camera motion is estimated through iterative non-linear least squares
(Levenberg- Marquardt) by minimisation of the cost function associated with the
camera motion model.

Since the image rows are exposed at different times, one would like to have the
camera pose for each of them. This will result in a high number of parameters to
be estimated and we therefore model the motion as a spline. In that way, we only
estimate the parameters for a certain number of points along this curve, called
knots. This spline exploits that the motion is smooth and interpolates all needed
poses between the knots.
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4.2.1 Motion parametrisation

In section 3.2 the different motion models were described and for the full model
the motion is represented as a sequence of rotations and translations (the knots).
The translations are represented as a three element vector and the rotation can be
represented as a 3× 3 matrix R, a unit quaternion, or a three element axis-angle
vector n = φn̂. n̂ is the corresponding unit vector to n, which defines the axis
where the rotation is taking place and φ is the magnitude of n which corresponds
to the rotation angle around the axis. Most of the work here make use of the axis-
angle representation during the optimisation, since it is a minimal representation
of a 3D rotation.

Converting from this representation to a rotation matrix is done using the
matrix exponent, which for rotations simplifies to Rodrigues formula:

R = expm(n) = I + [n̂]x sinφ+ [n̂]2x(1− cosφ) (4.1)

where [n̂]x =
1

φ




0 −n3 n2

n3 0 −n1

−n2 n1 0


 . (4.2)

To convert a rotation matrix back to vector form, the matrix logarithm can be
used and for rotations the following closed form exists:

n = logm(R) = φn̂ , where





ñ =



r32 − r23

r13 − r31

r21 − r12




φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

(4.3)

Interpolation

For interpolation of translations we are using a linear interpolation:

dinterp = (1− w)d1 + wd2 , (4.4)

where d1 and d2 are two translation vectors (three elements) and w ∈ [0, 1] is the
weight parameter.

Interpolation of rotations is slightly more complicated due to the periodic
structure of SO(3). In most of the work here we use SLERP (Spherical Linear
intERPolation) [25] with an interpolation parameter τ ∈ [0, 1] between two knot
rotations:

ndiff = logm (expm(−n1)expm(n2)) (4.5)

Rinterp = expm(n1)expm(τndiff). (4.6)

n1 and n2 are two rotation axis-angle vectors and Rinterp is the resulting rotation
matrix.

SLERP gives constant-speed transition between two rotations and is the short-
est path on the rotation manifold (geodesic). Many other splines exist for doing
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the rotation interpolation and in paper F we compare SLERP, Cubic, Quartic and
B-splines.

4.2.2 Optimisation

By assuming that the row which is exposed first is the top one, the row number
is proportional to time. When using the rotation only model, two corresponding
homogeneous image points x, and y are projected from the 3D point X as:

x = KR(Nx)X , and y = KR(Ny)X (4.7)

where Nx and Ny correspond to the time parameters, e.g. the row number for
point x and y respectively. This gives us the relation:

x = KR(Nx)RT (Ny)K−1y = Hy . (4.8)

The positions of the knots are discussed in paper B. When these positions have
been decided, the rotation from an arbitrary row Ncurr (relative to the first row in
the first image) is acquired by:

R = spline(nm,nm+1, τ) , for (4.9)

τ =
Ncurr −Nm

Nm+1 −Nm
, where Nm ≤ Ncurr ≤ Nm+1, (4.10)

and Nm, Nm+1 are the two neighbouring knot times.
The cost function to be minimised is the summed (symmetric) image-plane

residuals of a set of corresponding points xk ↔ yk:

J =
K∑

k=1

d(xk,Hyk)2 + d(yk,H
−1xk)2, (4.11)

where d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (4.12)

Here K is the total number of correspondences between two images. It is also
possible to use correspondences from more than two images in the cost function.
When using the rotation only model, H is defined in (4.8), and here it would be
beneficial to use a small number of frames per optimisation, in case the motion
also includes translations. When using the planar scene model from equation 3.8,
H is defined by:

H = KR(Nx)D(Nx)D(Ny)−1RT (Ny)K−1. (4.13)

If the rotations are replaced with the identity matrix, the pure translation case is
estimated instead.

Full motion estimation

If the 3D points X also are known, as in paper C, the cost function can be defined
on these instead, resulting in estimation of the full 6 degrees-of-freedom camera



4.3. IMAGE RECTIFICATION 25

motion imaging an arbitrary scene. If X1 and X2 are two corresponding 3D points
reconstructed from two different images and depth maps, they can be transformed
to the position X0. This is the position where the reconstructed point should have
been, if it was imaged at the same time as the first row in the first image:

X0 = R(N1)X1 + d(N1) (4.14)

X0 = R(N2)X2 + d(N2). (4.15)

By assuming that the scene is static, the difference between these points can be
used to estimate the motion, resulting in the minimisation of:

J =
K∑

k=1

||R(N1,k)X1,k + d(N1,k)−

R(N2,k)X2,k − d(N2,k)||2, (4.16)

where N1,k and N2,k are the rows where the kth 3D point is observed in the first
and second image respectively.

Gyroscope-camera synchronisation

Instead of using visual features to estimate the camera motion, other sensors such
as gyroscopes and accelerometers can be used. In this case it is necessary to
make sure that the camera’s and sensor’s coordinate systems are aligned. In the
thesis different smartphone devices are used where the two coordinate systems are
assumed to have the same origin and a global transformation can be determined
manually once for every smartphone model.

In addition to the coordinate systems it is important to have the two different
inputs synchronised. The time delay between the two sources can be estimated by
minimising the residuals in equation 4.11 where the points are obtained by image
feature tracking. Here, instead of estimating the camera rotation at the knots,
angular velocities are given at specific time stamps and can be integrated and
interpolated to an orientation corresponding to the time the point where imaged.
The timestamp for the gyroscope, tgyro, is related to the frame timestamp ti as in
equation 4.17:

tgyro = ti + tr
x2

h
+ tdelay, (4.17)

where tr is the readout time described in section 3.4, x2 the current row for the
point, h the frame hight and tdelay is the time delay we would like to estimate.

To improve the performance even further we use the gyroscope sample model
g = ĝ + b, where g is the observed sample and b is the gyroscope bias. The bias
corrected gyroscope samples are then integrated to obtain an orientation sequence.

4.3 Image rectification

In this thesis image rectification is the process of resampling the input image to
a version which looks more rigid. When the camera motion has been estimated,
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Figure 4.2: Left: Distorted input image. Right: Rectified output image.

i.e. its pose at the time instances of the knots (which corresponds to a certain
image row) the poses for all the image rows can be acquired through interpolation.
By using a regular grid on the input image, each row can be transformed by a
different homography to create the forward mapping. The coordinate system to
be transformed to can be chosen as a specific row, e.g. the one corresponding to
the first or middle row of the image. This means that this reference row will be
exactly the same in the input image and the rectified image. When using a pure
rotation as motion model the rectification equation becomes:

x′ = KRrefR
T (N)K−1x, (4.18)

where x is the input image coordinate, x′ its rectified position, RT the rotation
corresponding to the time instance the pixel was imaged and Rref the rotation for
chosen reference row.

If equation 4.18 is reversed, the equation for the inverse mapping becomes:

x = KR(N)RT
refK

−1x′ . (4.19)

It is not possible to use this inverse interpolation correctly, since different pixels
within a row should be transformed with different homographies, see figure 4.2.
The pixels within a row in the input image do however share the same homography
and can be used to correctly transform the image.

If the depth is known, the 3D points can be rectified by:

X′ = Rref(R(N)X+ d(N)) + dref, (4.20)

where X is the original distorted 3D point and X′ is the rectified version. Also, if
the depth map and video frame are to be rectified, X′ can be projected back to
the image plane and the corresponding intensity or depth value can be saved.

4.3.1 Image resampling

When the forward mapping has been calculated, the image must be resampled to a
regular grid in order to be visualised, and this can be done in different ways. This
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Figure 4.3: Illustration of the splatting method. In this case an input pixel (left)
is smeared into a 3× 3 region in the output grid (right).

scattered data interpolation can be divided into two different schemes: inverse and
forward interpolation and in paper E five different methods are compared using
push-broom data. An inverse interpolation means that each point in the output
grid, u, is mapped back to the input domain where the interpolation takes place
by a weighted sum of the neighbouring input samples, ui:

ẑ(u) =
∑

ui∈N (u)

wi z (ui) . (4.21)

How the weights wi are chosen depends on the interpolation method. In nearest
neighbour interpolation only the nearest sample value is considered, meaning wi

will be 1 for the closest one and 0 for all other samples. Another choice is to choose
the weights depending on the inverse distance to the sample as in Inverse Distance
Weighted Interpolation [23]. Instead of using the distance to calculate the weights,
Natural Neighbors interpolation [5] uses an area based measure by using Delaunay
triangulation. Kriging interpolation [12] in general uses the covariance function
between sample locations to derive the optimal weights in equation 4.21.

When the input data is irregularly sampled as here, one is faced with the
computational problem of identifying the neighbours, and another way of doing the
resampling is to do a forward interpolation, e.g. splatting. This method “smears”
each input pixel into a region (e.g. 3× 3 closest output grid locations), see figure
4.3, and the output RGB values y(u) = (r, g, b, w) are updated as:

y(u)← y(u) +

[
w(u)z(ui)
w(u)

]
. (4.22)

The weights wi depend on the grid location and can e.g. be chosen as:

w(u) = exp(−.5||u− x′||2/σ2) (4.23)

where σ is a smoothing parameter and x′ is the rectified pixel location. After
looping over all pixels they are normalised by the forth element, creating an out-
put RGB image. If the camera motion is very fast, a local 3 × 3 region may not
be enough to fill all output pixels and a larger region has to be used. For the
rolling-shutter correction a fast forward mapping can be performed on a graphics
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processing unit (GPU) and at the same time do the image resampling without
any risk of holes. A mesh can be placed on the input image and the GPU trans-
forms each row to their rectified position. Values between rows are automatically
interpolated (in hardware) so there is no risk of holes.

Paper E examines different interpolation methods on push-broom data using an
anisotropic distance measure and by also taking the surface structure into account.

4.4 Global alignment

When the sensor motion has been estimated, the rectified frames, or the tracked
and rectified points can be used in other algorithms which do not take the rolling-
shutter effect into account. Video stabilisation (paper B) and video stacking (paper
F) can be efficiently implemented by a selection of the common coordinate system
during the frame rectification.

4.4.1 Video stabilisation

The rectification technique described in section 4.3 allows for an efficient imple-
mentation of video stabilisation. When an image is rectified, all the rows are
transformed to a common coordinate system corresponding to the reference row.
Instead of transforming each image to e.g. the middle row, one can do a tempo-
ral smoothing of all reference rows in the image sequence and use the smoothed
versions instead.

Smoothing of rotations can be achieved by matrix averaging:

R̃k =

n∑

l=−n
wlRk+l (4.24)

where the temporal window is 2n + 1 and w are weights for the input rotations
Rk. The output of (4.24) is not guaranteed to be a rotation matrix, but this can
be enforced by constraining it to be a rotation [8]:

R̂k = USVT , where (4.25)

UDVT = svd(R̃k) , and S = diag(1, 1, |U||V|) .

The motion estimation is done during a short frame interval, and since all
optimisations have different origins they have to be transformed to a common
coordinate system. The stabilisation will be a restriction on the orientation, and
since the pure rotation model may not hold for a long video sequence there might
still be some translation left, but not so much to be disturbing.

4.4.2 Video stacking

Video stacking on hand-held sequences is quite similar to video stabilisation. The
biggest difference is that for stacking, all the frames should be registered to one
common position. When using the rotation only motion model there might be
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Figure 4.4: Zoomed in examples between global frame alignment (left) and our
rolling-shutter aware method (right).

some translation between the first and the later frames, even though the user
tries to hold the camera still. In order to avoid doing full structure from motion
the scene can be approximated with a fronto-parallel plane when estimating the
camera translation. A point y in one of the frames may be re-projected onto this
scene plane as u using:

u = λK−1y = λ (u1 u2 1)
T
. (4.26)

A global 3D displacement, d = (∆X ∆Y ∆Z)
T

, can be estimated by minimising
the residuals between the re-projected point x in equation 4.27 and the corre-
sponding point in the reference image.

x = K(λK−1y + d) (4.27)

The displacement can then be used during the rectification process to stack the
images at the same time.

Figure 4.4 shows the difference between using the rolling-shutter aware method
described here and a global (non-rolling-shutter aware) version. Even though the
user has tried to hold the camera still, the rolling-shutter image capture makes
the global version blurry, see paper F for details.
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Chapter 5

Evaluation

This chapter describes the generated ground-truth dataset, and the methods used
for evaluation of the algorithms.

5.1 Ground-truth generation

In order to do a controlled evaluation, a synthetic dataset was developed for paper
A and extended in paper B. The Autodesk Maya software was used to generate dif-
ferent camera motions in a 3D scene. Each rolling-shutter frame was simulated by
combining 480 global-shutter frames. One row from each global-shutter frame was
combined to form a rolling-shutter frame, starting at the top row and sequentially
moving down to the bottom row. Figure 5.1 shows different kinds of generated
camera motions in the scene.

The ground-truth for rolling-shutter rectification is a global-shutter frame.
Which global-shutter frame to be used depends on at which time instance (i.e. which
input image row) the distorted image is to be reconstructed. Global-shutter frames
corresponding to the first, middle and last row have been generated. Depending
on the motion, some parts of the ground-truth frame (borders and occlusions) are
not visible in the rolling-shutter frame. For this reason, visibility masks have been
generated to indicate which pixels in the ground-truth frames can be reconstructed
from the corresponding rolling-shutter frame.

5.2 Evaluation measures

In paper A we introduced the first rolling-shutter dataset. This enabled us to
do a comparison of different settings and methods. When a rolling-shutter frame
has been rectified by the algorithm it can be compared to the generated ground-
truth by calculating the average Euclidean distance to the colour pixel values
in the ground-truth images. In order to evaluate only the rectification, and not
the methods ability to interpolate and extrapolate values the distance is only
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Figure 5.1: Four categories of synthetic sequences. Left to right, top to bottom:
#1 rotation only, #2 translation only, # full 3DOF rotation. and #4 3DOF
rotation and translation.

calculated within the valid mask. Pixels that deviate more than a certain threshold
are counted as incorrect. This measure is however more sensitive in high-contrast
regions, than in regions with low contrast. In paper B, we therefore used a variance-
normalised error measure:

ε(Irec) =

3∑

k=1

(µk − Irec,k)
2

σ2
k + εµ2

k

. (5.1)

Here µk and σk are the means and standard deviations of each colour band in a
small neighbourhood of the ground-truth image pixel (we use a 3×3 region), Irec,k
is the pixel value in the rectified image for colour channel k and ε is a small value
that controls the amount of regularisation. This measure also has the benefit of
being less sensitive to sub-pixel rectification errors.

5.2.1 Video stabilisation

Paper B also introduced an efficient method to do video stabilisation, and this is
more difficult to evaluate since we both want to reduce the image plane motions
and maintain a correct geometry. When no ground-truth is available, one can
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Figure 5.2: Left: Depth frame from a static sensor. Right: Manually marked
planes on frame captured during sensor rotation.

evaluate image plane motion by comparing consecutive frames in a video with a
certain motion. A video captured when a person is walking forward and holding the
camera will be shaky but consecutive frames will be very similar if the stabilisation
algorithm is good, and image plane motion from such a sequence is thus used as
an evaluation measure.

Another evaluation method, used in [9], is to do a user study. Such a study
was conducted as a blind experiment, where users were shown pairs of videos and
asked to choose the one they thought looked the best.

5.2.2 Point cloud rectification

When evaluating the rectification of 3D point clouds, a practical method is to mea-
sure geometrical properties of a known object, e.g. comparing the angles between
the visible sides of a box, before and after rectification. A ground-truth angle can
be obtained by imaging the box when the sensor is stationary, see figure 5.2. The
plane angles can be estimated by finding the cube normals using RANSAC [6] and
computing the angle between two normals using the formula:

Θk,l = sin−1(‖n̂k × n̂l‖) , (5.2)

where n̂k and n̂l are normal vectors for the two planes. By doing this it is possible
to show that the rectified point clouds are more geometrically correct than the
unrectified ones.

5.2.3 Push-broom

In papers D and E push-broom data were considered. The data in paper D did not
have any ground-truth, and visual inspection was used to evaluate the registration
quality as it is quite easy to observe, see figure 5.3.
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Figure 5.3: Result of co-alignment of push-broom strips. Left: Overlap of two
strips. Right: Difference of two strips.

In paper E, different interpolation methods were implemented and compared.
The methods will predict slightly different values ẑ(ui) and they can be compared
to actual sample values z(ui) in the dataset not used during the interpolation.
This way, the dataset can be used to calculate the relative error which is used as
the evaluation measure:

ε(p) =
1

|E|
∑

i∈E

|ẑ(ui)− z(ui)|
z(ui)

, (5.3)

where |E| is the size of the evaluation set.

5.2.4 Stacking

Video stabilisation and video stacking is quite similar but with the difference that
for video stabilisation, frames far from each other may differ a great deal (that
is why we compare consecutive frames in section 5.2.1) while all the frames in a
stack should be registered to common frame. This makes it possible to evaluate the
stacking results using the standard deviation over time across a stack of frames,
see equation 5.4. The standard deviation will increase either if the stacking is poor
or if there are moving objects in the scene. The measure is averaged across all
pixels to obtain a scalar measure:

σavg =
1

3|Ω|
∑

x∈Ω

3∑

c=1

√√√√ 1

K

K∑

k=1

(Ik,c(x)− Iavg,c(x))2 , (5.4)

where Iavg,c(x) =
1

K

K∑

k=1

Ik,c(x) , (5.5)

k is a specific frame in the stack, c the colour channel, Ω is the set of image
coordinates in the frames, and |Ω| is the set size.

Another method is to use a physical tripod, taking a long exposure and use
this as a ground-truth. The problem with this is that you have to do an alignment
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between the stack and the ground-truth since it is difficult to image the scene from
the exact same position. The scene may also have changed between the acquisition
of the ground-truth and the dataset. Because of this we instead use the dataset
itself to calculate the evaluation measure.
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Chapter 6

Concluding remarks

This chapter summarises the main results and discusses possible areas of future
work.

6.1 Results

The methods presented in this thesis can be used to increase the usability of rolling-
shutter cameras, both for researchers and end users. The main contributions are
the development of the three-dimensional models for rolling-shutter distortion cor-
rection. Paper A was the first paper describing this and gave superior results for
hand-held camera motions compared to image-based methods. We also introduced
the first rolling-shutter dataset which enables other researchers to evaluate their
algorithms. Paper B introduced an efficient video stabilisation method in com-
bination with the image rectification. A new GPU-based forward interpolation
was also introduced and the paper extended the motion model to cope with faster
motions.

Typically, when the Kinect sensor is used on mobile platforms it has to be
moved slowly, or in a move-stop-look image acquisition so that the rolling-shutter
artifacts are kept at a minimum. With the technique from paper C the data is
rectified, and the sensor can be moved in an arbitrary manner.

Paper D introduced methods for co-aligning push-broom strips using similar
techniques as for the rolling-shutter case, using image only data. In paper E five
different interpolation methods were extended to handle the anisotropic nature of
the push-broom data and compared for the image rectification problem.

Instead of using only visual measurements, paper F also explored the possibility
of using gyroscope data to reduce the rolling-shutter artifacts. This was done
together with a stacking procedure which combined several hand-held images into
one resulting low-noise sharp image. This enables the user to take photos which
would otherwise have required a physical tripod.
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6.2 Future work

The image-based motion estimation assumes that the scene is stationary. During
evaluation it has been shown that it is robust to some object motion in the video,
but if a large part of the optical flow originates from fast-moving objects, a motion
segmentation (and local rectification) may be required. In [1] they have a model for
small objects with low-frequency motions but objects with high-frequency motion
is more challenging.

It would also be interesting to improve the quality and the temporal resolution
of the motion estimation. Possible ways may be to use a more dense optical flow,
variable knot positions, to model lens distortion and to optimise over a whole
sequence. This may enable the algorithm to cope with even faster camera motions,
such as when it is attached to a vibrating engine.

Another interesting future work would be an auto-calibration step, since it
is quite cumbersome to manually calibrate each different camera model. In [16]
a calibration method is proposed which does not require specialised hardware,
but still uses a calibration pattern. Paper D combined image rectification with
the intention of reducing blur and image noise ([15] present a combined rolling-
shutter and motion blur model, and [26] take the rolling shutter into account
during the blur estimation), and it would be interesting to combine it with even
more applications such as panorama stitching, augmented reality and so on.

The co-alignment of push-broom strips is currently not good enough for auto-
matic change-detection and a more advanced motion model and possible estima-
tion or incorporation of a height map may be required.

In [10] the 6 degrees-of-freedom motion was estimated for a monocular cam-
era using rolling-shutter aware bundle adjustment. This made it possible to do
structure from motion using a cell-phone with any kind of motion, but it is still
not as stable as when using a global-shutter camera. It would be interesting to
combine it with the variable knot positions from paper B and C, and the different
interpolation schemes from paper F.
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