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ABSTRACT

With the demand for more comfortable cars and reduced emissions, there is
an increasing focus on model-based system engineering. Therefore, developing
accurate vehicle models has become significantly important. The powertrain
system, which transfers the engine torque to the driving wheels, is one of the
most important parts of a vehicle. Having a reliable methodology, for modeling
and parameter estimation of a powertrain structure, helps predict different kinds
of behaviors such as torsional vibration which is beneficial for a number of
applications in automotive industry. Examples of such cases are ride quality
evaluation and model-based fault detection.

This thesis uses the knowledge from the system identification field, which
introduces the methods of building mathematical models for dynamical systems
based on experimental data, to model the torsional vibration of an engine-load
setup. It is a subsystem of the vehicular powertrain and the main source of
vibration is the engine fluctuating torque. The challenges are handling a more
complicated model structure with a greater number of unknown parameters
as well as showing the importance of data information for acquiring better
identification performance. Since the engine-load setup is modeled physically
here, its state-space equations are available and a grey-box modeling approach
can be applied in which the well-known prediction error method is used to
estimate the unknown physical parameters. Moreover, a structural identifiability
analysis is performed which shows that all of the model parameters are identifiable
assuming informative input.

Two main aspects are considered to present an appropriate modeling method-
ology. The first is simplification of the model structure according to frequency
range of interest. This is achieved by performing modal shape analysis to obtain
how many degrees-of-freedom are necessary at different frequency ranges. The
results show that a 7 degrees-of-freedom model can be simplified to a 2 degrees-of-
freedom structure and still have the desired performance for a specific application
such as misfire detection.

The second aspect concerns using an appropriate data set, which has the
required information for estimation of the unknown parameters. By analyzing
the simulation data from a known system, it is shown that the parameters of the
2 degrees-of-freedom model can not be estimated accurately using measurements
from a normal combustion data set. However, all the parameters except damping
coefficient converge to their true values by using a data set which has misfire
in the input torque from the engine. A high estimation variance plus flat loss
function indicate that the damping coefficient has no significant influence on
the model output and consequently can not be estimated correctly using the
available measurements. Thus, to increase the accuracy of the results during
estimation on real data, the damping coefficient(s) is assumed to be known.
Both the 2 and 7 degrees-of-freedom models are validated against a fresh data
set and it is shown that the simulated output captures the important parts of
the actual system behavior depending on the application of interest.






POPULARVETENSKAPLIG SAMMANFATTNING

Med 6kad efterfragan efter mer komfortabla bilar med minskade utslapp, finns
det ett okat fokus pa modellbaserad systemutveckling. Darfér har det blivit
viktigt att utveckla mer korrekta matematiska modeller. Drivlinan som 6verfor
motorns vridmoment till drivhjulen, &r en av de viktigaste delarna av ett fordon.
Att ha en tillforlitlig metod for att modellera drivlinan och skatta parametrar i
modellen kan forutsiaga olika typer av beteenden som vibrationer och vridningar
vilket dr anvindbart for ett antal tillimpningar, till exempel utvirdering av
koérkomfort och modellbaserad diagnos.

Denna avhandling anvinder kunskap inom systemidentifiering, dar mate-
matiska modeller av dynamiska system skattas baserat pa experimentella data,
for att modellera en motortestbéink som &r kopplad till en last. Testbanken
bestar av ett delsystem av drivlinan dar den viktigaste kéllan till vibrationer ar
motorns vridmoment. Utmaningarna hér handlar om att skatta parametrarna
hos en mer komplicerad modellstruktur med ett storre antal okéinda parametrar
samt att visa betydelsen av hur mycket information som finns i tréningsdata
och hur det paverkar identifieringen. Eftersom drivlinan modelleras fysikaliskt
kallas detta for grey-box-modellering dar den vélkdnda prediktionsfelsmetoden
anvands for att skatta de okdnda fysikaliska parametrarna. Dessutom har en
strukturell identifierbarhetanalys genomforts som visar att alla modellparametrar
kan identifieras forutsatt att insignalerna ar tillrickligt informativa.

Har presenteras tva viktiga aspekter kring modelleringsmetodik. Den fors-
ta ar forenkling av modellstrukturen beroende pa vilket frekvensomrade hos
vibrationerna som ar av intresse. Detta uppnas genom att utféra modalanalys
for att se hur manga frihetsgrader som kravs for respektive frekvensomrade.
Resultaten visar att en drivlinemodell med sju frihetsgrader kan forenklas till en
modell med tva frihetsgrader och fortfarande modellera intressanta fenomen for
tillampningar sa som detektion av misstdndningar.

Den andra delen fokuserar pa hur anvindningen av tillréckligt informativ
data hjélper att skatta de okdnda parametrarna i modellen. Genom att analysera
simuleringsdata fran ett ként system, visas att parametrarna fér modellen med
tva frihetsgrader inte kan skattas exakt endast med métningar fran normal
forbranning. Alla parametrar utom ddmpningskoefficienterna konvergerar till
deras verkliga varden med hjilp av data fran motorn som innehaller misstand-
ningar. En stor varians hos skattningen samt en platt forlustfunktion visar
att ddmpningskoefficienten inte har betydande inflytande pa modellen och kan
foljaktligen inte berdknas korrekt givet de méitningar som ar tillgéngliga hér.
Saledes, for att oka noggrannheten hos skattningarna baserat pa verkliga data
antas dampningskoefficienterna vara kinda. Badda modellerna med respektive
tva och sju frihetsgrader har validerats mot en ny datauppsittning och det
visas att den simulerade utsignalen fangar de viktiga delarna av den faktiska
systembeteende beroende pa tillimpning av intresse.
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Chapter 1

Introduction

"Essentially, all models are wrong, but some are useful."
- George E.P. Box (1919 - 2013)

A system is known as a device or a set of devices to perform a specific task.
This description indicates that a system should have at least one input and one
output where there is a cause and effect or action and reaction relationship.
Two kinds of systems exist with respect to the input and output connection in
time: static and dynamic. The dynamic systems have a memory of the states in
which they have been. Whereas the static systems only take the current inputs
and convert it to the current outputs without concerning previous inputs values.
For example, a simple integrator can be considered as a dynamic system. If
the input is a positive constant for this integrator, the output is a ramp which
increases linearly in time.

Nowadays, computer simulation techniques are used widely to understand
the behavior of dynamic systems in a cheap, safe, and structured way. This
requires having a reliable mathematical model for the system which can be
obtained by performing two steps. First, a suitable theory is required to describe
the system and hence to propose a model structure. Further, an appropriate
identification method should be applied to estimate the unknown parameters of
the presented model. These are the tasks of system identification field in which
the mathematical models are constructed by collecting input and output signals
from the actual system.

The dynamic system of interest in this thesis is an engine-load setup, as
a subsystem of a passenger car powertrain, which is equipped with a four-
cylinder four-stroke Internal Combustion (IC) Spark Ignited (SI) engine. The
experimental facility is located at the engine laboratory of Vehicular Systems
Division in the Department of Electrical Engineering, Linkdping University. The



2 Chapter 1. Introduction

focus is on the torsional vibration modeling of the crankshaft system exposed to
the delivered fluctuating torque from the engine and the required load torque
representing, for example, aerodynamic and road excitations.

1.1 RESEARCH MOTIVATION

A vehicular powertrain is a nonlinear dynamic system which transfers the engine
torque to the driving wheels through different subsystems such as engine-block,
transmission, differential, and drive shaft. Each subsystem consists of various
mechanical components. The focus here is modeling of the engine-block torsional
vibration which ends up in a crankshaft rotational behavior study. These
vibrations are significantly influenced by different kinds of undesired excitations
such as road unevenness or a missing combustion, known as misfire. There exist
three important applications in automotive engineering where it is needed to
investigate these types of torsional vibrations in powertrain systems:

e Interactions between the powertrain and the car body will affect the vehicle
ride quality. In other words, the torsional vibrations of the crankshaft, due
to the engine fluctuating torque or any other disturbances, are transported
to the wheels through driveline components and result in variations of the
drive torque, see Rahnejat (2005). Further, suspension system transfers
these variations to the vehicle body and hence the passenger comfort is
reduced by the generated longitudinal vibrations. This is studied and
published in the following paper:

— N. Nickmehr, J. Aslund, L. Nielsen, and K. Lundahl. On experimental-
analytical evaluation of passenger car ride quality subject to engine
and road disturbances. In The 19th International Congress on Sound
and Vibration (ICSV19). Vilnius, Lithuania, 2012.

Therefore, car manufacturers are interested in precisely modeling and sim-
ulating the powertrain dynamics before the physical prototype production
and test. This will not only improve and accelerate the procedures of
system design and analysis, but it will also help evaluate the powertrain so
that the torsional vibrations are in a desirable range according to the cri-
teria reported by International Standard Organization (ISO) for passenger
comfort, see Wong (2008).

e Engine misfire detection is an essential part of the On-Board Diagnostics
(OBD) regulations where the aim is to reduce exhaust emissions and avoid
damage to the catalytic converters. An overview of misfire detection
research is given by Mohammadpour et al. (2012). A great majority of
misfire detection algorithms are based on looking at the flywheel angular
velocity signal since it is severely influenced by the engine torque, see
Connolly and Rizzoni (1994); Kiencke (1999); Tinaut et al. (2007). However,
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besides misfire excitation, there exist other possible input disturbances
such as cold start, auxiliary load variations, and road load changes that can
affect the torsional vibrations of crankshaft angular velocity in a similar
way. If these excitations take place at the same time, there is a possibility
that their corresponding oscillations have destructive impacts on each
other. This may hide the angular velocity response to misfire occurrence
and consequently cause difficulties in the detection algorithm, see Eriksson
et al. (2013). Moreover, if the second misfire happens close to the first one,
it can also have a damaging effect on the detection procedure as shown
in Ponti (2008). Accordingly, applying a suitable crankshaft model has
two crucial advantages. First, it helps decouple the influences of different
disturbances on the crankshaft angular velocity quantitatively. This is
valuable for robustness analysis of a misfire detection algorithm to study
how large disturbances can be handled. Second, it prevents expensive
and time-consuming experimental studies in the developing process of a
suitable algorithm for misfire detection.

e The third application of powertrain torsional vibration modeling is in Tire
Pressure Indicator (TPI) systems. By having a mathematical model for the
powertrain system of a passenger car, the disturbances on the wheel speed
signal due to the corresponding engine and driveline torsional vibration
can be determined. This will help improve the disturbance cancellation
algorithm in the indirect tire pressure monitoring system. A master thesis
has been done in NIRA Dynamics AB, Link&ping, in which the modeling
approach given in Nickmehr et al. (2012) was applied for a specific brand of
passenger car, see Johansson (2012). The model parameters were unknown
and collected from literature in Johansson (2012). However, using an
appropriate parameter estimation technique results in a more accurate
disturbance modeling and thus improves the TPI system.

1.2 GOAL

The goal of this thesis is to develop a reliable time domain identification method
to construct and validate an appropriate model for describing crankshaft torsional
vibration subject to the engine fluctuating torque. To achieve this goal, here
the following sub-problems are considered. The first is to investigate which
type of input and output data set is required for parameter estimation of an
engine-load grey-box model. The second issue is to study the simplification of
model structure according to the specific application and the frequency range of
interest.

1.3 RELATED RESEARCH

The crankshaft system can be modeled by torsional elastic elements. The actual
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system is distributed, however, basic models comprise linear lumped spring-
mass-damper systems which can be extended by additional details about the
dynamics of various parts, see Couderc et al. (1998); Crowther (2004). A 6
Degrees-Of-Freedom (DOF) lumped parameter crankshaft model was developed
by Rabeih (1997) to describe the engine torsional vibration influences on the
entire powertrain of a middle-size passenger car. The proposed model was good
enough for simulating free, steady, and transient situations. But, no experimental
verification was done. Moreover, the system parameters were selected to be
typical, for example, for passenger cars and no further details were provided.
However, choosing parameters in this way is not sufficient when a more precise
model is needed according to the type of application, see Section 1.1. Schagerberg
and McKelvey (2003) studied the dynamic properties of the multi-cylinder engine
as the main energy source of the powertrain system. The model was validated
against measurements collected during engine tests at several load cases. Ponti
(2008), used a similar model as Schagerberg and McKelvey (2003), for the
engine block, to simulate multiple misfires. The model in Ponti (2008) was
accurate enough to detect and isolate different kinds of multiple misfires using
the experimental data from an SI engine. However, the focus of Ponti (2008)
was on the detection part and the estimation method was only outlined.

1.4 CONTRIBUTIONS

Here, a modular engine-load linear mathematical model, similar to the one given
by Ponti (2008), is used to describe crankshaft torsional vibration. The first
contribution is using the simplified 2 DOF model to produce input and output
data set for simulation study. Further, the loss function analysis is performed
to show how much the model simulated output is affected by changing the
parameters one by one. The second contribution is to implement the Prediction-
Error Method (PEM) for parameter estimation of the 2 DOF and 7 DOF model
structures where, by using modal shape analysis, it is shown that each of them
is applicable in a specific frequency range. The third contribution is devoted
to simulate the effects of different kinds of disturbances, such as misfire, on the
system response. An interesting result is the importance of the information in
the output signal, subject to these disturbances, for a more accurate system
identification.

1.5 'THESIS OUTLINE

The thesis begins with a general description of system identification in Chapter 2.
This is followed by explaining the modeling procedure of the engine-load torsional
vibration in Chapter 3. These two chapters give a foundation for understanding
of the remaining chapters that are devoted to the contributions. Chapter 4
describes the implementation approach of PEM for system identification of the
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engine-load 2 DOF and 7 DOF model structures. Further, the applications in
which this kind of modeling is required are proposed in Chapter 5. Finally,
Chapter 6 includes conclusions and future work.
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1.6 NOTATION

SYSTEM IDENTIFICATION

Notation

Description

A, B, C

UTzZEEIDTRIDS

*

Linear system and measurement matrices
Number of unknown parameters

White noise signal

Probability density function

Model fit for model m and data set Z
Impulse response matrix

Discrete and continuous-time system transfer function
Noise filter impulse response matrix

Noise transfer function

Number of outputs

Feedback matrix

Scalar-valued function

Linear stable filter

Number of inputs

Estimated model

Model structure

Number of data points

Parameter vector

Covariance matrix of the state estimate error
Time shift operator in discrete-time
Differentiation operator in continuous-time
Process noise covariance

Measurement noise covariance

Cross covariance between

process noise and measurement noise
General notation for dynamic system
Time

Sample time

Input vector

Measurement noise

General noise signal

Loss function for p based on the data set ZV
Process noise

State vector

Measurement or output vector

System response vector

Input and output data set
Prediction-error vector
Levenberg-Marquardt regularization parameter
Optimization step length

Regression vector

Regression matrix

Prediction-error differentiation with
respect to model parameters

Estimated parameter vector

Time derivative

Predicted state vector
One-step-ahead-prediction

Simulated output of estimated model m

Introduction



1.6. Notation

ENGINE-LOAD MECHANICAL MODEL

Notation Description

Ap Piston area
Ci,Cs 5 Viscous damping coefficient
f Frequency in Hz
1(07) Crank-slider mechanism expression
Fores Compression pressure force
Finert Inertia force
J Rotating mass inertia
K; Stiffness coefficient
Connecting rod length
Meng Estimated 2 DOF model using simulation data
Meng,r Estimated 2 DOF model using real data
Meng,7 Estimated 7 DOF model using real data
Meng 2 DOF Model structure
Meng,7 7 DOF Model structure
Neyl Number of cylinders
Next Number of crankshaft revolutions in
which one excitation happens
N Engine velocity in RPM
Py Absolute pressure inside ¢th cylinder
Perank Crankcase pressure
r Crank radius
Tiot,i Total engine fluctuating torque
acting on crank-slider mechanism J;
Toad Braking dynamometer torque
Tina,: Indicated torque for cylinder ¢
Trecip,i Reciprocating torque for cylinder 4
Crank angle
0; Angular position of inertia J;
0y ith cylinder crank angle position
OTDC,i ith cylinder top dead center
crank angle position
i Model ith eigenvalue

wj Model ith natural frequency in rad/sec
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ABBREVIATIONS
Abbreviation Description
DOF Degrees-of-freedom
FFT Fast Fourier transform
IC Internal combustion
ISO International standard organization
LSE Least-squares estimate
LTI Linear time-invariant
NVH Noise vibration harshness
OBD On-board diagnostics
ODE Ordinary differential equations
OE Output error
PDF Probability density function
PEM Prediction-error method
PO Parametrized observer
RMS Root mean square
RPM Revolution per minute
SI Spark ignited
TDC Top dead center
TPI Tire pressure indicator

Introduction
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Chapter 2

System identification

System identification is a science which addresses the problem of constructing
mathematical models for dynamic systems using measured input and output
data sets from the system. Once sufficient confidence with the models has been
achieved, they can be further used for different applications. In this thesis, the
goal is to predict the crankshaft torsional vibration behavior for different inputs
by applying a suitable model which can be later utilized to optimize the system
performance according to the specific requirements.

This chapter covers some fundamental ideas of system identification. The
chapter starts with some definitions about dynamical systems and their charac-
teristics, and then it continues with system identification procedure which has
the following specific steps, see Ljung (1999):

1. Three basic entities:

(a) A set of input-output data
(b) A model structure
(¢) Identification method

2. Model validation

3. If the obtained model is not able to pass the validation test, then it
is necessary to go back and revise different steps of the identification
procedure.

Two textbooks which are well-known references on the subject of system iden-
tification are Ljung (1999); Soderstrom and Stoica (1988). These include the
details of the subject, both for time and frequency domains system identification.
Perspectives on system identification is an article by Ljung (2010) in which the
author has sketched an overview of basic principles and results in this field.

15
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2.1 DYNAMICAL SYSTEMS

A dynamic system S is an object that is influenced by a number of controllable
input signals u(¢) but also process noise or non-controllable input signals w(t).
The system is run by these mentioned inputs and produces a number of outputs
z(t), see Figure 2.1. The output measurements y(t) can be further exposed by
measurement noise v(t) that is due to the sensors accuracy or the positions where
these sensors are located. It is worth mentioning that the system response z(t) is
affected by process noise w(t) but not measurement noise v(t). Consequently, the
measured outputs of the system can be represented mathematically as follows

y = S(u, w,v) (2.1)

in which the mapping is from the entire inputs, —co < ¢t < 00, to the entire
outputs, —oo < t < co. This means that in Figure 2.1, z(¢;) could therefore
depend on the values of the inputs, u(t) and w(t), at all time points, i.e. past
or future. However, for the engine-load system application the system is causal
which means that for every time point ¢1, the outputs depend only on the input
values up to current time, i.e. time points —oco < t < ty.

w0 v

u(t) ()

y(®

Figure 2.1: A dynamic system with input, output, process noise, and measure-
ment noise.

2.1.1 INTRODUCTION TO VIBRATION SYSTEMS

Since the application here is torsional vibration modeling of an engine-load
system, it is useful to introduce some definitions related to vibration and its
classification as well as how vibration studies can be categorized. In this section,
the textbook by Liu and Huston (2011) is used as a base to get the whole picture,
since it is for automotive application. However, there are some other standard
vibration reference books which are suggested for understanding the fundamental
concepts, see for example Meirovitch (2010).

What is vibration? Vibration is a phenomenon in which an oscillatory motion
occurs for a dynamic system. Figure 2.2 shows different kinds of vibrations
that can happen in dynamic systems. Figure 2.2(a) depicts a simple harmonic
vibration which is referred to a case where the output of the system can be
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described by a single sine or cosine function. Periodic vibration repeats itself
in equal time intervals and may possess several frequencies at the same time.
In Figure 2.2(b), angular velocity of the damping wheel in an engine-load
system is shown as an example of periodic vibration. Transient vibration
can be the response of an impulse or a shock acting on a system which is
given in Figure 2.2(¢). Finally, random vibration, shown in Figure 2.2(d), is a
phenomenon in which the output is not deterministic and predictable.

X X
t t
(a) Harmonic (b) Periodic
X X

\/\/\/\\/\\/\ t ll'm‘lll“ H(dxw‘ [Nh']r “‘\' l"’H‘!‘\Jl'll ,

(¢) Transient (d) Random

Figure 2.2: Different types of vibration in dynamic systems.

All elastic systems which have masses are capable of vibrations. In this
concept, the system inputs u(t) and w(t), mentioned in Section 2.1, can be
named excitations. Depending on which of the three factors inputs, outputs,
and system properties or parameters that is unknown, there exists four different
kinds of studies. First is vibration analysis in which the system characteristics
and inputs are known but the outputs behavior is not known. The second kind
of investigation, which is known as system design, is done when the inputs and
the desired outputs are known and the system should be designed to have the
satisfactory performance. The third study is called input evaluation in which
the system properties and its outputs are known and the goal is to obtain the
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excitations. At last, the fourth case which is also the purpose of this thesis, is
system identification where as noted before, the system inputs and outputs are
known and the aim is to determine system characteristics. The experimental
modal analysis which is famous in vibration field, see Liu and Huston (2011),
belongs to this area. However, this method is not used in this thesis and the
applied system identification approach is based on the book by Ljung (1999).

2.2 THE SYSTEM IDENTIFICATION PROCEDURE

In this section, the individual steps of system identification procedure, mentioned
in the beginning of this chapter, are described briefly and more inclined towards
our specific application.

2.2.1 MODEL STRUCTURE

In modeling of a system, the goal is to describe its characteristics appropriate for
a specific purpose. It is desirable that the model can, in a sufficient and reliable
way, represent the true system. Some how, this step is the most important and
simultaneously the most difficult task in the identification procedure. In this
thesis, the basic physical laws, mainly Newton’s second law, are applied to derive
a suitable model for torsional vibrations of an engine-load system subject to
the engine fluctuating torque and the braking torque as inputs or excitations.
The proposed model has some unknown parameters which are to be estimated.
These parameters have physical interpretations, namely inertia, spring, and
damping coefficients. This type of modeling, where the structure is known, is
called grey-box approach according to Ljung (1999).

A NOTE ON MODEL STRUCTURE SELECTION

Modeling is always a trade-off between having a good fit to measurement data
from the true system and at the same time having a small number of parameters
to estimate. This is called bias-variance conflict, since a good fit means a more
flexible model and consequently more unknown parameters to estimate which
results in a greater estimation variance and a lower bias. To keep an acceptable
compromise between these two important factors for a specific application, it
is helpful to involve any valuable knowledge and finding about the system. It
might be difficult to end up with the final model structure in one step. For
example, it will be shown in Chapter 4 how the engine-load system model
can be simplified from a seven-inertias 13th order state-space representation
(3.13) in Chapter 3 to a two-inertia 3rd order state-space model for the specific
application at hand. This is possible by using the knowledge about which parts
of the system to include in the torsional vibration model to acquire a good
performance at the desired frequency range. Having this discussion about model
structure selection, the next section is devoted to describing classes of models for
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Linear Time-Invariant (LTI) systems, since the engine-load torsional vibrations
can be fairly good described by a linear and time-invariant model.

LINEAR MODEL SETS AND STATE-SPACE FORM

The output of a linear system is the weighted sum of the input values at all
time instants. As described before, for a causal system only the old values of
the inputs are considered, see Glad and Ljung (2000). Moreover, for a time
invariant system these weightings are only dependent on the time difference and
not the absolute time itself. Accordingly, the output of an LTI model can be
represented by its impulse response or in other words by its weighting function

y(t) = /0OO g(T)u(t — 1)dr (2.2)

where g(7) is a k x m matrix for each 7 in which & is the number of outputs
and m is the number of inputs. In other words, the element (7, j) of the impulse
response ¢(7) is an infinite sequence. In (2.2), a continuous-time representation
of the linear system has been given since for many physical applications, the basic
relations of the system are provided as differential equations. However, (2.2)
can still be used to find the output at desired sampling instants considering that
computation of these output values requires numerical solution of a differential
equation. Furthermore, by using (2.2) it means that the output of an LTI
system can be evaluated once the input signal is known although process and
measurement noises are out of our control. If we assume the disturbances are
discrete-time and their influence is additive, denoted by v*(¢), the output values
at discrete-time instances can be represented as follows

y(t) = /OOO g(Mu(t —)dr +v*(t), t=1,2, --- (2.3)

where v*(t) can also be written as a filtered version of white noise e(t), i.e.
a sequence of independent (identically distributed) random variables with a
specific Probability Density Function (PDF) f.(.), see Ljung (1999). If the filter
impulse response is h(k), the disturbance v*(¢) is described by

vi(t) =Y h(k)e(t — k). (2.4)

k=0

Finally, by using the concept of transfer function as well as ¢* as the differentiation
operator and ¢ as the forward shift operator, the output of an LTI system can
be represented by knowing three functions G.(¢*), H(q), and f.(.)

y(t) = Gelq")u(t) + H(g)e(t) (2.5)

where ¢ in G.(q*) stands for continuous-time. In this way, instead of evaluating
infinite sequences g(7) and h(k) in (2.2) and (2.4), one needs to obtain a finite
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number of parameters that specify the structures of G.(¢*) and H(q). Therefore,
showing the system with its rational transfer functions or state-space formulation,
ends up in representation (2.5). Most of the times, not all the coefficients or
the parameters of the transfer functions G.(¢*) and H(q) as well as the PDF
fe(.) are known and they should be estimated which is the task of system
identification. For this reason, (2.5) can be written as follows considering the
unknown parameters as a vector p, see Ljung (1999),

y(t) = Ge(q™, p)u(t) + H(g,p)e(t) (2.6)
p € Dy C R

where e(t) is white noise with PDF denoted by f.(x,p), and d is the dimension
of vector p. It is worth to note that (2.6) is a set of models and then the
identification method is utilized to find the model which is the most appropriate
one according to the specific application at hand. Considering G(g¢,p) as the
discrete-time version of the system transfer function, (2.6) can be written in one-
step-ahead-prediction form by knowing the values of u(s) and y(s) for s <t —1
as

01(tlp) = H ' (q,p)G(q, p)u(t) + [1 — H ' (g, p)Jy(t) (2.7)

where 1 (t|p) is one-step-ahead-predictor of the output which is dependent on
the unknown parameter vector p. Notice that the predictor representation in
(2.7) does not depend on the PDF of e(t). Now we have a parametrized set of
models which is called a model structure M and consequently M(p) is a specific
model which is determined using a specific parameter vector p.

State-space equations use state variables to describe a model by a system
of first-order Ordinary Differential Equations (ODE) or difference relations,
rather than a system of nth-order differential or difference equations. State
variables z(¢) can be reconstructed from the measured input and output data,
but usually they are not directly measured during an experiment. As an example,
a parametrized linear continuous-time state-space structure Ml with m x 1 input
vector u(t), k x 1 output vector z(t), and n x 1 state vector x(t) is

(1) =A(p)z(t) + B(p)u(t) (2.8)
2(t) = C(p)x(t)
y(t) = =2(8) + 0" (1)

where y(t) is k x 1 vector denoted as output measurement at desired sampling
instants subjected to an additive noise v*(t) term. Notice that the parameters p
might enter the model in a nonlinear way. So the model can be linear in the
states but nonlinear in the parameters. If v*(¢) is white noise, (2.8) is called
an Output Error (OE) model structure and H(q,p) = 1 in (2.6). However, if it
is required to model the characteristics of the noise term v*(t), a noise model
H(q,p) # 1 should be applied. The continuous-time formulation of (2.8) can be
transported to the corresponding discrete-time representation in several ways,
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such as simple Euler approximation, see Gustafsson et al. (2010). Most often,
the noise term v*(t) is proposed with the process noise w(t) and measurement
noise v(t), as in

2(t +1) =Ap(P)(t) + Bppu(t) + w(!) (2.9)
y(t) = Cp)a(t) + v(t)

where subscript D stands for discrete-time and w(t) and v(t) are sequences of
independent random variables with zero mean and are given by their covariances,
Ri(p) and Ra(p) respectively. The one-step-ahead-prediction form of the state-
space formulation (2.9) in innovations form can be written as, see Kalman
(1960),

z(t +1,p) =Ap(p)a(t,p) + Bp(p)u(t) + K(p)e(t) (2.10)
y(t) = C(p)z(t,p) +e(t)

where 91 (t|p) = C(p)Z(t,p) is the model one-step-ahead predictor and £(t) is
the prediction-error which is the part of y(¢) that cannot be predicted from past
measurements. The feedback matrix K (p) is given as

1

K(p) = [Ap(p)P(p)C™" (p) + Ri2(p)] [C(p)P(p)C" (p) + Ra(p)] (2.11)

where Fw(t)vT(t) = Ri2(p) is the cross covariance between process noise w(t)
and measurement noise v(t). P(p) = E[z(t) — &(t,p)][x(t) — &(t,p)]T is the
covarinace of the state estimate error and is obtained as the positive semi-
definite solution of the stationary Riccati equation

P(p) = Ap(p)P(p)AL(p) + Ri(p) — [Ap(p)P(p)CT (p) + R12(p)]  (2.12)
x [C(p)P(p)C" (p) + Ra(p)] " [An(p) P(0)C™ (p) + Riz(p)] "

Using the forward shift operator ¢, (2.10) can be written in the form (2.6) in
which G(q,p) and H(q,p) are defined as follows

G(q,p) =C(p)lal — Ap(p)] ' Bp(p) (2.13)
H(q,p) =C(p)lal — Ap(p)| ' K(p) + I.

For a linear OE model structure, in which no process noise w(t) exists, the
feedback terms K (p) in (2.10) are zero. However, for modeling the engine-load
system in this thesis the process noise is present to compensate for uncertainty
in model structure and consequently the feedback terms K (p) are not zero.

The next section will be devoted to the question of how a suitable model
m = M(p) can be defined, or in other words how the model unknown parameters
vector p can be estimated. This is the task of identification method.
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2.2.2 IDENTIFICATION METHOD

Having a model structure M for the dynamic system S, it is now the time to
estimate a model m = M(p) that is reliable for the purpose of application. The
N-points input and output data set ZV = [y(1),u(1),y(2), u(2), ..., y(N), u(N)]
has been collected from the system S and are going to be used to find the best
value for p. The mathematical structure of a dynamic system is not always
known, therefore in these applications black-box modeling is used in which the
output is written as a polynomial of previous inputs, outputs, and the noise
term. The order of the model depends on how many time shifts are included, see
Gustafsson et al. (2010). However, as noted in Section 2.2.1, in this thesis the
mathematical structure of the engine-load system is known since it is assumed
that the true system can be given by a state-space formulation as in (2.9), see
also representation (3.13) in modeling Chapter 3. Accordingly, there exists a
known model structure with the vector of unknown parameters p to be estimated
which has physical interpretation, see Section 2.2.1. That’s the reason to call this
identification approach, grey-boxr modeling. Moreover, if the covariance of w(t)
and v(t) are not known, a direct parametrization of the feedback vector K (p)
can be used to estimate its coefficients simultaneously with the other unknown
model parameters. This approach is called Parametrized Observer (PO) method,
see Larsson et al. (2009). As mentioned in Section 2.2.1, the linear state-space
model (2.10) can be nonlinear in parameters, which is the case in our application.

PREDICTION-ERROR. METHOD

The prediction-errors of a specific model structure M(p) can be calculated as,
see (2.10),

e(t,p) = y(t) — 41 (t[p) (2.14)

and thus, by having the input and output data set Z~, (2.14) can be computed
for time instants ¢ = 1...N. A good model is the one which possesses as
small prediction-errors as possible. The Prediction-Error Method is based on
the technique which minimizes the prediction-errors (¢, p) with respect to the
model parameters p, see Ljung (1999). Generally, this can be formulated as an
unconstrained optimization problem with the scalar cost function

N
Vn(p, ZV) = Z (2.15)

where L(g) is a linear stable filter with ¢ being the forward shift operator and
[ is a scalar-valued (typically positive) function. For simplicity, in this thesis
L(q) =1 and | = e(t,p)"e(t,p) are selected. Therefore the minimization of
loss function given in (2.15), with the mentioned choices of L(g) and [, can be
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represented as follows

pn =arg min Vi (p, ZV) (2.16)
PEDM
1
ZN) = =
Vv (. ; Selt; p).

If the predictor §(t|p) of a model can be written as a scalar multiplication of a
known data vector ¢(t) containing past inputs and outputs, and the parameter
vector p, the model is named as linear regression in statistics and ¢(t) is called
the regression vector. Using the quadratic criterion for loss function of this
regression problem, there exists an analytical solution for px in (2.16) which is
called Least-Squares Estimate (LSE)

Y = (@Te) ety (2.17)

where ® = [¢1 ¢ ... dx]*. However, in the general case the optimization problem
(2.16) cannot be solved analytically. Then it is required to have a numerical
iterative search technique in which the value of loss function Vy (p, Z") improves
in each step. A general type of search method is

P = 50— ORI L (0, 2N (2.18)

where ¢ denotes the iteration number and ug\l,) is the step length that should
be selected in a way that the loss function Vi (p, ZV) decreases with increasing
iterations. RE(’,) is responsible for modifying the search direction and depending
on how this term is chosen different methods are obtained, namely, gradient or
steepest-descent, Newton, Gauss-Newton, and Levenberg-Marquardt methods.
Considering the (¢, p) in (2.14) and T (¢,p) = —d%s(t,p), the corresponding
R%) for each of these methods is

e Steepest-descent

RY =1 (2.19)
e Newton _ _
Ry = ViR, 2%) (2.20)
in which
N N )
Vi, 2V) = Z D, p0) Z £
- - (2.21)
e Gauss-Newton N
i 1 i i
Ry = = > wlt, o)) (¢ oY) (2.22)
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e Levenberg-Marquardt (Regularization technique)

ROW =< Zz/) T, pl) + AT (2.23)

where \ is used for regularization and if it is set zero, the last two procedures
are the same. However, the Levenberg-Marquardt has an advantage in
comparison to Gauss-Newton in the circumstances that (2.22) is singular
or close to be. This may happen if the model is over-parametrized or the
data is not sufficiently informative. Using regularization techniques with
the aid of A factor will be a remedy to this singularity issue.

In this thesis, greyest function in Matlab System Identification Toolbox is
applied for parameter estimation of the continuous-time LTT model (3.13) repre-
senting the engine-load system. Note that the greyest command accepts the
system matrices in continuous-time format and utilizes PEM besides a combina-
tion of different search algorithms mentioned in (2.19)-(2.23) when the ’auto’
option is chosen.

REMARKS ON IDENTIFIABILITY ANALYSIS

A fundamental question, before operating any estimation procedure, is whether
the model is identifiable or not. This question contains two sub-problems.
The first concerns about the data characteristics which studies if the data is
sufficiently informative to distinguish between different models. The second issue
is about the invertibility of model structure M that investigates the possibility
of uniquely determining (locally or globally) the model parameters from a data
set which is assumed to be informative enough. The latter problem is called
structural identifiability. Three definitions are given in the sequel related to such
invertibility characteristics based on the discussion in Ljung (1999).

Definition 2.a A model structure M is globally identifiable at p* if

M(p) = M(p*), p€ Du = p=p". (2.24)
After describing identifiability at one point, the properties of the whole set is
studied:

Definition 2.0 A model structure M is strictly globally identifiable at p* if it
is globally identifiable at all p* € Dy.

Having these two definitions, the corresponding local properties can be defined
similarly.

Definition 2.c A model structure M is locally identifiable at p*, if there exist
an € such that

M(p) = M(p*), p€ B(p*,e) = p=p" (2.25)
where B(p*,¢€) is an e—neighborhood of p*.
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A huge amount of literature has been devoted to the problem of structural
identifiability for linear and nonlinear state-space models, see Hermann and
Krener (1977); Walter (1982); Ollivier (1989); Ljung and Glad (1994); Sedoglavic
(2002); Anguelova (2007); Karlsson et al. (2012). Unfortunately, computational
complexity of some well-known methods, such as characteristic set determination,
increases exponentially with the number of states and the unknown parameters,
see Ollivier (1989); Ljung and Glad (1994). Therefore, as presented in Sedoglavic
(2002); Anguelova (2007), the model structural identifiability can be studied by
using the so-called rank-test method which is basically similar to observability
investigation. This approach will be briefly discussed here. By neglecting the
effect of additive noise v*(t), the linear state-space model (2.8) can be written
as follows

i(t) =A(p)z(t) + B(p)u(t) (2.26)
y(t) = C(p)x(t)

where z € R", v € R™, and y € R are the state, the input, and the output
vectors, respectively. The structural identifiability problem can be defined as
observability of the extended nonlinear system, see Walter (1982),

m - [f(xjouyp)] = ("(2,p) + (@, p)u (2.27)

y=n(@,p) = [m(z,p) ... m(z,p)]"

To prove observability of the nonlinear system given in (2.27), i.e. the initial
states can be reconstructed from data, the following system of equations should
be solved for x and p, where the input and output and their time derivatives are
assumed to be available.

oy =" (z,p) (2.28)

y( ) = 7]5 )(x7p7u17"~7um)

K rk—1 K—

()—nﬁ)(x,p,ul,...,ug ),...,um,...,ugn 1))
0

) = (x,p)

(1) nl(g)(x’paulw'wum)

( )fn,(g )(:c,p,ul,...,u(lﬁ_l),...,um,...,usr’ffl)).

The notations (.)(*) in (2.28) means the ith time derivative of (.). If, for a given
K, the derivative array system of equations in (2.28) can be solved uniquely for
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the parameters p, the system is observable and therefore identifiable. However,
for a general nonlinear system, no upper limit exists for x and thus it could be
infeasible to solve this system. As a remedy, the nonlinear system of equations in
(2.28) can be linearized around the extended states and the Jacobian is studied
to determine the model local observability, see Hermann and Krener (1977),

I on{” (z,p) 1

(w,p)

ony
Jd(z,p)

0r (st 8 iy )
d(z,p)
-1 .
Oz, p,uy, ..., uli=) = : . (2.29)
on” (z,p)
9(w,p)

i (@,pur,. tim)
9(x,p)

u(lnfl),...,um,...,ugyffl))

00" (eapaits
L (x,p)

The matrix O(z,p, u, .. . ,usgfl)) in (2.29) is called the extended observability

matriz and can be evaluated in a specific operating point z*, see Linder et al.
(2014). The system is locally weakly identifiable if @ meets the observability rank
condition, see Hermann and Krener (1977); Anguelova (2007). If the system
(2.27), i.e. ¢°, ¢, and 7, are rational functions of their arguments, it is enough
to consider the first x = n 4+ d — 1 derivatives of n;(z,p), j =1 ... k, where d is
the number of unknown parameters, i.e. size of vector p. This has been proved
in Anguelova (2007). Weak local structural identifiability of the system (2.26) is
tested with a rank condition on O.

The symbolic calculations for obtaining the matrix @ contain repeated Lie-
derivatives computations which may become highly complex when it comes
to higher order systems. In Sedoglavic (2002), a probabilistic semi-numerical
approach has been proposed to directly calculate the Jacobian @ which is more
suitable for large systems even up to a few hundred states and parameters. A
Mathematica implementation of this method has been introduced in Karlsson
et al. (2012). It is a ready to use package named IdentifiabilityAnalysis
and is available by the authors. Consequently, in Chapter 4 the procedure of
symbolic calculations is performed in detail to study the structural identifiability
of the simplified 2 DOF state-space model structure, which has three states, with
only one unknown parameter to avoid big size and complexity. After illustrating
the method for the smaller system, the symbolic software is used to calculate
the rank of observability matrix @ for the 2 DOF model but instead with five
unknown parameters simultaneously. The rank test shows it is possible to identify
all five parameters of the 2 DOF model assuming informative inputs. Finally, the
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structural identifiability of the unknown parameters in the 7 DOF engine-load
system (3.13), which has 13 states, is investigated using the Mathematica package
which was mentioned above. Again the rank test proves that all the unknown
parameters of the 7 DOF model structure are identifiable having informative
inputs.

As mentioned in the beginning of this section, the structural identifiability
is one leg of the identifiability problem. The second leg is related to data
information. A big value of estimated variance for a specific parameter in
the model structure is a sign of low sensitivity of the model predictor to this
parameter for the current data set. This means the parameter cannot be
estimated correctly even if it is structurally identifiable in the first place. Hence,
to have a reliable estimation, the input u(¢) and the output y(¢) are chosen in a
way that the predicted output turns to be sensitive to the parameters which are
important for the application at hand. In other words, the selected data should
have the required information about the considered parameters. As an example,
in Chapter 4 it is illustrated that changing the data set from normal combustion
data set to a data set which has misfire in the input torque from the engine, will
help estimate the unknown parameters of the engine-load system.

2.2.3 MODEL VALIDATION

The identification steps, which have been introduced so far, find the best model
m = M(py) inside the current model structure, see (2.7). In the grey-box
modeling approach, it is important to check whether the estimated physical
parameters are in a reasonable range besides that their estimated variances are
not considerably large. This is the first validation test. Further, the model
quality should be validated using a data set, called wvalidation data, which is
different from the one applied for building the model named estimation data.
This is to show that the model is applicable in general, i.e. the model fit is good
for all possible data sets from the system and not just for the specific data set
which has been used during estimation. Such validation is called cross-validation
and is performed in two steps: the first is to study the model fit for predicted
and simulated outputs, and the second is to do residual analysis. Theses aspects
are described in the following sections.

MODEL FIT

How much the estimated model m is able to reproduce the validation data set
from the true system is the first basic question that should be answered. Two
different kinds of model outputs are calculated here: the one-step-ahead-predictor
71(tjm) as in (2.7) and the simulated output gs(t/m). The latter is the case
where the prediction horizon k is equal to co. Having the values of u(s) and y(s)
for s <t — k, the k-step-ahead-predictor of the linear model m at time instance
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t is denoted by i (t|m), and can be computed as follows, see (2.7),

Uk (tm) = Wi(q, p)G (g:p)u(t) + [1 — Wi(q,p)]y(t) (2.30)
Wi(q, p) =Hy(q,p)H (¢, p)
k—1
Hi(q.p) =Y _h(l,p)q"™"
=0

where as always ¢ is forward shift factor and G(q,p) and H(q,p) are the system
and the noise transfer functions for the estimated model m, see (2.6) and (2.13).
If k = oo, Hy(q,p) = H(q,p) and consequently Wy (q,p) = 1 which according to
(2.30) results in a pure simulation

§s(tlm) = G(q, p)u(t) (2.31)

where only the past inputs are used. It is worth to remind that for OE models
H(q) = 1, as mentioned in Section 2.2.1, and thus there is no difference between
one-step-ahead-predictor ¢ (tjm) and simulated output ,(¢|m) considering rela-
tions (2.7) and (2.31). It is important to keep in mind that there can be a very
good agreement between ¢ (t|m) and y(¢), since the previous values of output,
ie. y(s), s <t—1, are used. This is not the case for §5(¢|m) which no previous
output values are applied and therefore it can be more revealing since the output
is built from input only. Of course for an unstable model, the predictor form
should be used. In this thesis, all the comparisons are made between the model
simulated output and the measured system data.

The fit of the estimated model m can be shown by comparison plots or a
value F(m, Z") which is computed as follows

(2.32)

¢;zﬁlmw—@me>

F(m,ZN) = 100<1 -
JEZE ) - 50

in which g(t) is the output mean.

RESIDUAL ANALYSIS

The residuals or leftovers are the part of the true system which are not recon-
structed by the model. There exists information about the model quality in the
corresponding residuals. Having found the model m = M(py ), the residual for
each time instant ¢ can be computed as following, see (2.10),

e(t) =e(t,pn) = y(t) — Js(t|DN)- (2.33)

Now, having a validation data set ZV = [y(1),u(1),y(2),u(2), ..., y(N),u(N)],
the first point that can be considered is to obtain the maximum residual Sy
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produced by the model M in the desired time interval or calculating the average
error So

S) = max le(?)] ZE (2.34)

However, one may ask a very basic question here: how likely is that these values
are not changing for future data sets? Answering this question requires to
confirm that the residuals do not depend on something which is probable to
change. One clear example is their independency from special input given in
ZN . This can be acquired by looking at the cross covariance between the past
inputs and the residuals

N
}: u(t — 7). (2.35)

The small values of R?L(T) is a positive sign that if this model is applied to
some other inputs, the measures given in (2.34) are still applicable. There exists
another important expression that can be concluded if the values of RN, (7)
are not small: some parts of y(¢) which come from the past inputs are not
appropriately reconstructed by the model M. Therefore, the model can be still
improved.

Correlations among the residuals themselves should be also investigated

E: et —7). (2.36)

If RN (1) are not small for 7 # 0, there is a trace of previous &(t) in the current
value and this proves that y(t) could have been predicted better and thus the
model M should be improved.

As mentioned in the beginning of this chapter, the third step in the identifi-
cation procedure happens when the identified model cannot pass the validation
tests described in Section 2.2.3. Consequently the first two steps should be
repeated until sufficient confidence about the model is gained.

2.3 A SIMPLE EXAMPLE

Now having introduced what is a dynamic system and how a system identification
procedure can be performed, an illustrative example is given in this section. The
considered structure is a simple torsional mass-damper system which is shown in
Figure 2.3 and can represent the simplified version of a four-cylinder IC engine
configuration, i.e. damping wheel, four cylinders, and flywheel, see Figure 3.6
in Chapter 3. The aim is to identify a model that can be used to describe the
angular velocity 0. of the rotating mass Je, given in Figure 2.3, applying an input
torque T, from the engine. Defining the state z, = 6, and using the Newton’s
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Figure 2.3: Simplified version of a crankshaft system.

second law, the model structure for this system in state-space form (2.8) can be
written as

1

o) = - <  Curelt) + Te<t>) (2.37)

y(t) =ze(t) + ve(t)

in which C, is the friction coefficient modeled as viscous damping, y(t) is the
measured output which is angular velocity, and ve(t) is assumed to be white
noise with zero mean and standard deviation 0.1 rad/sec. J, and C, are the
unknown model parameters to be estimated using an available input and output
data set ZY, shown in Figure 2.4. To confirm the applicability of the identified
model, it needs to be validated against another data set ZX|. In this example
these data sets are generated by simulation, however in real engine-load test they
are measured. The true values for the parameters are assumed to be J, = 0.3635
and C, = 0.1532.

The discretized model structure (2.37), by using a simple Euler forward
approach and a sampling time Ty = 0.01s, is

zr = (1+ Tsa)zp—1 + Tsf Te k-1 (2.38)

where o = —C,/J. and 5 =1/J,. It is seen that the model predictor defines a
linear regression problem and thus the predictor of y(¢) in (2.37) in discrete-time
can be written as

9k (p) =0} pe, (2.39)
ok = [vh-1 Tep—1]",
Pe = [(1 +Tsa) TSB]T
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Figure 2.4: Estimation data Z,. A white noise with zero mean and standard

deviation 0.1 rad/sec is added to simulated xy, to generate output yy.

in which ¢ is the regression vector and p. is the vector of unknown parame-
ters. Now, the LSE in (2.17) gives the estimated vector of parameters p. and
consequently, using (2.39), JESE = 0.3571 and CYSF = 0.1500 are obtained for
the model structure (2.37). After estimating the unknown parameters using
estimation data, the model should be validated which consists of two steps:
model fit and residual analysis. A fresh data set Z\J,\;l is applied for validation in
which a sine input is considered. Figure 2.5 shows the simulated angular velocity,
using (2.31), versus the true system. As it is seen there is a good agreement
between the model and the new data in which the fit value F(m, ZV) = 85.32%
is calculated using (2.32). Moreover, the correlations among the residuals and
the cross covariance between the past inputs and residuals are given in Figure 2.6
where almost all the values are inside 99% confidence interval. According to
Section 2.2.3, it can be said that the residuals do not depend on something
which is probable to change.

The next chapter is devoted to the torsional vibration modeling of an engine-
load configuration which is the dynamic system of interest in this thesis. In
comparison to the simple example given in Section 2.3, this considered system
is more complicated since there will be more states which are not measured.
Furthermore, the unknown parameters will enter the state-space equations in a
nonlinear way and thus the linear regression predictor is not applicable anymore.
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Figure 2.5: Validation data Z%,. The estimated model (dashed line) and the
true system (solid line).
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Chapter 3

Engine-load system torsional vibration modeling

"Make your theory as simple as possible, but no simpler."
- Albert Einstein (1879 - 1955)

The main source of excitation forces in a vehicle engine structure and,
consequently, its powertrain system arises from the crankshaft vibrations due to
the oscillatory engine torque. These vibrations occur in three dimensional space
and are therefore of different types: bending, axial, and torsional. Moreover,
they include separate frequency ranges. In this chapter, a mathematical model
which is capable of reproducing torsional behavior of an engine-load system will
be developed and explained. A four-cylinder four-stroke IC engine, which is
shown in Figure 3.1, is studied. The considered engine is spark ignited which
is nowadays a widely used engine in passenger cars and motorbikes. Since the
main focus of this thesis is the engine-load system torsional vibration modeling,
the rotational dynamics of the engine is considered by modeling the crankshaft
while the other parts, such as engine mounts, are not taken into consideration.

3.1 CRANKSHAFT MODEL

The major torsional vibrations of a crankshaft system are due to discrete engine
ignition events, in other words, the fluctuating nature of the delivered engine
torque. Crankshaft systems can be modeled by torsional elastic elements. The
actual system is distributed, but basic models comprise linear lumped spring-
mass-damper systems which, according to the specific purpose of modeling, can
be extended by additional details about the dynamics of various parts. As
described in Rabeih (1997), the compact crankshaft is very stiff, and hence each
crank-slider mechanism, which is shown in Figure 3.2, can be represented by
one inertia disc J;. Each J; consists of the reciprocating masses inertias J,.,

33
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Figure 3.1: Four-cylinder spark ignited internal combustion engine, (Reproduced
with permission from www.car-engineer.com, Nicolas (2012)).

Crank pin &
Journal

\Balance weight

QI

Figure 3.2: Crank-slider mechanism, see Ranjan (2011).

i.e., piston and connecting rod, plus the inertias of the rotating parts J,,, i.e.
crank journal, crank pin, crank web, and balance weight. The crank front view
and the crank-slider mechanism equivalent structure are depicted in Figure 3.3.
Considering the damping wheel inertia disc at the free end of the crankshaft, left
side, and the flywheel inertia disc at the other end, right side, the crankshaft
model for the four-cylinder IC engine, shown in Figure 3.1, is given in Figure 3.4.
The inertias are connected with torsional stiffness coefficients K1 ;.
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Crank system front view

Crank-slider mechanism equivalent structure
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Figure 3.3: Crank and crank-slider mechanism original and equivalent systems.

K21 K32 K43 K54 K65

Figure 3.4: Crankshaft model for a four-cylinder IC engine.

3.1.1 DAMPING AND ENGINE FRICTION MODELING

Damping is present in all vibrating systems and its functionality is to dissipate
energy. An accurate mathematical form describing damping force for a given
mechanical system is complicated. However in most of the applications the

following simplified models are sufficient, see Liu and Huston (2011),

e A damping force which is proportional to the velocity is called viscous
damping. The applied force is due to the inertia of a viscous fluid which
results in a resistance for movement during pouring or a sudden shift. If
this fluid is used between two surfaces that are rapidly turned in opposite
directions, the liquid will resist this turning motion induced by the shear
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Internal combustion engine

Camshaft
Intake Compression Combustion Exhaust bearing/bush

‘Camshaft

Connecting
rod

Cylinder

Main bearings Connecting rod bearings Main bearings.

Figure 3.5: The rotating and reciprocating parts of an IC engine in which
bearing points illustrate the places exposing relative motions of solid bodies,
(Reproduced with permission from www.substech.com, Kopeliovich (2014)).

force. Any of these phenomena can be applied in a viscous damper.

e Depending on the application, the damping force can be proportional to
the squared velocity, such as turbulent friction in a fluid column oscillating
within a U-tube, see Richardson (1963).

e Coulomb damping which is typically due to dry friction, see Dowson (1998).

e Structural (hysteresis) damping which is attributed to internal friction in
structure materials.

As mentioned by Sandoval and Heywood (2003), the total engine friction orig-
inates from different sources, see also Soltic (2000). The segmentation and
magnitude of each friction source depend on various engine characteristics,
namely, structure, age, operating point (load and speed), and temperature of
components and lubricants. Therefore, engine friction modeling is a complicated
task and one remedy is to analyze different friction mechanisms, which are
present at different parts of the running engine, separately. Considering the first
damping phenomenon mentioned above, viscous damping law can be applied
for all the crankshaft system components which are featured to relative motion
of two surfaces having an oil film in between, such as journal bearings and
piston-rod-crank units. Figure 3.5 depicts the rotating and reciprocating parts
of an IC engine with the points denoted by bearing where relative motions
of solid bodies occur. According to Figure 3.5, a viscous damping coefficient
Cit1,; can be used in the connection of two consecutive inertias, J; and J;4; in



3.1. Crankshaft model 37

Damping wheel Cylinders

Figure 3.6: 7 DOF lumped torsional vibration model of a four-cylinder SI
engine-load configuration.

Figure 3.4. This is to represent the damping torque arising from rotation of the
crankshaft on its journal bearing. Moreover, the equivalent viscous torsional
damping torque for each piston-rod-crank unit is represented by C; for each
inertia J;, i = 2,--- 5, see Figure 3.4. In this thesis, the hysteresis damping of
the crankshaft components and dry friction damping are neglected.

3.1.2 OVERALL ENGINE-LOAD SYSTEM MODEL

Obeying the same rule as in Section 3.1, the brake system can also be modeled
by an extra lumped inertia connected to the flywheel through a flexible coupling,
i.e. spring and damper elements. Figure 3.6 shows the 7 DOF torsional vibration
model of a four-cylinder four-stroke SI engine-load configuration considered in
this thesis. As it is seen, the model is modular and thus it is straightforward
to add more cylinders. Here, the four cylinders are assumed to have the same
structure. Tiot,;(t) is the total engine fluctuating torque acting on each crank-
slider mechanism J;, i = 2,...,5 and it will be calculated in Section 3.2. Tjoaq(t)
is the braking dynamometer torque which is available as measurement. It is
crucial to note that understanding the entire system behavior demands the
modeling of the overall system. Therefore, analyzing the properties of the
individual parts is not sufficient since modeling of the coupling effects and
the existing dynamic interaction between different components are of great
importance.
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Figure 3.7: Torque signal of a four-cylinder four-stroke IC engine in two
complete rotations of the crankshaft.

3.2 ENGINE EXCITATION

The main source of excitation in an engine-load system is the torque fluctuation
due to cyclical operation of the engine, namely two or four-stroke cycles. However,
faulty conditions such as late ignition or misfire can also inject serious vibration
issues which will be discussed in Chapter 5. Figure 3.7 presents the delivered
torque signal of a four-cylinder four-stroke IC engine in two complete rotations
of the crankshaft, i.e. 720 degree of the crank angle. As shown, the varying
generated torque by the engine is a pulse series where each pulse represents the
power stroke of the corresponding cylinder.

This thesis is focused on the torsional vibrations due to the oscillatory engine
torque shown in Figure 3.7, although other types of vibrations can also take place.
A schematic of the piston crank-slider mechanism is presented in Figure 3.8.
In one engine cycle, three different forces act on the connecting rod L which
result in a fluctuating torque 7" applied on each inertia J;, i = 2,...,5, shown
in Figure 3.6. The first is compression pressure force Fp.es arising from the
varying in-cylinder pressure, the second is inertia force Fiery due to the inertias
of reciprocating masses, and the third is friction force. Frictional forces are
due to piston and ring friction losses as well as pumping losses. Considering
the engine friction model in Section 3.1.1, the remaining applied friction force
on the connecting rod can be assumed to be negligible in comparison to the
other two forces. Therefore, the total delivered torque 1" on the crankshaft is
composed of the indicated torque and the reciprocating torque which originate
from in-cylinder pressure and inertia effects, respectively.
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Figure 3.8: Forces on the crank-slider mechanism.

3.2.1 INDICATED TORQUE

The torque which is produced by in-cylinder pressure is usually called indicated
torque and can be computed as following for cylinder i

Tina,i(07) = Fores,i(07) f(07)7 (3.1)

where 7 is crank radius, see Figure 3.8. Moreover Fj,.s; is the ith compression
pressure force and f(67) is the crank-slider mechanism geometric expression
which are evaluated as follows, respectively

FpreS,i(aj) = AP(PCyl,i(Q;‘F) - Pcrank) (32)

F(O7) = sin(67) + r/Lsin(207)
2y/1— (/L) sin(6})

see Rizzoni and Zhang (1994). In (3.2), A, is piston area, L is connecting
rod length, P.y; is the absolute pressure inside ith cylinder, and Perank is
crankcase pressure, see Schagerberg and McKelvey (2003). The angle 0 is the
ith cylinder crank angle position that can be defined as 0] = 0 — rpc,; with
0 and Orpc,; being crank angle and the ith cylinder Top Dead Center (TDC)
crank angle position, respectively. frpc,; depends on the engine firing order
and can happen at {0°,180°,360°,540°} degrees. Since the calculated torque in
(3.1) is for the firing situation of the engine, it is also known as firing indicated
torque. Furthermore, if the engine is running without combustion in one of
the cylinders, the motoring indicated torque can also be evaluated using (3.1)
and (3.2) but Pey1,(0)) should be substituted with Pposcy1,:(68;). Firing and
motoring indicated torques are shown in Figure 3.9 for a four-stroke SI engine
while the engine is operating at the speed 1200 Revolution Per Minute (RPM)
and ~ 57 N.m load.



40 Chapter 3. Engine-load system torsional vibration modeling

—firing
300 - = -motoring

2501 g

Indicated torque, [N.m]

N i i i i i
0 100 200 300 400 500 600 700
Crank angle, [Degree]

Figure 3.9: Firing and motoring indicated torques.

ENGINE ORDER

The number of excitations which takes place during one revolution of the
crankshaft system is important for evaluating the engine orders. For example,
a four-stroke IC engine generates one excitation in two crankshaft revolutions.
The four strokes are intake, compression, expansion, and exhaust, see Eriksson
and Nielsen (2014). Figure 3.10 illustrates the in-cylinder pressure signal for
an SI engine where the four strokes are also depicted. The operating point
is < 1200 RPM,~ 57 N.m>. The engine orders for the four-stroke cycle are
calculated by multiplying the engine speed with factors 1/2,1,3/2,2, etc. It is
important that the natural frequencies of the system do not coincide with any of
these orders, at any engine speed, to avoid resonance. An order analysis can be
performed to find the amplitude of a specific engine order with respect to engine
speed, see Ponti (2008). Therefore, utilizing a sweeping engine speed signal for
order analysis can help find the natural frequencies of the system.

3.2.2 RECIPROCATING TORQUE

The applied torque on the crankshaft due to the inertias of reciprocating masses
is called reciprocating torque. The inertia force Fiyers,s for cylinder 7, which has
been shown also in Figure 3.8, can be evaluated as follows

Enert,i(ej) = —meqa(ﬁj) (33)

where meq is the equivalent mass of reciprocating parts and a is the linear
acceleration of these components, see Filipi and Assanis (2001),

df (07)

alb7) = r | F07)8; + L

62 (3.4)
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Figure 3.10: In-cylinder pressure signal for an SI four-stroke engine.

in which 9;* and 9;* are crankshaft angular velocity and acceleration, respectively.
Moreover, f(07) has been given in (3.2). As mentioned by Ponti (2008), the first
term inside the bracket in (3.4) is negligible in comparison to the other term.
Therefore, by using (3.3) and (3.4), the approximate relation for reciprocating
torque is

Trcis07) = —muar | T0E0072] 00y (3.5)

3.2.3 TOTAL FLUCTUATING TORQUE

Finally, considering the calculations in Sections 3.2.1 and 3.2.2, the total applied
torque on each inertia J;, ¢ = 2,...,5 which is representing the crank-slider
mechanism can be computed, see Figure 3.6. If the crank angle 6 in relation
0f =0 — 6rpc,; in (3.1)—(3.5) is measured in time, then the total torque can
also be expressed in time as

Ttot,i (t) - ﬂnd,i (t) + Trecip,i (t) (36)

3.3 CONTINUOUS-TIME MATHEMATICAL MODEL OF
THE CRANKSHAFT

By defining 6; as the ith inertia angular position in Figure 3.6, the Newton’s
second law can be used to describe the angular acceleration for each inertia J;.
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Consequently, the model equations of motion can be written as

Jib; =Ci1.:(0i11 — 6;) + Kip1.4(0i01 — 05, for i =1,

Jib; =Cit1.:(0i11 — 6;) — Ci0;
+ Kiy1i(001 —0;) — Cii1(6; — 6; 1)

= Kii—1(0; — 0i—1) + Tior,i(t) , fori=2,...,5,
(3.8)
Jilli =Ciy1i(0i01 — 03) + Ky i(0i01 — 0;)
— Ciic1(6i = 0;1) — Ki i 1(6; — 6;-1), for i = 6,
(3.9)
Jilli == Ciii1(6; — ;1) — Kii1(6; — 0;—1) — Tioaa(t) for i =17,
(3.10)

where, as mentioned in Section 3.1.1, C; ;—; and C; are viscous damping coef-
ficients and K ;_; is the stiffness coefficient. Furthermore, Tioy () is given in
(3.6).

3.3.1 STATE-SPACE FORMULATION

For the system identification approach which is to be used in this thesis, i.e.
grey-box modeling, the state-space representation of the engine-load system
given in Figure 3.6 is required. By introducing (6;(t) — 6;_1(t)) and 6;(t) in
(3.7)-(3.10) as the state variables, the following 13 x 1 state vector x(t) is defined

T13x1 =[01,02,02 — 01,035,053 — 02,04, (3.11)
01 — 03,05,05 — 04,06,06 — 05, 07,07 — 05] .-

By looking at the engine torque calculations in (3.1)-(3.5), it is seen that these
relations are extremely nonlinear with respect to 6. This is, as described
before, due to the crank-slider mechanism kinematics. If the angular position
of each intertia J;, i.e. 6;, is used in (3.1)-(3.5) instead of crank angle 6, the
state-space equations will be highly nonlinear, see Rizzoni and Zhang (1994).
Accordingly, so far, a simplification has been done in which the unknown state
0; is replaced with the measured crank angle in the computations of indicated
and reciprocating torques, see Section 3.2.3. However, due to the squared states

0i(t),i =2,...,5 in Ty, (t), the corresponding state-space representation of the
engine-load system is still nonlinear and can be written as follows
o(t) = f(x(t), u(t)) (3.12)

where u(t) is the system input vector of size 5 x 1 consisting of engine and
load torques. Now, the second approximation can be considered to remove the
nonlinearity by substituting 02,7 = 2,...,5 in Tt :(t) with the square of system
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output which is the measured damping wheel angular velocity z1(t) = 6 (t). In
this way, the input u(¢) in (3.12) will be independent of the states and can be
calculated separately. The results of the estimated model validation in Chapter 4
imply that these approximations, which are essential to acquire a linear model,
will not influence the system output considerably. Therefore, the model is now
characterized in the common continuous-time LTI state-space form

L(t) =A(p)x(t) + B(p)u(t) (3.13)
2(t) =01 (t) = [10...0]z(t)
in which p is the vector of system unknown parameters, i.e. inertias, stiffness,
and damping coeflicients presented in Figure 3.6, which are to be estimated.

The system matrices A(p) and B(p) are given in Appendix A. Since there is a
finite number of state variables, the system is lumped and not distributed.






Chapter 4

Engine-load model identification

In this chapter, the PEM described in Section 2.2.2 is used to identify the
unknown parameters of an engine-load system torsional vibration model rep-
resented by the grey-box structure (3.13). The estimation is based on the PO
approach and is done on both real data and simulation data to better illus-
trate the convergence performance of different parameters. It is shown how the
original lumped model of the engine-load system torsional vibration, depicted
in Figure 3.6, can be further simplified if the application of interest considers
a specific frequency region. Accordingly, first a number of parameters can be
obtained using the simplified model and next these estimated parameters can be
utilized in the 7 DOF model structure. This reduces the number of unknowns
during estimation which improves the performance. Moreover, the importance
of the data information for estimating a specific parameter is shown by using
two different kinds of data sets. The first data set consists of 10 cycles of normal
engine operation and the input is firing indicated torque, while the second
data set includes the case in which the combustion is missing for one of the
cylinders during 10 cycles. Hence, in the latter case, motoring indicated torque
is considered as input and this faulty situation is called misfire phenomenon.

All the estimation procedures in this chapter are made using Matlab System
Identification Toolbox, greyest command specifically, which is based on PEM
for parameter estimation of grey-box models, see Ljung (1988-2014).

4.1 EXPERIMENTAL SETUP
A schematic view of the experimental setup in the engine laboratory at the
Division of Vehicular Systems is given in Figure 4.1. It is equipped with a

four-cylinder IC spark ignited engine with firing order 1342. The engine is
controlled using dSPACE-equipment, with a fully transparent control system

45
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Figure 4.1: Schematic view of the experimental setup in the engine laboratory
at Division of Vehicular Systems, Leufven (2013).

built in Matlab Simulink and executed in real-time, Leufven (2013). A modern
asynchronous machine (dynamometer), which can perform both as a drive and
a load to the engine, is also provided. It has a braking capability of 250 kW
(~ 340 hp) and a rated torque of 480 N.m. The dynamometer also acts as
start motor for the combustion engine. The sensors of the dynamometer deliver
the shaft speed and the applied torque. Moreover, the cylinders 1 and 2 are
equipped with in-cylinder pressure sensors and the data acquisition is performed
on a crankshaft angle basis. The crank angle sensor measures the time interval
between two consecutive teeth with a resolution of 0.5 degree on the damping
wheel side. Further, angular velocity measurement which is considered as the
system output is generated using these time intervals. The corresponding time
vector is also produced which allows doing the identification in time domain.
The data, which is used for the identification approach in this thesis, is
collected at the engine operating point < 1200 RPM,~ 57 N.m> and the sampling
frequency of ~ 14402 Hz for both normal and misfire operating conditions.

4.2 PARAMETER ESTIMATION OF THE SIMPLIFIED
2 DOF MODEL

The identification procedure for the engine-load system starts with estimation
of unknown parameters of the simplified model structure given in Figure 4.2.
In order to investigate the feasibility of the approach, the estimation is first
done using the simulation data from a known system which helps understand
the convergence properties of different parameters. The first conclusion from
the simulation data analysis, in Section 4.2.1, is that for a good estimation
performance the damping coeflicient Ceng load, see Figure 4.2, should be fixed.
One more result is regarding the data information where it is shown that by
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[

C
eng,l
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Figure 4.2: Schematic view of a 2 DOF simplified model structure for the
engine-load system.

using engine normal operating data set, Jy,aq does not converge to its true value.
However, this problem will be solved by applying the misfire data set, see the
results in Table 4.3.

4.2.1 ESTIMATION ON SIMULATED DATA

The inputs of the simplified 2 DOF model which is shown in Figure 4.2 are the
total engine torque Tiot eng(t) and the load torque Tioaq(t). The total engine
torque Tioteng(t) is generated by summing up the torques Tio,;(t) given in
(3.6), for i = 2,...,5. As seen in (3.5), Tiot,:(t) is nonlinearly related to the
state feng(t) which is the system output and is measured. This is due to the
reciprocating torque relation. In order to have a linear state-space equation for
the model of the engine-load system, the engine input torque can be calculated
before the estimation by substituting the measured angular velocity in (3.5).
To illustrate that this assumption will not influence the results, the crankshaft
angular velocity signal 9eng(t) is produced by simulating the known nonlinear
state-space system (4.1) and then the simulated output is used besides a linear



48 Chapter 4. Engine-load model identification

model structure to estimate the desired parameters.

. 1
xl(t) = 7 ( - Ceng xq (t) + Keng,load T3 (t)-i— (4.1)
eng
C1eng,load (_zl(t) +Z2 (t)) + Ttot,ind (t) + 931( ) T::)t rec1p(t))
. 1
) (t) _Jl ( - Keng,load T3 (t) - Ceng‘,load (_xl(t) + xo (t>) - T’load(t))

ad
i3 (t) =wa(t) — 1 (1)
Output : y(t) = 1 (t) + e(t).

In (4.1), 2(t) = [Beng(t) Orona(t) Oeng(t) — Bioaa(t)]T is the state vector and
éeng(t) is the model output. The physical parameters 1/ Jeng, Ceng,load, Keng,load:
Ceng, and 1/Jigaq are to be estimated. The true values of these parameters
are acquired from the results in Section 4.2.2 and are given in Table 4.1. It is
assumed that the measurement noise e(t) is white with zero mean and standard

deviation 0.1 rad/sec. Tiot,ind(t) and Tig; i (t) are computed as follows

Ttot,ind (t) = ZT‘ind,i(t) (42)

tot remp E remp z

where Tinq,;(t) is given in (3.1) and T} ;. ;(¢) is calculated using (3.5) excluding

" recip,i
62, The other parameters that are used in (3.1)-(3.5) are geometric properties
of the current engine, i.e. r, L, A,, and the equivalent mass of the reciprocating
parts meq which is assumed to be known. These are given in Table 4.2.

Table 4.1: True parameters for continuous-time model structure given in (4.1).
For description of parameters see Figure 4.2. The values are obtained from the
results of estimation on real data, see Section 4.2.2.

1 1
’ Ton ‘ C(eng,load ‘ Keng,load ‘ Ceng ‘ Tioad ‘

[2557 [ 25 | 1992 [ 0.1541 | 5.646 |

Table 4.2: Known characteristics of the engine.

L r [ L] A [ meq]
[0.043 [ 0.145 [ 0.0058 [ 0.7 |

Now, to identify the parameters of the model (4.1), given in Table 4.1, the
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following linear continuous-time state-space model structure M, is used

x(t) = Ax(t) + Bu(t) (4.3)
y(t) = z1(t) + e(t).

The state vector and the output of (4.3) are similar as the nonlinear version
(4.1), however in this case the input vector is defined as

u(t) = [Ttot,eng(t) Tload(t)]T (44)

where, as described earlier, the total engine torque Tio eng(t) is found by summing
up the torques Tyt ;(t) given in (3.6), for ¢ = 2,..., 5, having in-cylinder pressure
Pey1,i(t). Furthermore, the term % (¢) in (4.1) is substituted with the crankshaft
angular velocity feng(t) which is the simulated output of (4.1). Accordingly the
nonlinear term disappears and will be inside Tiot,eng(t). Since the estimation is
done on the simulated data from a known system, the process noise w(t) will
be zero and thus in the innovation form (2.10), the feedback terms are zero.
Accordingly, the system matrices in (4.3) and its corresponding innovation form
are as follows

r 1 1 1
- fng (Ceng,load + C(eng) @Ceng,load KKeng,load
— 1 ]
A= Tiong —eng;load _mceng,load _mKeng,load (45)
L -1
r 1
B Jeng 01
- 0 o Jioad
0

Since we have sensors available only for cylinders 1 and 2, in-cylinder pressures
3 and 4 are assumed to be the same as the other two cylinders. However, in
order to keep the corresponding firing order 1342, the signals have to be shifted.
The pressures are shown in Figure 4.3 for two engine cycles.

The braking torque Tioad(t) in (4.4) is representing the load which is due
to the road and aerodynamic forces when the engine is placed on-board a car.
The measured Tioaq(t) is given in Figure 4.4. It is exposed to high-frequency
disturbances which should be prefiltered. Therefore, the measured braking
torque signal is smoothed further by using a moving average filter. The resulted
smoothed version is also demonstrated in Figure 4.4 which is approximately
constant during the experiment time. Finally, an example of the input and
simulated output data sets, which are to be applied in the identification approach
of this section, are shown in Figure 4.5. Both normal combustion and misfire
cases are given where misfire occurs in cylinder 2. Tjy,q(t) has been smoothed
and a white measurement noise e(t) with zero mean and standard deviation
0.1 rad/sec has been added to the simulated outputs.
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—cyl1l|
---Cyl2
—Cyl.3
---Cyl4

In—-cylinder pressure, [Pa]

0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18 0.2
Time, [sec]

Figure 4.3: In-cylinder pressure signals, Cyl.1 and Cyl.2 are measured while
Cyl.3 and Cyl.4 are constructed by shifting according to the firing order 1342.
The operating point is < 1200 RPM,~ 57 N.m>.
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Figure 4.4: The measured Tyq4(t) before and after smoothing.

PROBLEM STATEMENT

The parameters of the model structure Me, presented in (4.3) have been given in
Table 4.1. They are denoted by the parameter vector pene and it is assumed that
all the 5 parameters are unknown and to be estimated. To avoid nonlinearity
in parameters, as much as possible, the inverse of Jenz and Jioaa are estimated.
The normal combustion and the misfire data sets have 14400 samples with a
sampling frequency of 14402 Hz.
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(a) Normal combustion data set.
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(b) Misfire data set.

Figure 4.5: Fxample of input and simulated output data sets used for identi-
fication, Operating point < 1200 RPM,~ 57 N.m>. Three engine cycles have
been plotted here.

According to Section 2.2.2, before starting any estimation approach it is
reasonable to investigate the structural identifiability of the model Mey,, see the
Definitions 2.a-2.c in Chapter 2. Here the symbolic approach, i.e. the repeated
Lie-derivative calculations, is illustrated and used to obtain the extended observ-
ability matrix O(x, p, u1, ... 7u5§71)) given in (2.29) for the 2 DOF model (4.3).
For the sake of simplicity, it is assumed that only one parameter is unknown:
Jeng. Moreover, for notational simplicity, o = fﬂg is defined and the other
remaining four parameters, i.e. Jioad, Ceng,loads Keng,load; and Ceyg, are set to 1.

Considering y = n(x,p) = x1(t) and the input u(¢) given in (4.4), the matrix O
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for this case is found as follows

on(=z.p) 9n(z.p) on(=.p) on(z,p)
8371 3£2 81‘3 B(JL
0= = [©w1 @IQ @I3 @a}
mP@p)  mP(zp P (zp) M (zp)
oxq Oxo Oxs Ja
(4.6)
where the corresponding columns are
1 0 0
—2« a o
Ou, = 402 Ou, = —2a? Ouy = —a — 20?2 (4'7)
o — 8a3 —a+ 403 202 + 403
0
X1+ U1(0,0, Ttot,eng)
O, = .
—x3 — 4aXy 4+ U1(0, Thot,engs Ttot,eng) — Tload
(_1 - 4(,Y)X3 - 4(1(_Tload + X2) + 12UlQ}(l + Us (Ttot,eng; Ttot,eng7 Ttot,ex)g) - T‘load
where X1 = =221 + 20 + 23, Xo = 21 — 9 — 3, X3 = 29 — x1 and

Ui (ug,ug,us) = 1202u; — daug + us. (4.8)

Assuming that the input vector u(t) is informative enough, the maximum rank
for matrix O in (4.6) is 4 for almost all values of the states x and thus the

parameter @ = % is identifiable. Doing the same calculations for the 2 DOF

model (4.3) with five unknown parameters gives the maximum rank of the
extended observability matrix equal to 8 which also proves that all the five model
unknown parameters are identifiable.

The estimation is first done on noise-free data and the true values of the
parameters are used as initial guesses. This is to see if it is possible at all to
converge to the true values of the parameters. Then, the estimation is done on
noisy data while simultaneously the parameters initial guesses have some offset
compared to the true values. The estimated covariance matrix is a suitable
tool to see the importance of different parameters for describing the model
output using the current data set. A small value of the ith diagonal element of
the covariance matrix indicates that the ith model parameter has significant
influence on the system response for this specific model structure and data
set. In other words, the current input is informative enough for estimating
the mentioned parameter. It is shown that the results of the identification are
promising when misfire data set is used as estimation data. This also validates
the assumption of applying a linear model structure (4.3) instead of the original
nonlinear state-space system (4.1), see also Section 3.3.1.
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Table 4.3: Estimated and real value of the parameter vector peng for continuous-
time model (4.3). All the 5 parameters are estimated together by using noise-free

data and true values as initial guesses, Estimation data at operating point
< 1200 RPM,~ 57 N.m>.

(a) Normal combustion data set.

] | True [ Estimated | Covariance (x10~°) | Error% |

- 2.557 2.732 6 6.84
Cengload || 2.5 3.503 1815 40.12
Kengload || 1992 836 106 58

Ceng || 01541 [ 0.1541 0 0

— 5.646 20.14 84118 256

(b) Misfire data set.
’ | True | Estimated | Covariance (x107°) | Error% |

T 2.557 2.551 4.39 0.24
Cengload || 2.5 3.887 613 55.48
Kengload || 1992 2122 18 6.53

Ceng || 01541 | 0.1535 0 0.39

L 5.646 5.427 208 3.88

Jload

NOISE-FREE SIMULATION AND TRUE INITIAL PARAMETER VECTOR

The true parameters of the continuous-time state-space model (4.3) are used as
the initial guesses for unknown parameters to be identified and are shown in Table
4.3(a). The estimated values are also shown together with the corresponding
estimated covariances. The data set which contains the normal operating
condition < 1200 RPM,~ 57 N.m> is applied for estimation. According to
Table 4.3(a), the largest estimated covariance as well as the biggest error is
obtained for the inverse of load inertia 1/Jjoaq. This implies that the output of
the estimated model meye, which is the crankshaft angular velocity éeng(t), is
not significantly affected by this parameter. In other words, there is not enough
information for estimation of the load inertia in the current data set using the
current model structure. However, applying the data set from misfire operating
condition will solve this issue as it is shown in Table 4.3(b) where the results of
using this new data set are given. As it is seen, there is a considerable decrease in
the values of estimated covariances and the errors, whereas damping coefficient
Ceng,load does not still converge to its true value.

To see the convergence performance of all the 5 parameters given in Table 4.1,
for each parameter peng,, ¢ = 1...5, the interval [0, 2.5 peng ;] is divided into a
number of points. Then the loss function Vi (p, ZV), see (2.16), is determined
for all these points within the mentioned interval. One parameter at a time
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is changed while the other parameters are fixed. The results are shown in
Figure 4.6. A U-shape loss function with a minimum at the parameter true
value is expected. However, as shown in Figures 4.6(a)-(b), the loss function is
U-shape only for 2 out of 5 parameters: 1/Jeng and Ceng. These 2 parameters
have also the smallest estimated covariances in Table 4.3(b). The loss functions
of the remaining 3 parameters are not U-shape and are shown in logarithm scale
in order to be more illustrative. As it is seen in Figure 4.6(e), for damping
coefficient Cepg l0ad there exists no minimum in the function which is the reason
for difficulty in estimation of this parameter and it causes the biggest error and
largest estimated covariance in Table 4.3(b).

Having the above discussion, it is reasonable to fix the damping coefficient
to an appropriate value and skip estimating this parameter. The estimation
results and the model fit to the validation data are shown in Table 4.4 and
Figure 4.7, respectively. In this case the damping coefficient Ceyg 10aa is fixed
during identification. Model fit is determined by using (2.32) in which the model
simulated output gs(t|meng) is considered, see Section 2.2.3 and relation (2.31)
for more information. Since misfire data set has been used already for estimation,
the normal combustion data set is used for validation. A good model fit besides
low estimation covariances and errors are signs of reliable estimation.

Table 4.4: Estimated and real value of the parameter vector peng for continuous-
time model (4.8). Damping coefficient Cepng ioad = 2.5 s fized and the other 4
parameters are estimated together by using noise-free data and true values as
initial guesses, Estimation data is misfire input/output at operating condition
< 1200 RPM,~ 57 N.m>.

’ | True [ Estimated | Covariance (x10~°) | Error% |
T 2.557 2.497 4.7 2.35
Keng.load || 1992 1978 15.4 0.70
Ceng 0.1541 0.1536 0 0.32
T 5.646 6.014 247 6.5
fit(%) 61




4.2. Parameter estimation of the simplified 2 DOF model 55

iy — . . . . .
4 4 i
35 1
3 ]
= =
2 |
g £ 25 1
= =
£ k=
g 1 & °2 1
- -
15 1
1 ]
1 0.5 1
0 ‘ . ‘ ‘ ‘
3 4 6 0 005 01 015 02 025 03 035
1/J _ interval C interval
eng eng
(a) Engine inertia inverse, % (b) Friction, Ceng
Jeng
10° - . . . 10° .
10° k! 10° k!
= =
=] =
=l s
2 2
P P
é g
2 S
10* E
10“ L L L L 10“ L L
0 1000 2000 3000 4000 5000 0 5 ] 10 15
interval 1/J, _interval
eng,load load
(c) Stiffness, Keng,ioad (d) Load inertia inverse, ﬁ
h oa.

Loss function

10° ; ; ; ; ; ;
0

3 4
(o} interval
engload

(e) Damp'mg, Ceng,load

Figure 4.6: Loss function Vy(p, ZV) value at different points in the interval
[0, 2.5Deng], @ = 1...5. For each case one parameter peng; s changing while
the others are fized.
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Figure 4.7: True output signal (gray) and simulated output (blue) from the
estimated grey-box model Moy for simulated validation data, noise-free data and
true values as initial guesses.

NOISY SIMULATION AND INITIAL PARAMETER VECTOR OFFSET

In this case, a white measurement noise e(t) with zero mean and standard
deviation 0.1 rad/sec is added to the simulated output, see (4.1). Hence, it can
be studied how much the noisy data will influence the identification performance.
Furthermore, it is improbable that the initial guesses of the parameters will
be exactly the true ones, even if a lot of work has been done prior to the
estimation. Thus, in order to see whether the estimation approach is robust
against wrong initial values, the 10% offset is added to the true parameters and
these will be applied as initial guesses. The estimation results and the model fit
to the validation data are shown in Table 4.5 and Figure 4.8, respectively. In
comparison to the results given in Table 4.4 and Figure 4.7, still the estimated
covariances and the corresponding parameter estimation errors are considerably
small and the fit value does not deviate. If the estimation begins at initial
guesses with (—10% offset), the results are fairly similar to those of Table 4.5 in
which the approach initializes at (+10% offset).

4.2.2 ESTIMATION ON REAL DATA

In this section, the simplified 2 DOF engine-load model, which is depicted in
Figure 4.2, is identified by using the measured input and output data set. The
applied linear model structure My, is similar to the one that is given in (4.3).
However, a minor correction should be performed as follows

i(t) = A(p)x(t) + B(p)u(t) + K(p)e(t) (4.9)
y(t) = z1(t) + e(t).
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Table 4.5: Estimated and real value of the parameter vector peng for continuous-
time model (4.3). Damping coefficient Ceng ioaa = 2.5 is fized and the other
4 parameters are estimated together by using noisy data and wrong values as
initial guesses, Estimation data is misfire input/output at operating condition
< 1200 RPM,~ 57 N.m>.

True

Initial guess

(+10% offset)

Estimated

Covariance

(x1079)

Error%

1
Jeng

2.557

2.8127

2.496

6.6

2.38

Keng,load

1992

2191

1969

21.7

1.15

C(eng
T

0.1541

0.1695

0.1537

0

0.26

Jload

5.646

6.22

6.059

355

7.32

fit(%) 71.62
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Figure 4.8: True output signal (gray) and simulated output (blue) from the
estimated grey-box model m.ng for simulated validation data, noisy data and
wronge values as initial guesses.

Since the estimation is done using real data and not the simulated output from
a known system, the process noise is present. Therefore, in the innovation form
(2.10) and consequently (4.9), the feedback terms K (p) are not zero and are
estimated simultaneously with the model physical parameters, i.e. PO approach.
The system matrices are given in (4.5).
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(a) Normal combustion data set.
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(b) Misfire data set.

Figure 4.9: Example of measured input and output data sets used for identifi-

cation, Operating point < 1200 RPM,~ 57 N.m>. Four engine cycles have been
plotted here.

The measurements are collected at the engine laboratory of Vehicular Systems
Division. As mentioned before, the engine operating point is < 1200 RPM,~
57 N.m> while both the speed and load are kept constant. Moreover, the
sampling frequency is ~ 14402 Hz and each data set has 14400 samples which
is 10 working cycles of the engine. Based on the results of Section 4.2.1, the
misfire data set is used for estimation and the estimated model is validated
against the normal combustion data set. Furthermore, the damping coefficient
is kept constant, Cengloada = 2.5, which is the value obtained from literature,
see for example Rabeih (1997); Ponti (2008). Figure 4.9 shows the measured
input and output data sets for the model structure given in (4.9) which are to
be applied in the identification approach of this section. Both cases of normal
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combustion and misfire occurrence are depicted. The braking torque has been
already smoothed in Section 4.2.1 to avoid undesired high-frequency noises.
Moreover, the given damping wheel angular velocity, as the system output in
Figure 4.9, has been also low-pass filtered to reject high-frequency fluctuations.
This should be done before running estimation on measured data to increase
the identification accuracy by removing the unmodeled dynamics effects. To
prevent phase shifts during filtering, filtfilt command in Matlab is used which
provides zero-phase digital filtering. Figure 4.10 gives the measured damping
wheel angular velocity before and after filtering.

127.5
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Figure 4.10: Measured damping wheel angular velocity before and after low-pass
filtering, a part of the engine working cycle has been plotted.

When the measured data set is used, the true values of the system parameters
are not known. Consequently the estimated model, denoted by meyg » in which
r stands for real data, is validated against validation data where the residual
analysis is also a tool to assess the model quality. However, having some
extra characteristics of the real system will help to get a better assessment. In
modeling of the engine-load system torsional vibrations, the natural frequency of
the actual system is one evaluation criterion. It can be obtained by performing
an order analysis on the measured damping wheel angular velocity. Engine
orders have already been introduced in Chapter 3, Section 3.2.1. Here we
look at the 1st engine order amplitude at different speeds to see if there is an
unusual increase of amplitude in a specific speed. This indicates that a resonance
has occurred at that speed and therefore the system natural frequency can be
determined. The damping wheel angular velocity measurements are available at
1000, 1200, 1400, 1800, and 2000 RPM. By performing Fast Fourier Transform
(FFT) on the velocity signals, the first engine order amplitude at each speed is
obtained and given in Table 4.6. It seems that the system has a peak (resonance)
at 1200 RPM= 20 Hz. Therefore, the simplified model structure M,y given in
(4.9) should also have a natural frequency at this value.
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RESULTS

The estimation is first done on the original measured misfire data set with
sampling frequency ~ 14402 Hz. As described before, one common model
validation method is to study the residuals which are the parts of the output
data that cannot be explained by the model, see Section 2.2.3. Whiteness and
cross-correlation tests are two known techniques to investigate the correlation
between output residuals and the cross-correlation between the residuals and
the input, respectively. For a model of high quality, correlations are small and
within the 99% confidence interval. Figure 4.11 shows the residual test on the
validation data set which is the normal combustion data set with sampling
frequency ~ 14402 Hz. The whiteness test, i.e. upper plot in Figure 4.11,
shows high correlation, and therefore the model is of low quality. A low quality
model and poor parameter estimations can be due to small sampling time. The
possible reason is unnecessary information in a data set, with high sampling
rate, which is to be used for a simplified model structure like the 2 DOF system.
Thus the data set is resampled with two different factors of 10 and 20 and
the results are given in Figures 4.12 and 4.13, respectively. The correlations
between the residuals, i.e. upper plot, have decreased in Figure 4.12 while the
cross correlations between the input load torque and the output are still not
within the 99% confidence interval. However, this is not the case in Figure 4.13
where all the three different correlations are in the desired range. Therefore, a
down-sampling factor 20 is selected for the measurement signals for estimating
Meng,» USing a grey-box model structure Me,s. The results of estimation are
given in Table 4.7 including the fit percentage, the estimated parameter values,
and their estimation covariances. As can be seen, the covariances are fairly low
which indicates the current parameters importance in the model output.

Table 4.6: 1st engine order amplitudes.

Engine speed || 1000 | 1200 | 1400 | 1600 | 1800 | 2000
(RPM)
Amplitude || 0.2693 | 0.8682 | 0.6811 | 0.5364 | 0.3629 | 0.3581
(RPM)
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Figure 4.11: Residual analysis of model structure M.,y given in (4.9) using

the validation data

set with sampling frequency ~ 14402 Hz.
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Figure 4.12: Residual analysis of model structure Mpy given in (4.9) using the
resampled validation data set with sampling frequency ~ 14402/10 = 1440.2 Hz.

Fit to validation data has been plotted and is depicted in Figure 4.14. It

is calculated using

(2.32) in which the model simulated output g, (¢|Meng ) is

considered. As it is seen, the model output can follow the measured angular
velocity and the offsets are not significant, i.e. within £1 rad/sec. To illustrate
this better, the amplitudes of the main engine frequency and its next two
multiples are obtained and given in Table 4.8 for the true and the simulated
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Figure 4.13: Residual analysis of model structure M,y given in (4.9) using the
resampled validation data set with sampling frequency ~ 14402/20 = 720.2 Hz.

Table 4.7: Estimated parameters for continuous-time model (4.9). Estimation
data is resampled misfire input/output at operating condition < 1200 RPM,~
57 N.m> with sampling frequency ~ 14402/20 = 720.2 Hz.

Estimated | Covariance
(x1073)
T 2.557 9.9
Keng,load 1992 127
Ceng 0.1541 0.2
— 5.646 13
load
fit (%) 63.32

signals. The main engine frequency itself can be calculated as follows

N Nyl
60 Next

fmain = (410)
where N is the engine velocity in RPM, here 1200 RPM, ny is the number of
cylinders, here 4, and neyt is the number of crankshaft revolutions in which one
excitation happens, here 2 for the four-stroke SI engine. Accordingly in this case
fmain is also the 2nd engine order, (see Section 3.2.1 for the definition of engine
order). A relatively high fit value besides low correlations in the residual analysis
for validation data, see Figure 4.13, prove the estimated model reliability. These
results are also a validation for the two assumptions, which were described in
Chapter 3, in order to construct a linear model, see Section 3.3.1.
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Figure 4.14: True output signal (gray) and simulated output (blue) from the
estimated grey-box model Mepg - for measured validation data, sampling frequency

~ 14402/20 = 720.2 Hz.

Table 4.8: The amplitudes of the main engine frequency and its two multiples
for simulated output from the estimated grey-box model My, and the true signal,
operating point < 1200 RPM,~ 57 N.m>.

Frequency fmain =40 Hz | 2fmnain = 80 Hz | 3 fmain = 120 Hz
(Hz)
Amplitude (Estimated) 6.36 1.47 0.42
(RPM)
Amplitude (True) 6.92 1.47 0.5
(RPM)

As a final evaluation, we need to show that the actual system and the model
natural frequencies agree with each other. By solving a standard eigenvalue
problem, the natural frequencies w; of the estimated model mey, - can be written
as

w; = v/(Real(\;))2 + (Imag();))? (4.11)

where ); is the estimated model eigenvalue. Using (4.11), fy, = 0.04 Hz and
fr, = 20.34 Hz are obtained. The first natural frequency is approximately zero
which is called the rigid body mode. It implies that the angular deformation
between the two inertias, Jene and Jioaq, will remain constant at this mode, see
Liu and Huston (2011). The second natural frequency coincides with the one
that has already been given using the information in Table 4.6 for real data.
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It will be illustrated later in Section 4.3.3 that the 2 DOF simplified model is
sufficient if the application of interest is in frequency range below 300 Hz.

A NOTE ON THE VALUE OF DAMPING COEFFICIENT Chyg,roan

As described in the optimization results of Section 4.2.1, estimation of the
damping coefficient is difficult using the current model structure Mey, and the
current measurements. Therefore, Cepng 10ad = 2.5 is fixed during identification
where this value has been found in literature, see Rabeih (1997); Ponti (2008).
However, there is one assessment criterion that can be applied to validate this
assumption: the amplitude of first engine order in the measured damping wheel
angular velocity. Table 4.9 shows the true and the model amplitudes for different
values of damping coefficient which helps determine a reasonable value for this
parameter. The validation data set, i.e. normal combustion condition, is used in
this section.

Table 4.9: The true and the modeled first engine order amplitudes of damping
wheel angular velocity for different damping coefficient Ceng,ioad values.

True Model Model Model
CengJoad =25 Ceng,load =2 Ceng,load =15
Amplitude || 0.8682 0.5758 0.7119 0.9258
(RPM)

It is also interesting to perform a Monte Carlo simulation study to obtain the
effects of changing a specific parameter, which there exists an uncertainty about,
on the system output. Here the damping coeflicient Ceyg 10ad is considered to
be a random variable with a known uniform distribution in the interval [1,10].
The model meyg » is simulated 1000 times in which the damping coefficient is
randomly selected in the mentioned interval. The results of simulations are given
in Figure 4.15 and Table 4.10 where the variation in the amplitudes of first engine
order and the main frequency, as two important characteristics of damping wheel
angular velocity, are analyzed. As it is shown in Table 4.10, the mean values
of amplitudes are close to the true values. Moreover, the standard deviation
of the main frequency amplitude is small while this value is relatively large for
first engine order amplitude. However by looking at the histogram given in
Figure 4.15, it is seen that around 80% of the amplitude values are accumulated
in the interval [0.5, 1] that is still an acceptable performance considering the true
value which is equal to 0.8682. The conclusion is that by fixing the Ceng load
to some value in the interval [1,10], which may not be true, the performance
loss can be assumed negligible. In other words, two important properties of the
damping wheel angular velocity, i.e. the amplitudes of engine first order and the
main frequency, will not change significantly in the simulated output.
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Table 4.10: Statistical properties of the engine 1st order and the main fre-
quency amplitudes obtained by Monte Carlo simulation in which the damping
coefficient Cepg,ioad is varying uniformly in the interval [1,10], Operating point
< 1200 RPM,~ 57 N.m>.

. Statistics Min Max Mean STD True
Amplitude
1st engine order 0.4963 | 2.3709 | 0.8222 | 0.3818 | 0.8682
(RPM)
Main frequency 5.9916 | 6.3757 | 6.2323 | 0.1108 6.92
(RPM)

MODEL PERFORMANCE FOR THE OTHER ENGINE OPERATING POINTS

The final discussion of this section is devoted to the influence of altering the
engine operating point on the estimated model behavior. So far the applied
operating point was similar for both the estimation and validation data sets, i.e.
< 1200 RPM,~ 57 N.m>. But it is interesting to study whether the predicted
angular velocity can follow the measured signal at the other engine speeds and
loads. Figure 4.16 shows the simulated response from the estimated grey-box
model meyg  at different operating points than the one which has been used
during estimation. As it is seen, the predicted angular velocities cannot anymore
follow the actual signal trend and that is due to wrong friction coefficient
Ceng. According to the given description in Section 3.1.1 of Chapter 3, the
engine friction depends on different properties including engine operating point,
namely speed and load. Therefore, the estimated value for Cen, = 0.1541 at
< 1200 RPM,~ 57 N.m> is not valid when either of speed or load is changed. A
map of the friction coefficient value for the simplified 2 DOF model of Figure 4.2
at different engine speeds and loads is given in Table 4.11. This is obtained
by estimating of Cene while the other model parameters, i.e. fng, Ceng,load s

Keng,load, and i are fixed. Using the values given in Table 4.11, it is possible to
interpolate for the desired operating point. It is seen that the frlctlon coefficient
decreases by increasing the speed whereas at higher loads the friction is also
bigger.

Figure 4.17 depicts the predicted angular velocity versus measured signal at
operating point < 1400 RPM,~ 67 N.m> in which C¢pe = 0.1421 according to
Table 4.11. As it is seen, by correcting the friction coefficient, the model can
follow the trend of measured angular velocity more accurately in comparison to
the plots given in Figure 4.16.
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Figure 4.15: Histograms of the engine lst order and the main frequency
amplitudes for 1000 times simulation in which the damping coefficient Ceng,ioad
is varying uniformly in the interval [1,10], Operating point < 1200 RPM,~
57 N.m>.

4.3 PARAMETER ESTIMATION OF THE 7 DOF MODEL

In this section, the unknown parameters of the 7 DOF engine-load lumped
structure, shown in Figure 3.6 and represented with the LTT state-space model
(3.13), are estimated. Similar to 2 DOF simplified model identification, the
7 DOF estimated model will be validated against a fresh data set by evaluating
the model fit as well as performing residual analysis.
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Figure 4.16: Ezamples of model response by changing engine load or speed,

true output signal (gray) and simulated output (blue) from the grey-box model
Mengr which has been estimated at operating point < 1200 RPM,~ 57 N.m>.
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Table 4.11: Estimated values of friction coefficient Cepng for different engine
speeds (RPM) and loads (N.m).

Load || g 60 70 80 90 100
Speed
1000 0.1895 | 0.1959 | 0.2042 | 0.2116 | 0.2188 | 0.2319
1200 0.1541 | 0.1621 | 0.1707 | 0.1771 | 0.1826 | 0.1907
1400 0.1354 | 0.1421 | 0.1504 | 0.1558 | 0.1565 | 0.1628
1600 0.1182 | 0.1240 | 0.1286 | 0.1355 | 0.1399 | 0.1412
1800 0.1134 | 0.1136 | 0.1189 | 0.1246 | 0.1261 | 0.1337
2000 0.1007 | 0.1054 | 0.1116 | 0.1172 | 0.1172 | 0.1225
150 : : :
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Figure 4.17: Model response (blue) versus true output signal (gray) at new
operating point < 1400 RPM,~ 67 N.m> using Cepng = 0.1421 while the other
model parameters are the same as in Table 4.7.

4.3.1 PROBLEM STATEMENT

The LTI state-space model structure Mepg,7 for the 7 DOF engine-load system
is again given here:

i(t) =A(p)x(t) + B(p)u(t) (4.12)
2(t) =0, (t) = [10...0)z(t)

where, as described in Section 3.3.1, the state vector is as follows

T13x1 =[01,02,05 — 01,03,05 — 02,04, 0, — 0 (4.13)
05,05 — 04,06, 05 — 05, 07,07 — 0]
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The input vector of (4.12) is

u(t) = [Tiot,1(t), Trot,2(t)s Ttot,3(t); Trot,a(t), Tioaa ()] " (4.14)

in which by using the linear assumption described in Sections 3.3.1 and 4.2.1,
the input vector can be calculated separately. The system matrices A(p) and
B(p) are given in Appendix A. The known characteristics of the engine are
given in Table 4.2. The vector of unknown parameters peng,7 for the engine-load
model structure Meyg 7 includes both the model physical parameters and the
unknown feedback terms K(p). The number of physical parameters in (4.12)
is in total 23, i.e. stiffness, damping, and inertia coefficients. However J; and
K76 have been obtained previously in Section 4.2.2 and are given in Table 4.7.
Thus, 21 parameters remain to be estimated. This is too many for the PEM
which has a limitation in the number of unknown parameters for the current
model structure and available data due to occurrence of different local optima
in the optimization algorithm. The first solution to this problem is to assume
the same structure for each crank-slider mechanism in Figure 3.6. Therefore

Jo = Js = Ju = J, (4.15)
Ky = Kyz = K54, C3p =Cy3 =0Cs4, Co=C3=0Cy=Cs

which results in decreasing the number of unknowns to 11. To decrease this
number further, the total engine friction Ce,,, that has been found already for
2 DOF model, is also applied for the current structure. Hence, by using the
assumptions given in (4.15),

@:@:@:%:%ﬁ (4.16)

Finally, according to the discussion in Section 4.2.1, estimation of damping
coeflicient at the same time with the other model parameters has a destructive
effect on the identification performance. Therefore Csq, C39, Cgs, and Crg in
Figure 3.6 are fixed to the known values which are found from literature, see for
example Rabeih (1997); Ponti (2008). These values can be further revised by
evaluating the amplitudes of the engine orders as mentioned in Section 4.2.2. So,
the 6 parameters which are to be estimated are: Jy, Js, Jg, Ko1, K39, and Kgs.
As discussed for the simplified 2 DOF model, before starting any estimation
procedure, the structural identifiability of these 6 unknown parameters should
be studied. Here the Mathematica package IdentifiabilityAnalysis, as
mentioned in Section 2.2.2, is used to perform the rank test on the extended
observability matrix, since the 7 DOF model is rather large with 13 states and 6
unknown parameters. The maximum rank is found equal to 19 which indicates
that all the 6 parameters are identifiable assuming informative input. The
Mathematica code is attached in Appendix A.
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4.3.2 RESULTS

The collected measurements at operating point < 1200 RPM,~ 57 N.m> are
again used for identification here which include 10 engine working cycles, totally
14400 samples with sampling frequency ~ 14402 Hz. In this section, the first
6 engine cycles of normal combustions are applied as estimation data while
further the estimated 7 DOF model is validated against the remaining 4 engine
cycles. Figure 4.18 shows the measured input and output data set for the model
structure Meyg 7 given in (4.12). As described in (4.14), the input vector has 5
elements while the output is damping wheel angular velocity.

300 ,
= 200 Ttot,l(t)
E - Ty ®
= 100 == T
=
E‘ 0 - Ttot,4(t)
! ) g Tload(t)
_100 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
128
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Figure 4.18: Example of measured input and output data used for identification
of T DOF model structure Me,q 7, Operating point < 1200 RPM,~ 57 N.m>.
Five engine cycles has been plotted here.

Table 4.12 presents the estimation results of the 7 DOF model structure
Meng,7. It contains the fit percentage to validation data, the estimated parameter
values, and their corresponding estimated covariances. Due to the reasons
mentioned before concerning the linearity, the inverse of Jy, J; and Jg are
estimated. Moreover, as described in Section 4.2.2, to increase the identification
performance and model quality the measurements should be down-sampled with
different factors until the correlations decrease to an acceptable level. Here,
down-sample factor 15 is sufficient. The relatively high estimation covariances in
Table 4.12, in comparison to the results given in Table 4.7, is a result of greater
number of unknown parameters in the 7 DOF model structure.

The validation procedure starts with comparing the estimation results given
in Table 4.12 with the four-cylinder SI engine parameters provided by Ponti
(2008). The estimated inertia coefficients agree well with the values given in this



4.3. Parameter estimation of the 7 DOF model 71

Table 4.12: Estimated parameters for continuous-time 7 DOF model structure
Meng7 given in (4.12). Estimation data is resampled normal combustion in-
pul/output at operating point < 1200 RPM,~ 57 N.m> with sampling frequency
~ 14402/15 = 960.1 Hz.

] H Estimated \ Covariance \

+ 33.39 7
1
+ 22.3 0.2
2
A 5.968 0.02
Ko || 241.8E03 728
K3y 1270 E03 771
Kgs 1427E03 1209
fit(%) 43.21

paper while the determined stiffness coefficients are also in the same range as
the results presented in Ponti (2008). The residual analysis which is performed
on a fresh data set is the second step of validation which is used here to study
the reliability of current model structure and estimation approach. This can be
claimed if there exist low correlations between the residuals themselves as well as
low cross-correlations of the residuals and inputs. Figure 4.19 gives the results of
the residual analysis which show that the correlations are approximately within
99% confidence interval.

4.3.3 COMPARISON OF 2 DOF AND 7 DOF MODELS USING MODE
SHAPE ANALYSIS

As described previously, the actual engine-load system first resonance occurs
at 20 Hz, see Table 4.6. However, since the engine measurements are available
up to 2000 RPM for the current thesis, it was not possible to find the other
resonance frequencies of the system. Furthermore, it has been indicated that the
2 DOF model structure also has a natural frequency at 20.34 Hz. In this section,
an eigenvalue evaluation is performed for the 7 DOF model to obtain its natural
frequencies as well as the corresponding modal shapes. This helps determine
the deformation between different inertias at each resonance frequency and thus
define how much the model can be further simplified depending on the frequency
region of interest.

Table 4.13 gives the natural frequencies and the associated deformation
difference between two consecutive inertias for the 7 DOF model structure Mg, 7.
The model is given in (4.12) with the estimated parameters in Table 4.12. For
the state vector definition, see (4.13). As can be seen, for the system first mode
20.5 Hz there is no specific deformation in the crankshaft part and the major
deformation happens at the connection between the engine and the load, 67 — 6.
Indeed, the main crankshaft deformation begins at the second mode, i.e. 335 Hz.
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Figure 4.19: Residual analysis of 7 DOF model structure Mepng 7 given in (4.12)
using the resampled validation data set with sampling frequency ~ 14402/15 =
960.1 Hz.

Therefore, it can be concluded that for the applications in which the frequency
region of interest is lower than 300 Hz, it is sufficient to consider the crankshaft
as a rigid body. Thus, the simplified 2 DOF model structure Me,, given in (4.9)
can be applied in these cases. This is a very important result from the aspect of
the identification procedure. It has been shown earlier in this thesis how much
the PEM algorithm is sensitive to the number of unknown parameters for the
current model structure and available data. Moreover, most of the analysis such
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as identifiability are less complicated when it comes to the smaller systems.

Table 4.13: The natural frequenies (N. Freq.) in Hz and the associated nor-
malized modal shapes (M. Shape) for the T DOF model structure Me,q7. The
absolute values of deformations are shown.

M. Shape || 5 0| 05— 0 | 64— 05 | 05— 04 | 05 — 05 | 07 — 04
N. Freq.
20.5 0.0007 | 0.0003 | 0.0005 | 0.0007 | 0.0008 1
335 1 0.3229 | 0.4038 | 0.4216 | 0.3322 | 0.6414
548 1 0.0692 | 0.1030 | 0.2109 | 0.2085 | 0.1501
936 1 0.7600 | 0.7693 | 0.1636 | 0.7937 | 0.1953
1340 0.4898 1 0.4202 | 0.7870 | 0.7273 | 0.0873
1604 0.2091 | 0.6531 1 0.9355 | 0.4324 | 0.0363

Besides the natural frequencies given in Table 4.13, there is a zero natural
frequency which, as described in Section 4.2.2, is called rigid body mode. At
this mode the angular deformations between all the inertias remain constant.

Figure 4.20 depicts the 7 DOF model simulated output s (t|meng,7) versus
the measured validation data. As it is seen, the higher frequency content in the
true signal, which is greater than 300 Hz, can be almost captured by the 7 DOF
model which was not the case for the 2 DOF model. The amplitudes of the
higher frequencies can be corrected by modifying the damping coefficients or
trying to estimate these values applying different kinds of measurements and
estimation methods than those used here. This is beyond the scope of this thesis
and considered as a future work.
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Figure 4.20: True output signal (gray) and simulated output (blue) from the
estimated 7 DOF' grey-box model Mcyg 7 for measured validation data, sampling

frequency ~ 14402/15 = 960.1 Hz.






Chapter 5

Applications

In the previous chapters, a mathematical model for reproducing torsional be-
havior of an engine-load system has been developed in which a four-cylinder
four-stroke internal combustion spark ignited engine has been considered. Two
different versions of this model, i.e. 2 DOF and 7 DOF structures, have been
identified to achieve a good agreement between the modeled and the measured
damping wheel angular velocities as the system output. The frequency region
of interest implies which version of the model is appropriate for the current
application. Having the estimated model ready, two main applications of this
type of modeling for engine/driveline torsional vibrations are given in a brief
format in this chapter. The first application considers the ride quality evaluation
which is based on the results of Nickmehr et al. (2012). Misfire detection is the
second case which is introduced here and is still an ongoing project.

5.1 RIDE QUALITY EVALUATION OF A PASSENGER CAR

The powertrain system is an assembly of active and reactive elements which is
highly nonlinear and lightly damped and can be easily excited by external sources
such as road inputs. It can itself be a source of Noise, Vibration, and Harshness
(NVH) where different kinds of vibrations are possible in a wide frequency range
2 — 5000 Hz. An example of a passenger car powertrain vibration spectrum for
linear torsional cases is given in Table 5.1, see Farshidianfar et al. (2002).

(0]
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Table 5.1: An Example of a passenger car powertrain vibration spectrum.

l Freq. Range (Hz) [ Exciting Force |  Phenomenon |
2-38 Engine torque variation Surge/ Shuffle
(Vibration) E.g., sudden throttle application (Longitudinal)
20 — 50 Engine torque Wind-up
(Vibration- Boom noise) variation
50 — 80 Engine torque variation Drive train
(Boom noise) E.g., engine torque fluctuation torsional vibration

The ride interval includes the frequencies between 1 —100 Hz. This frequency
range has been reported by ISO for evaluation of passenger comfort to the whole
body vibrations, see Wong (2008). A passenger car is ready for sale when the
seat vibrations, at the traveling speed of 80 km/h on a typical inter-urban road,
is approximately close to the ISO limitations, see Harrison (2004). As mentioned
by Nickmehr et al. (2012), ride dynamic system investigation contains three main
parts. First, introduction of major excitation sources, such as engine/driveline
and road irregularities. Second, determining vehicle dynamic response subject
to these excitations and, third, the human perspicacity. In Nickmehr et al.
(2012), a powertrain torsional vibration model has been presented which is
composed of different subsystems, i.e. crankshaft of four-cylinder four-stroke IC
engine, transmission, differential, drive shaft, and wheels. The model parameters
were the typical values from literature and no estimation was performed. It
has been explained that the engine vibrations, which are due to the delivered
engine fluctuating torque, are transferred to the chassis through suspension
system. This produces a longitudinal vibration in low frequency which might
decrease the passenger comfort. Moreover, a linear 2 DOF suspension system,
known as the quarter-car model, was used to obtain vertical acceleration of the
vehicle-body due to the road disturbing input. The results are shown here in
Figure 5.1 in which the Root Mean Square (RMS) acceleration of the model
in longitudinal and vertical directions have been obtained. Moreover, these
plots are compared to the ISO fatigue-decreased proficiency boundaries during a
four-hour exposure time in vertical and longitudinal directions. It is assumed
that the vehicle is traveling with a constant speed of 80 km/h on an average
road roughness. As can be seen, the vehicle-body vertical response subject to
the road irregularities is greater than the objective criteria at the frequency
region around 1 — 11 Hz using the suspension system given in Nickmehr et al.
(2012). However the longitudinal acceleration, resulting from the transferred
engine torque excitations, is under the ISO boundary. For detail information
about the model and its parametrization see Nickmehr et al. (2012).

Based on this discussion, it is crucial to have a suitable crankshaft model
which can accurately predict the system response to the engine torque for further
applying of this model as a subsystem of an entire powertrain system. The
modeling and identification approach in this thesis not only provides this desired
model for the crankshaft system, it also proposes a methodology which is usable
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Figure 5.1: Comparison of body RMS accelerations in different directions with
ISO criteria.

to estimate the unknown parameters in the other powertrain subsystems. This
can be achieved using the same modular structure as presented here and having
more available measurements in different parts of powertrain such as transmission
or wheels.

5.2 MISFIRE MODELING

In Chapter 2, it was shown that the misfire data set is useful to identify the
unknown parameters of the developed model structure Mepg, given in (4.9) and
Figure 4.2, where these parameters could not be found using normal combustion
data. The reason is the important effects of misfire on the damping wheel angular
velocity in the actual engine-load setup and therefore on the Jen, angular velocity
that is representing the entire crankshaft in the simplified 2 DOF model. This
is known as crankshaft wind-up and carries new information which is helpful
for parameter estimation as well as misfire detection. However, when other
disturbances such as cold start, auxiliary load variations, road load excitations, or
even another misfire happen simultaneously, their corresponding oscillations on
the damping wheel angular velocity interact with each other, destructively. Thus,
it is not an easy task to distinguish between their effects on the angular velocity
and the associated test quantity. Therefore, in this section the estimated model
is applied to investigate how different kinds of input excitations can complicate
misfire detection. By performing a qualitative validation of the model, it can
be concluded that the predicted angular velocity from the model captures the
amplitude and oscillatory behavior of the actual data as well as the influences of
misfire. This plus the simulation results from injecting the other disturbances
to the 2 DOF identified engine-load torsional vibration model, are beneficial to
evaluate and optimize misfire detection algorithms.

Figure 5.2 depicts the estimated 2 DOF model response for 10 engine working
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cycles when there is no misfire as well as in a situation where a misfire occurs
in cylinder 2 at time ~ 0.35 s. The results show a relatively good agreement
between the model and the measurements in terms of frequency and amplitude
of oscillation. Therefore in misfire modeling, the simplified model structure
is sufficient. The explanation for the deviation between measurement and
simulation in the misfire case, mainly in the mean value of the angular velocity,
may come from inaccuracy in the experiment. This is probable, especially for the
pressure and torque measurements which affect the system input. Performing
these experiments at a wide range of engine speed and load will help understand
the system behavior better. Consequently more accurate model identification
can be done. This is an ongoing project and considered as a future work.

Figure 5.3 shows the FFT of the measured angular velocity signal for normal
and misfire data sets. As it is seen when misfire is present, the signal frequency
content is different which is significant in the frequency range below 50 Hz. This
is also a good clarification for using the 2 DOF model in the misfire modeling.
In other words, as mentioned in Section 4.3.3, the simplified model structure is
appropriate enough for the frequency range below 300 Hz which is the interval
we are interested in for the misfire application. These generated vibrations may
cause a problem in detection of a second misfire happening close to the first one,
see Ponti (2008). Having a suitable model can help modify the misfire detection
algorithm to compensate for undesired vibrations due to multiple misfires or
other possible disturbances.

-
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Figure 5.2: Experimental (solid) and simulated (dashed) angular velocities at
operating point < 1200 RPM,~ 57 N.m>. Above: Normal combustion data set,
Below: Misfire data set.

Auxiliary load variations, such as turning on and off the air condition, can be
considered as an additional torque applied on the damping wheel of the engine-
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Figure 5.3: Frequency content of measured angular velocity signal for two cases
of normal and misfire data set at operating point < 1200 RPM,~ 57 N.m>.

load setup, see Eriksson et al. (2013). Therefore to inject a change in auxiliary
load, in the simplified 2 DOF model, a negative step torque can be added to
the Tiot,eng(t) Which is one of the system input, see (4.9) and (4.4). There is no
measured angular velocity for this excitation and hence in Figure 5.4 only the
simulation results from the estimated 2 DOF model are presented. The measured
in-cylinder pressures at operating point < 1200 RPM;~ 57 N.m> have been
used to calculate the engine torque. The second disturbance which is interesting
to model here is a sudden excitation in the road load which can be entered to
the system by imposing an impulse on the required torque Tioaq(t). Figure 5.4
gives also the simulation results of this road excitation. As it is illustrated, the
estimated 2 DOF model response, i.e. angular velocity of Jeng, subject to these
two mentioned disturbances is approximately similar to the results in Figure 5.2
which shows the misfire case. Therefore, if any auxiliary load variation or road
torque disturbances occur at the same time with misfire, may interfere in the
misfire detection algorithm. Accordingly, acquiring an appropriate and not
complicated simulation model for engine torsional vibrations beforehand is a
useful tool for robustness analysis of detection algorithms.
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Figure 5.4: Simulated angular velocity at < 1200 RPM,~ 57 N.m>. Above:
Auziliary load change, Below: Sudden excitation in road torque.



Chapter 6

Conclusions and future work

The goal of this thesis is to propose and evaluate a modeling and identification
approach for engine-load system torsional vibration description. The applications
of interest are ride quality investigation for passenger cars as well as modifications
in misfire detection algorithms using model-based analysis. In the thesis, a four-
cylinder four-stroke internal combustion spark ignited engine has been considered
and two main steps have been performed to achieve the goal.

The first step treated developing a mathematical model for describing the
engine-load system torsional vibrations. To do this, only the torsional behavior
of the crankshaft system has been modeled while the other possible types of
vibrations, such as bending and axial, were not taken into account. The proposed
model is modular and thus it can be conveniently reconfigured for example to
model an engine with different number of cylinders. It has been shown that
the actual distributed system can be presented by a 7 DOF lumped spring-
mass-damper structure in which the viscous damping law has been applied to
model the engine friction. Further, the total fluctuating engine torque has been
calculated as the system input which is also the main source of excitation in
an engine-load setup. The step one was completed by giving the linear time
invariant state-space formulation of the model structure. It is composed of
some unknown physical parameters which have been estimated in step two using
grey-box modeling and PEM as the estimation technique.

The step two started with simplifying the 7 DOF model structure to a 2 DOF
version which the simulation study has been performed on. The outcomes
of estimation on simulation data indicated two essential points which helped
further modify the estimation performance, see Section 4.2.1. The first point
was about the convergence property of damping coefficients. It was shown that
fixing these parameters improves the estimation accuracy for the current model
structure and available data set. The second point considers the data information
importance for identification precision. It has been concluded that by using a

81
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normal combustion data set, the estimated parameters do not match the true
values, however this problem has been solved when the misfire data set was
applied. Step two continued with performing estimation on real data using both
2 DOF and 7 DOF model structures. Grey-box modeling plus the PEM, which
were explained in Chapter 2, have been used for model identification. Further,
the identified models have been validated against a fresh data set in which the
low correlations in residual analysis implied the model quality. However, the
correlations were high when the original sampling frequency was considered and
it was presented that down-sampling of the original measurements results in a
better model behavior and the correlations stay almost inside the 99% confidence
interval. Moreover, the simulated angular velocity follows the measured signal
even in operating points different from that of the estimation data set. As
a final validation, it was shown that the estimated models could capture the
actual system’s first natural frequency around 20 Hz. Step two finished with
modal shape analysis of the 7 DOF system in Section 4.3.3 to prove that the
2 DOF model structure is sufficient for the frequency range below 300 Hz. If
the application of interest concerns the higher frequencies, then the 7 DOF
model structure is suggested. Even though, as it was shown in Section 4.3, the
results of the simplified model estimation can still be used in the larger model
identification to decrease the number of unknowns and consequently improve
the estimation variances.

In Chapter 5, misfire as well as two other disturbances, i.e. auxiliary load
variation and road load excitation, have been injected to the simplified 2 DOF
model structure. For the misfire case, it has been shown that measurement
and simulation agree with each other in terms of frequency and amplitude.
Moreover, it has been indicated that the generated torsional vibrations due to
the misfire occurrence resemble the influences of the two other disturbances.
This can introduce a problem in the misfire detection algorithm. Therefore, a
reliable model has two important benefits. First, it can help study and optimize
the detection algorithms robustness subject to the effects of the other possible
external disturbances. Second, a simulation model prevents doing expensive
experimental investigations for developing a misfire detection algorithm since
the initial studies are useful to analyze the actual system.

The future studies of this work contain three main issues. First, the parame-
ters of the in-cylinder pressure model, which is given in Eriksson and Andersson
(2002), are to be identified using a wide range of engine measurements in different
speeds and loads. In a real car operation, the pressure measurements are not
available and if the model is intended to be used in detection at real time, an
appropriate pressure model is also essential, see Eriksson et al. (2013). Second,
a suitable identification technique is to be presented for estimating damping
coefficients. As it was shown, the PEM and the current measurements could
not be used for estimating these parameters in a reliable way. Third, it is to be
studied how the rest of powertrain system can be modeled and identified which
is applicable in the passenger car ride quality evaluation.
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Appendix A

7 DOF system matrices and Mathematica code

System matrices for the 7 DOF system which has been shown in Figure 3.6 and
represented with the LTI state-space model (3.13).

=
G
S~—
|
1
cCoocooc oo o0 ooNo
Coco0C o0 oo oo
Coococo0coofro oo oo
cCoocooffrocoococ oo oo
SgnOeeoocoococoooo0
~
—
>
—
S~—

87



88

Columns 5:8
0
J%Km
0

|
&=
g
%}

OO0 OO0 OO OO

Columns 9:13
0

J%Czl
—%2(021 + C32 + C1)
1
%3032
—1
0
0

0
0
0
Cy3

&=

0
—%4(043 +C54 + C3)
1
%5054
—1

o O o O

65

st

*716(065 + C6)
1
%7076
—1

s
ONOOO

€
=7, Kas

OO O OO OO

Notes

0
%2032
0

—%3(032 + Ca3 + C2)

1
%4043
—1

54

s
c QN oo oo

—%5(054 + Ce5 + C4)

1
%6065
—1
0
0



Notes 89

The mathematica code for structural
identifiability analysis of the

7 DOF model with 13 states

and 6 unknown parameters

ingesi- Needs["IdentifiabilityAnalysis ™ "];

Inged)- deq = {
X; '[t] == alpha * (K21 % x3[t] +15% (-x;[t] +x,[t])), X1 [0] == meas,
Xy '[t] ==betax (-K21 *x3[t] -15% (-x;[t] +x,[t]) +K32 % xs[t] +
2.5% (-X,[t] +X4[t]) +inputl[t] - (0.1541/4) *x,[t]), X,[0] = meas,
X3 '[t] == (-x1[t] +xz[t]), x3[0] = 0,
X, '[t] ==beta* (-K32%*x5[t] -2.5*% (-x,[t] +xX4[t]) +K32%x,[t] +
2.5% (-xX4[t] +Xg[t]) +input2[t] - (0.1541/4) *x4[t]), X4[0] == meas,
X5 '[t] == (-%2[t] +x4[t]), %5[0] =0,
X¢'[t] ==beta (-K32%X,[t] -2.5% (-Xg[t] +Xe[t]) +K32 #Xo [t] +
2.5% (-x%g[t] +Xg[t]) + input3[t] - (0.1541/4) »x¢[t]), X¢[0] == meas,
x7"'[t] == (-xq[t] +X6[t]), X7[0] = O,
Xg'[t] ==beta* (-K32*Xo[t] -2.5*% (-Xg[t] +Xg[t]) + K65 *x;;[t] +
2.5% (-Xg[t] +Xo[t]) +inputd[t] - (0.1541/4) *+xg[t]), Xg[0] == meas,
Xo '[t] == (-Xe[t] +Xg[t]), X5 [0] == 0,
X0 '[t] == gamma * (-K65 % X;1[t] -2.5% (-xg[t] +x30[t]) +
1992 #x33[t] +2.5 % (-X19[t] +X12[t])), X10[0] == meas,
X11 ' [t] == (-xg[t] +X10[t]), %11 [0] = O,
X1 '[t] ==5.646 % (1992 xX13[t] -2.5% (-xX10[t] + X35 [t]) - input5[t]),
X12[0] = meas,
x13 ' [t] == (-%go[t] +X12[t]), x13[0] == 0};

measured = {x;[t]};
iad = IdentifiabilityAnalysis[{deq, measured},
{X1, X2, X3, X4, X5, Xe,s X7, Xg, Koy K10/ K11, X125 K13},
{alpha, beta, gamma, K21, K32, K65, meas},
t, {inputl, input2, input3, input4, input5}]
iad["IdentifiableQ"]

oue71)- IdentifiabilityAnalysisData[True, <>]

ous7z)- True
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Notes
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