CFD-analysis of buoyancy-driven flow inside a cooling pipe system attached to a reactor pressure vessel

Jens Peterson

Supervisors: Johan Renner (IEI, Linköping University), Gustaf Nilsson (Forsmarks Kraftgrupp AB)
Examiner: Matts Karlsson (IEI, Linköping University)

LIU-IEI-TEK-A--14/02093—SE
2014-10-10
Abstract
In this work a cooling system connected to a reactor pressure vessel has been studied using the CFD method for the purpose of investigating the strengths and shortcomings of using CFD as a tool in similar fluid flow problems within nuclear power plants. The cooling system is used to transport water of 288K (15°C) into a nuclear reactor vessel filled with water of about 555K (282°C) during certain operating scenarios. After the system has been used, the warm water inside the vessel will be carried into the cooling system by buoyancy forces. It was of interest to investigate how quickly the warm water moves into the cooling system and how the temperature field of the water changes over time.

Using the open source CFD code OpenFOAM 2.3.x and the LES turbulence modelling method, a certain operating scenario of the cooling system was simulated. A simplified computational domain was created to represent the geometries of the downcomer region within the reactor pressure vessel and the pipe structure of the cooling system. Boundary conditions and other domain properties were chosen and motivated to represent the real scenario as good as possible. For the geometry, four computational grids of different sizes and design were generated. Three of these were generated using the ANSA pre-processing tool, and they all have the same general structure only with different cell sizes. The fourth grid was made by the OpenFOAM application snappyHexMesh, which automatically creates the volume mesh with little user input.

It was found that for the case at hand, the different computational grids produced roughly the same results despite the number of cells ranging from 0,14M to 3,2M. A major difference between the simulations was the maximum size of the time steps which ranged from 0,3ms for the finest ANSA mesh to 2ms for the snappy mesh, a difference which has a large impact on the total time consumption of the simulations.

Furthermore, a comparison of the CFD results was made with those of a simpler 1D thermal hydraulic code, Relap5. The difference in time consumption between the two analyses were of course large and it was found that although the CFD analysis provided more detailed information about the flow field, the cheaper 1D analysis managed to capture the important phenomena for this particular case.

However, it cannot be guaranteed that the 1D analysis is sufficient for all similar flow scenarios as it may not always be able to sufficiently capture phenomena such as thermal shocks and sharp temperature gradients in the fluid.

Regardless of whether the CFD method or a simpler analysis is used, conservativeness in the flow simulation results needs to be ensured. If the simplifications introduced in the computational models cannot be proved to always give conservative results, the final simulation results need to be modified to ensure conservativeness although no such modifications were made in this work.
Acknowledgements

I would like to extend my deepest gratitude to all those who have helped me complete this thesis work. I can say without a doubt that I could not have reached my goals without the support of a range of people.

I am grateful to Gustaf Nilsson who has patiently answered my most complicated questions and helped me solve a multitude of issues. Nicolas Edh has always been accommodating in helping me with both theoretical questions and practical understanding of various software tools. Karin Eriksson has been generous with guidance within the project, and all three have been extremely helpful with feedback on the report. I would also like to thank Johan Renner and Matts Karlsson for their support and feedback as supervisors during this work, and for their teachings throughout the years at Linköping University. I deeply appreciate Forsmarks Kraftgrupp AB and the FTM group for giving me for the opportunity to do this project and for providing me with a pleasant working environment.

Finally, I would like to thank my friends and family for their never-ending support during this work and my studies.

This work will be distributed within DKC-TS (Distribuerat Kompetenscentra Termohydraulik och Strömning), a framework for sharing knowledge within the nuclear industry of the Vattenfall AB concern.

August 2014

Jens Peterson
Table of contents

Abstract ... ii
Acknowledgements ... iv
Table of contents ... v
Nomenclature ... vii

1 Introduction ... 1
 1.1 Background .. 1
 1.2 System description .. 2
 1.3 Objectives ... 5
 1.4 Report structure ... 5
 Theoretical background .. 5
 Method ... 5
 Results .. 5
 Discussion .. 5
 Conclusions .. 5

2 Theoretical background .. 7
 2.1 Governing equations for compressible flow 7
 2.2 Turbulence .. 9
 2.2.1 General description of turbulence ... 9
 2.2.2 LES turbulence model .. 10
 2.2.3 Near-wall resolution concerns .. 12
 2.3 Dimensionless numbers ... 13
 2.3.1 The Rayleigh number .. 13
 2.3.2 The Courant number .. 14

3 Method .. 15
 3.1 Model simplifications .. 15
 3.2 Computational mesh .. 17
 3.2.1 Mesh quality .. 22
 3.3 Initial and boundary conditions .. 25
 3.3.1 Inlet and outlet boundaries .. 25
 3.3.2 Symmetry boundaries .. 26
 3.3.3 Wall boundaries .. 26
 3.3.4 Initial conditions ... 27
 3.4 Fluid properties ... 27
 3.5 Numerical solution properties .. 28
 3.5.1 Parallel processing ... 29
Nomenclature

Latin characters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_p</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>$c_{c(\cdot)}$</td>
<td>Model constant</td>
</tr>
<tr>
<td>C_0</td>
<td>Courant number</td>
</tr>
<tr>
<td>D</td>
<td>Pipe opening diameter</td>
</tr>
<tr>
<td>E</td>
<td>Sum of internal and kinetic energy</td>
</tr>
<tr>
<td>E_f</td>
<td>Energy spectrum function</td>
</tr>
<tr>
<td>F</td>
<td>Force vector</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration vector</td>
</tr>
<tr>
<td>G</td>
<td>Filter function</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
</tr>
<tr>
<td>h</td>
<td>Specific total enthalpy</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length scale</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>P</td>
<td>Rate of production</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Ra</td>
<td>Rayleigh number</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>s_{ij}</td>
<td>Filtered rate of strain tensor</td>
</tr>
<tr>
<td>$S_{(\cdot)}$</td>
<td>Source term</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_{ij}</td>
<td>Stress tensor</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Velocity components in the x, y, z directions</td>
</tr>
<tr>
<td>U</td>
<td>Characteristic velocity scale</td>
</tr>
<tr>
<td>V</td>
<td>Cell volume</td>
</tr>
<tr>
<td>x_L</td>
<td>Distance from leading edge</td>
</tr>
<tr>
<td>x</td>
<td>Current coordinate</td>
</tr>
<tr>
<td>x'</td>
<td>Arbitrary coordinate</td>
</tr>
</tbody>
</table>

Greek characters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Molecular thermal diffusivity</td>
</tr>
<tr>
<td>β</td>
<td>Volume coefficient of expansion</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>Kronecker delta</td>
</tr>
<tr>
<td>Δ_{grid}</td>
<td>Cutoff filter width</td>
</tr>
<tr>
<td>ε</td>
<td>Rate of dissipation</td>
</tr>
<tr>
<td>κ</td>
<td>Wavenumber</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>τ_{ij}</td>
<td>Shear stresses</td>
</tr>
<tr>
<td>ϕ</td>
<td>General function</td>
</tr>
<tr>
<td>ω</td>
<td>Specific dissipation</td>
</tr>
</tbody>
</table>

Additional subscripts and superscripts

- $_{rgh}$ Hydrostatic pressure included
- $_{sgs}$ Sub-grid-scale
- $_{t}$ Turbulent
- $_{txgs}$ Effective sub-grid-scale
- $_{\tau}$ Shear
- $_{w}$ Wall
- $_{x}$ x-direction
- $_{y}$ y-direction
- $_{z}$ z-direction
- $_{\infty}$ Far away
- $^{+}$ Wall unit distance

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>DES</td>
<td>Detached Eddy Simulation</td>
</tr>
<tr>
<td>IAWPS</td>
<td>International Association for the Properties of Water and Steam</td>
</tr>
<tr>
<td>LES</td>
<td>Large Eddy Simulation</td>
</tr>
<tr>
<td>LES-NWM</td>
<td>Large Eddy Simulation- Near-Wall-Modelling</td>
</tr>
<tr>
<td>LES-NWR</td>
<td>Large Eddy Simulation- Near-Wall-Resolution</td>
</tr>
<tr>
<td>PISO</td>
<td>Pressure Implicit with Splitting of Operators</td>
</tr>
<tr>
<td>RANS</td>
<td>Reynolds Averaged Navier-Stokes</td>
</tr>
<tr>
<td>RSM</td>
<td>Reynolds Stress Model</td>
</tr>
<tr>
<td>SGS</td>
<td>Sub-Grid-Scale</td>
</tr>
<tr>
<td>SIMPLE</td>
<td>Semi-Implicit Method for Pressure-Linked Equations</td>
</tr>
<tr>
<td>URANS</td>
<td>Unsteady Reynolds Averaged Navier-Stokes</td>
</tr>
<tr>
<td>VLES</td>
<td>Very Large Eddy Simulation</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Background

The operating safety of nuclear power plants has always been subjected to thorough investigations so that operational issues of the plants can be prevented. Analyses of critical components within a Swedish nuclear power plant, such as pipes, pressure vessels, valves, etc. are required in order for the plant to run in accordance with Swedish law. The results of the analyses need to show that the plant and its components are in good condition and that they can endure the different operating scenarios with a large safety margin to failure. The type of calculations made on the components range from static stress calculations to complicated thermal fatigue calculations.

Although the original components used in today’s nuclear power plants have been designed with regards to safety, new analyses must be made on certain parts due to updated regulations or structural changes within the systems. If the plant is to increase its power production capacity, all parts affected will need to be structurally verified again for the new operating conditions.

The calculations need to be based on conservative estimates of the quantities affecting the component, such as the pressure or temperature fields. Since some of the operating scenarios investigated involve large scale failure of components, measurements of these quantities in these scenarios for the power plants in use do not exist. Instead, estimations must be made. These estimations have to be made carefully with extra regard to safety, and a way of ensuring this is by introducing a sense of conservativeness in the estimations. For example, underestimating the pressure fluctuations in a pipe system may result in an analysis of the pipe system showing that the components will withstand the forces due to the pressures. The real pressure fluctuations may however subject the pipes to larger forces, and could cause the components to fail. Instead, all quantities should be estimated in a conservative manner. By overestimating the load on a component, structural verifications can show that the component will withstand higher forces than necessary.

Problems arise when it is difficult to make a reasonable estimate. If there is no data available, it is necessary to make a very conservative assumption, for example estimating a temperature rise to be infinitely steep. Certain methods of calculating the stresses in the materials may be able to handle this unrealistic load condition, but not all. In some cases it may not be possible to verify a component’s structural integrity with the applied method. Instead, other methods of calculation need to be applied or different estimations of the loads on the component have to be made.

In order to produce more accurate approximations of the load conditions, more thorough analyses of the operating scenarios are required. This could be done for example by means of vibrational analyses on a system of interest, or by doing flow calculations on the fluids within the components.

In this thesis, such a flow calculation will be carried out with the computational fluid dynamics (CFD) method. Using the finite volume numerical solver OpenFOAM, a specific fluid flow problem involving a pipe system connected to a reactor pressure vessel will be investigated. The temperature of the fluid within the pipe will be studied during a certain operating condition of the nuclear power plant, and it is these temperature profiles which can serve as a load condition for future structural analyses. The CFD method is rarely applied for these types of problems since cheaper, but possibly less reliable, methods exist. The results of this work are therefore interesting as they can give an insight to the applicability of the CFD method in similar investigations.
1.2 System description
The system studied in this work is part of a fairly comprehensive network of pipes outside of the reactor pressure vessel. It is built so that it can withstand thermal expansion of the components, which means the pipes have several repeated 90° bends to make the whole pipe system more flexible. The pipes are made up of different pipe sections welded together, and it is these welds that are of main interest when it comes to structural analyses, due to the possibility of cracks existing inside the welds.

In total, there are four of these pipe networks connected to the reactor pressure vessel. They are distributed around the reactor core, and the pipe structures of each network outside of the vessel are fairly similar to each other. The four different parts of the cooling system are independent of each other, although often operated all together or in pairs. Each part is fed by a separate piston pump, designed to be able to pump a maximum of 22.5 liters of water per second into the vessel at up to 80 bar (8 MPa) of pressure. The pumps are situated well behind a gate valve, which is mounted on each pipe between 4m and 8m from the reactor pressure vessel. This valve is always locked open and is only shut when other components in the system need maintenance. When the system is used, the piston pumps run at maximum speed to pump the cold water into the vessel. The flow of water is stopped by shutting a check valve further upstream the system.

Figure 1 shows a principle overview of the cooling system studied in this work, and the reactor pressure vessel to which they are connected. Only the gate valves which are locked open are depicted in the sketch, while the other components (valves and pumps) positioned further upstream are not shown.

![Figure 1: Principle overview of the four parts of the cooling system connected to the reactor pressure vessel][1].

Certain operating conditions will cause the cooling system to be activated. This can be for example when the level of water inside the reactor vessel has decreased to some extent and needs to be raised, or when a problem has occurred with the reactor vessel or connecting systems, and the reactor core needs to be cooled. Quite simply, it is used in a wide range of operating scenarios. The activation of the cooling system is often done automatically and the components used to run the system are continuously tested to ensure safe operation.

The pipe networks are mounted to the vessel with welds and the pipe insert, which is located on the inside of the vessel, is supported by an intricate suspension system. Figure 2 shows the brackets on the
inside of the vessel wall, as well as the end of the pipe insert pointing downwards. A mechanical spring, shown in pink in figure 2 and in a cross sectional view in figure 3, holds the pipe insert (green and orange) in place.

A complex thermal insulation is fitted around the pipe insert, as shown in orange in figure 3. The insulation surrounds the pipe from outside of the vessel, all the way to the inside where the suspension is mounted to the pipe. It consists of a series of layered perforated steel cylinders, and the purpose of this insulation is to reduce the effect of thermal shocks by slowing the heating or cooling of the pipe insert and the surrounding parts. The water surrounding the pipe insert is allowed to creep into the insulation, providing a dampening effect for temperature gradients.

Figure 2: CAD model of the pipe insert and its suspension on the inside of the reactor vessel.

Figure 3: A cross section of the thermal insulation (solid orange) surrounding the pipe insert (all green and orange) inside of the reactor vessel. A mechanical spring (pink) holds the pipe insert in place [1].
When the power plant is running, there is a recirculation of the water inside of the reactor pressure vessel. More specifically, the region between the vessel walls and the core shroud, which covers the reactor core, is called the downcomer and the water inside of it is continuously pumped down towards the bottom of the vessel. The reason for this is that the cooler water in the downcomer is supposed to be dragged to the bottom, where it then can be pumped up through the core. The downward directed velocity of the water in the downcomer depends on how the power plant is operating, and is usually between 0.5m/s and 1.6m/s.

The reactor core and its surrounding shroud, as well as other internal components such as steam separators and steam dryers are positioned in front of the pipe insert. A principle view of the setup is shown in figure 4, which is a cross sectional view of a reactor vessel similar to the one studied in this work.

When the cooling system is used, it transports 288K (15°C) water into the vessel. If the power plant is running when the flow of cooling water stops, warm water of about 555K (282°C) will, due to buoyancy forces, creep up into the pipe insert and continue out into the pipe network outside of the vessel, gradually heating it up.

The original estimations stated that the fluid and the pipe temperature would rise instantaneously from 288K to 555K for certain operating cases. Earlier analyses for the structural integrity of these systems have shown good results, and the components have been verified. However, new methods of calculation with higher accuracy have proven to be more difficult due to the ill posed temperature assumptions, and so better assumptions are needed.
1.3 Objectives
The objectives of this work include creating a robust CFD model of a certain water cooling system connected to a reactor pressure vessel. For a specified operating condition of the system, the transient temperature field of the water will be calculated using the CFD method. The results will be compared to simpler calculations of the temperature field, made with a 1D thermal hydraulic code, to evaluate the importance of doing time consuming CFD analyses on problems such as this.

Furthermore, the computational model created will be analysed and discussed in terms of accuracy, credibility and conservativeness. The potential strengths and flaws of the model will be highlighted to further provide arguments for whether or not the CFD method could be applied to similar problems in the future.

1.4 Report structure
The contents of each following chapter in this report are outlined below.

Theoretical background
The governing equations are given along with a basic description of the turbulence model used in this work. Useful dimensionless numbers are given and their properties are described.

Method
The general workflow of the project is described here with emphasis on how the CFD model was created. The geometry, computational meshes, boundary conditions and numerical solver is described in detail, as well as a brief description of the Relap5 analysis software.

Results
The results of the CFD simulations are presented with instantaneous images of the flow field, as well as transient temperature plots of the CFD and Relap5 results.

Discussion
A comprehensive discussion is presented here, first with focus on the numerical results from the simulations, and later with focus on the CFD model and its properties.

Conclusions
The main conclusions of the work are presented here. A short chapter outlining possible future work for the project is also presented.
2 Theoretical background

Mathematics is the foundation to the computational fluid dynamics method of analyzing any fluid flow problem. The equations governing the nature of compressible fluid flow problems are presented in this chapter, as well as a brief introduction to turbulence and modeling turbulence using the LES method.

2.1 Governing equations for compressible flow

The equations governing fluid flow can be expressed as three conservation laws:

- Conservation of mass
- Conservation of momentum (Newton’s second law)
- Conservation of energy (first law of thermodynamics)

The three dimensional unsteady mass conservation law in Cartesian coordinates \((x,y,z)\) can be written as

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \tag{1}
\]

where \(\rho\) is density, \(t\) is time, \(\mathbf{u}\) is the velocity vector. Source terms are omitted.

Equation (1) states that the total mass of an infinitesimal fluid element remains unchanged, and is commonly referred to as the continuity equation.

The momentum equations, ensuring the conservation of momentum for a fluid element, has its origins in Newton’s second law of motion,

\[
\mathbf{F} = \frac{\partial (m \mathbf{u})}{\partial t}, \tag{2}
\]

which states that the sum of the forces on a particle equals the rate of change of the momentum of the particle. \(m\) is the mass of the particle, and \(\mathbf{F}\) are the different forces working on this particle.

Focusing on a fluid element instead of a moving particle, and considering fluxes through the faces of this fluid cell, the conservation laws for the momentum within the fluid cell can be written in vector notation as

\[
\frac{\partial}{\partial t} (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{T}_{ij} + \mathbf{S}_M, \tag{3}
\]

where \(p\) denotes pressure, \(\mathbf{T}_{ij}\) is the stress tensor and \(\mathbf{S}_M\) are source terms.
The stress tensor can be calculated with

\[T_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right], \tag{4} \]

where Newton’s law of viscosity for compressible flows has been applied, which introduces relations between the stresses and the linear deformations of the fluid element, by use of the dynamic viscosity \(\mu \). Newton’s law of viscosity makes equation (3) valid only for Newtonian fluids, where the viscous stresses are proportional to the rate of deformation of the fluid. \(\delta_{ij} \) is the Kronecker delta.

In equation (3), the left hand side represents the change of momentum of the fluid element, and the right hand side represents the sum of the forces on the element.

Also important to note, for this work in particular, is the source terms \(S_M \) in the momentum equations. By considering only the gravitational force exerted on the fluid element as a component in the source term, and assuming it is directed in the negative \(z \)-direction, the source term \(S_M \) can be written

\[S_M = \rho g, \tag{5} \]

where \(g \) is the gravitational acceleration. Equation (5) is what gives rise to the buoyancy effect. Fluid elements with low density, compared to its surroundings, will experience a total force in the positive \(z \)-direction due to the lower effect of gravity.

The equation for the conservation of energy within the fluid cell can be written

\[\rho \frac{DE}{Dt} = -\nabla \cdot (\rho u) \]

\[+ \left[\frac{\partial (u\tau_{xx})}{\partial x} + \frac{\partial (u\tau_{yx})}{\partial y} + \frac{\partial (u\tau_{zx})}{\partial z} + \frac{\partial (v\tau_{xy})}{\partial x} + \frac{\partial (v\tau_{yx})}{\partial y} + \frac{\partial (v\tau_{yz})}{\partial z} \right] + \nabla \cdot (k \nabla T) + S_E. \tag{6} \]

In equation (6), \(E \) is the sum of the internal energy and the kinetic energy of the fluid element, meaning the left hand side represents the change of energy of the element. The shear stresses \(\tau_{ij} \), the thermal conductivity \(k \) and the fluid temperature \(T \) can be found on the right hand side of equation (6), along with an energy source term \(S_E \). The right hand side represents the net rate of work done on the element, and the net rate of heat added to it. The first term on the right hand side constitutes how much work is done on the fluid element due to pressure, whereas the terms within the brackets constitute the work done by the viscous forces. The net heat flux through the faces of the element due to heat conduction is represented by the second to last term. The last term on the right hand side is a source term representing the work done by the gravitational forces.

As noted by Versteeg & Malalasekera[3], the energy equation (6) may be reworked to give an equation for the total enthalpy of the fluid element. Furthermore, the term denoting pressure work, \(\partial p/\partial t \), done on the element may often be neglected for incompressible flows. Remembering that
water is the fluid investigated in this work, and that it is considered incompressible, the pressure work term can be ignored.

Similar to the equation used in Flores et al. [4], the simplified total enthalpy equation then takes the form

$$\frac{\partial (\rho h)}{\partial t} + \nabla \cdot (\rho hu) = \nabla \cdot (\alpha \nabla h) + S_H, \quad (7)$$

where \(h \) is the specific total enthalpy of the fluid cell, \(\alpha \) is the molecular thermal diffusivity, and \(S_H \) is a new source term.

2.2 Turbulence

2.2.1 General description of turbulence

The issue of turbulence in modern industry is a tough one, to say the least. On one hand, the equations describing the nature of all fluid flows are clearly stated and ready to be implemented on all problems. On the other hand, extremely few flow situations can be solved this way even with today’s super computers of the year 2014, and most of these flow problems are not of industrial interest. Turbulence is the main reason behind the large amount of computational power required to solve the equations numerically.

Turbulence is a strictly three-dimensional phenomenon and the nature of turbulence can best be described as chaotic, with its properties not yet fully understood. At low flow speeds, conditions remain steady and this is referred to as laminar flow. With increasing flow speed however, the velocity starts to fluctuate in a chaotic manner and the flow is referred to as turbulent. A useful measure of exactly how turbulent the flow is, is a non-dimensional parameter named the Reynolds number \(Re \). It is defined as the ratio between inertia forces and viscous forces,

$$Re = \frac{UL}{v}, \quad (8)$$

where \(U \) is the characteristic velocity scale and \(L \) is the characteristic length scale of the flow. \(v \) is the kinematic viscosity of the fluid, \(v = \mu/\rho \).

At low Reynolds numbers, flows remain steady (laminar), and at high they become unsteady (turbulent). The transition between laminar and turbulent flow occurs at a critical Reynolds number, although the magnitude of this number and the point in space where the transition takes place is difficult to predict as they depend on a lot of variables in the specific case.

The reasons for the fluctuations in flow speed can be accounted to the chaotic behavior of turbulent motions. Eddies are always present in turbulent flow fields and they present themselves as rotating flows within a localized region. The length scales of the eddies can be as large as the characteristic length scale of the flow field, and small enough for the eddies kinetic energy to be dissipated into heat by means of molecular viscosity. The largest eddies contain the most energy, which they obtain from the mean flow. Being that they are unstable they tend to break up, leaving behind smaller eddies. This process carries on with the larger eddies transferring their energy to the smaller ones continuously. This idea is called the energy cascade and was introduced by Richardson[5]. Figure 5 shows a principle diagram of the energy cascade and how the large eddies transfer energy to the smaller ones.
It shows the how the energy of an eddy is dependent on the wavenumber κ of the eddy. Region I is where the larger, energy-containing eddies form, and region III is where the small eddies dissipate. The inertial subrange, region II, is where the larger eddies break up and transfer their energy to successively smaller eddies.

Figure 5: A principle diagram of the energy cascade, showing how the energy spectrum function E_r depends on the wavenumber κ of the eddies.

It should be noted that turbulence is a flow property, and not a property of the fluid, and it is unique for every flow condition. However, it is argued that the smallest scales of turbulence, known as the Kolmogorov microscales, are universal and behave the same way for all turbulent flows at higher Reynolds numbers (Versteeg & Malalasekera[3]).

2.2.2 LES turbulence model

Considering the fact that the large eddies contained in a turbulent flow field are highly dependent on the mean flow and the geometrical features of the fluid domain, and that the small eddies are more of a universal nature, one may come to the conclusion that interest lies in calculating the dynamics of the larger eddies, and simply applying a model to capture the behavior of the smaller eddies. This is the underlying thought of the LES turbulence modelling approach.

Using the LES method in this project was a given from the start. It was of interest to investigate the possibilities of the LES method and to see what results it could give.

The key to separating the larger eddies from the smaller ones is to use a spatial filter. The filter should be designed to accurately pick out the smaller scales and leave the larger scales intact. The general definition of the filtering operation is as follows:

$$
\Phi(x,t) = \int\int\int_{-\infty}^{\infty} G(x,x',\Delta_{grid}) \phi(x',t) \, dx'dx_2dx_3,
$$

(9)
where $\tilde{\phi}(x, t)$ is the filtered function, $\phi(x', t)$ is the unfiltered function and $G(x, x', \Delta_{grid})$ is the filter function.

There exist several types of filter functions, the box filter often being used when dealing with the finite volume method[3]. It is defined as

$$
G(x, x', \Delta_{grid}) = \begin{cases}
\frac{1}{\Delta_{grid}^3} & \text{for } |x - x'| \leq \Delta_{grid}/2 \\
0 & \text{for } |x - x'| > \Delta_{grid}/2,
\end{cases}
$$

(10)

where x is the current location in the domain and x' is an arbitrary point in the domain. The cutoff width of the filter, Δ_{grid}, is what specifies the limit between the larger and the smaller eddies. In the present work, it was defined as the cube root of the cell volumes V in the mesh,

$$
\Delta_{grid} = \sqrt[3]{V}.
$$

(11)

Note that the filtered function is still a function of both space and time, meaning unsteady behavior will not be lost in the filtering process.

The filtering operation is applied to the governing equations (1), (3) and (7). Filtering equation (3) gives rise to the term $T_{ij, sgs}$, the sub-grid-scale (SGS) stress tensor, which requires the SGS turbulent dynamic viscosity μ_{sgs} to be calculated. Filtering the total enthalpy equation (7) will replace the molecular thermal diffusivity with the effective SGS thermal diffusivity,

$$
\alpha_{tsgs} = \alpha + \alpha_{sgs}.
$$

(12)

where α_{sgs} is the SGS turbulent thermal diffusivity. This is calculated as

$$
\alpha_{sgs} = \mu_{sgs} \frac{Pr_t}{Pr_t}.
$$

(13)

where Pr_t is the turbulent Prandtl number, chosen as a fixed constant, $Pr_t = 1$.

It is clear that the unknown variable μ_{sgs} needs to be calculated using a SGS model. Several models have been developed for certain flow conditions, and the one used in this work is referred to as a one-equation k_{sgs} model. The SGS turbulent dynamic viscosity is defined as

$$
\mu_{sgs} = \rho C_k \Delta_{grid} \sqrt{k_{sgs}},
$$

(14)

where C_k is a model constant, implemented as 0.094. The SGS turbulent kinetic energy k_{sgs} is modelled using a transport equation which can be written as

$$
\frac{\partial k_{sgs}}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{u}_j k_{sgs} \right) = \frac{\partial}{\partial x_j} \left(\frac{1}{\rho} (\mu + \mu_{sgs}) \frac{\partial k_{sgs}}{\partial x_j} \right) + P_{k_{sgs}} - \varepsilon,
$$

(15)

where $P_{k_{sgs}}$ is the rate of production of k_{sgs}, and ε is the rate of dissipation of k_{sgs}.
Closing this system of equations is done with

\[P_{kgs} = 2 \frac{\mu_{kgs}}{\rho} \bar{s}_{ij} \bar{s}_{ij}, \]

(16)

\[\varepsilon = C_\varepsilon \frac{\kappa_{kgs}^{3/2}}{\Delta_{grid}}, \]

(17)

where \(C_\varepsilon \) is another model constant, implemented as 1,048. The filtered rate of strain tensor \(\bar{s}_{ij} \) is calculated with

\[\bar{s}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right), \]

(18)

where \(\bar{u} \) is the filtered velocity field.

2.2.3 Near-wall resolution concerns

The LES approach of modelling turbulence is still costly and rarely used in the industry. This is mainly due to the mesh requirements. Pope[6] notes the distinctions between the different variants of LES. He notes that LES should resolve most of the turbulent scales in the bulk flow region, and capture at least 80% of the turbulent kinetic energy here. Failing to do so qualifies the simulation as VLES (Very Large Eddy Simulation). Depending on whether or not the wall boundary layer is properly resolved, the simulation can be classified as LES-NWR (LES-Near-Wall-Resolution) or LES-NWM (LES-Near-Wall-Modelling), and further noting that the mesh required to do LES-NWR causes the simulation to be extremely costly for high Reynolds number flows. Estimating the amount of turbulent kinetic energy resolved, compared to the total in the system, is a good way of perceiving if the mesh is sufficiently fine, although it will not be done in this work.

The LES-NWM often implies the use of so called wall functions, which are designed to model the effects the wall boundaries have on the flow field. Using a function to model the flow near the wall will remove the need to resolve the near-wall region with a fine mesh. This of course has a large effect on the overall simulation cost, and can make an expensive LES simulation comparably cheap. However, there are some major drawbacks with the usage of these wall functions. Ferziger & Perić[7] bring up the issues with the models when the flow is not bounded to a wall. For the wall functions to work properly, the computational mesh needs to have a node at a position close to the wall. The dimensionless distance \(y^+ \) measured from the wall is defined as

\[y^+ = \frac{\rho u_T y}{\mu}, \]

(19)

where \(u_T \) is the shear velocity and \(y \) is the distance from the wall. From equation (19) we see that by placing a node at different distances from the wall, we can effectively control the \(y^+ \) value. Ferziger & Perić note that for certain wall functions, the node closest to the wall must be placed such that
Theoretical background

2.3 Dimensionless numbers

2.3.1 The Rayleigh number

Along with the Reynolds number (8) and the \(y^+ \) number (19), there exists a large number of dimensionless numbers which could be useful to study within a fluid flow problem.

The Rayleigh number is one of them, which according to Bergman et al. [8] can give a good representation of the transition between a laminar boundary layer, and a fully turbulent boundary layer. The Rayleigh number \(Ra \) can be defined as the product between two other dimensionless numbers, namely the Grashof number \(Gr \) and the Prandtl number \(Pr \):

\[
Ra = Gr \cdot Pr = \frac{g \beta (T_w - T_\infty) x_L^3}{\nu^2} \frac{\mu c_p}{k}. \tag{20}
\]

A commonly studied buoyancy driven flow problem is a hot vertical flat plate surrounded by colder fluid. The hot plate will heat up the fluid close to it and, due to buoyancy forces, cause it to rise upwards. For the hot plate fluid flow problem, the Rayleigh number is calculated with ([9])

\[
\beta \approx \frac{\rho_\infty - \rho}{\rho(T_w - T_\infty)} \tag{21}
\]

where \(\beta \) is the volume coefficient of expansion, \((\rho_\infty - \rho) \) is the density difference between the fluid far away from the wall and the fluid near the wall, and \((T_w - T_\infty) \) is the temperature difference between the fluid near the wall and the fluid far away from the wall. Furthermore, \(x_L \) is the distance from the leading edge of the plate and \(v, \mu, c_p \) and \(k \) are all taken to be average values of the kinematic viscosity, the dynamic viscosity, the specific heat capacity and the thermal conductivity respectively, for the fluid.

Bergman et al. suggests the critical Rayleigh number for when the boundary layer starts to become turbulent is above \(10^9 \) in the case of the hot vertical flat plate, and Holman [9] claims the transition can begin at values of \(10^8 \). Although the hot plate fluid flow problem is very different from the one studied in this work, equation (20) can still give a rough hint of how crucial it is to have a properly resolved boundary layer. Having turbulence very close to a solid boundary puts greater requirements on the mesh than if the boundary layer is mainly laminar. \(T_w \) and \(\rho \) has been chosen as the temperature and density of the warm fluid in this problem (555K and 747 kg/m³), whereas \(T_\infty \) and \(\rho_\infty \) is chosen as the properties of the cold fluid (288K and 1002 kg/m³). \(x_L \), the distance from the leading edge of the plate in equation (20), has been chosen as the approximate distance between the mouth of the pipe and the 90° bend inside the pipe insert.
2.3.2 The Courant number

The Courant number Co is of interest to study when it comes to numerical stability and accuracy. Certain differential schemes used in CFD analyses will not function properly and may give poor results, if the Courant number is too high. A general consensus is that if values of the Courant number exceed 1, the numerical stability and accuracy may be compromised. The Courant number depends on the fluid velocity, the time step size and the computational cell size, and can be calculated in each computational cell as

$$Co = \frac{u_x \Delta t}{\Delta x} + \frac{u_y \Delta t}{\Delta y} + \frac{u_z \Delta t}{\Delta z},$$

where u_i is the velocity in a Cartesian direction, Δt is the time step size and Δx, Δy and Δz are the lengths of the computational cell in the Cartesian directions.
3 Method

For this work, the CFD method was chosen to be used as the analysis tool for the flow problem studied. The CFD method has its roots in a number of equations governing fluid flow and can describe a large number of flow problems. The equations used in this work are presented in the previous chapter. By creating a computational domain, dividing it into a finite number of smaller volumes and then solving these conservation equations in each volume, we can basically simulate any type of flow condition if the right equations are used. The computational domain would of course have to represent the geometry well, and the conditions set at the boundaries of the domain also have to be realistic for the flow case. These are the basics of the CFD method. CFD is unfortunately expensive when compared to simpler fluid flow analysis methods and is therefore not always used in industrial projects such as this one. Despite this, the method of conducting a CFD analysis of this particular fluid flow problem was chosen in order to show the possible strengths and shortcomings of the CFD approach. There are many mistakes which can be made in the preparation work for a CFD calculation, and every simplification in the model needs to be done with caution. In the following sections of this chapter, the creation of the computational model is described along with a description of how the simulations were run.

3.1 Model simplifications

A simplified model of the cooling system and the surrounding regions was created for the calculations. The four pipe inserts are spaced with around 110D, where D is the diameter of the mouth of the pipe. They were considered to be far away from each other, so only one of the four pipe systems was used in the model. The suspension system which carries the pipe insert on the reactor pressure vessel wall was not included in the model, also because it was seen as far away from the mouth of the pipe, with a distance of 3D. Also not included in the model is the wall of the vessel and the components in front of the pipe insert, such as the reactor core shroud, which are placed about 7D from the pipe. The thermal insulation depicted in figure 3 has also not been included in the computational domain. The reason for this is also to simplify the meshing process and to prevent complications that could arise when trying to simulate flow through this complex structure.

General geometrical modifications to the pipe, such as the removal of the hole in the lifting eye on top of the pipe insert, have been made to save further time in the project. The lifting eye structure was however kept on the pipe insert, as it was thought to cause disturbances in the flow which could affect how the flow field would behave just below, and inside the pipe. Shown in figure 6-8 is the simplified computational domain used. It also shows how the pipe structure outside of the vessel was modelled, where a bend and a downward slope can be noted about 3 m from the vessel wall. There would be more bends and the previously mentioned gate valve further down the pipe, although these parts are not included in the model since they are in fact far away from the reactor. It was assumed that the warm water would not reach these regions for a very long time, and would probably slow its movement out of the reactor vessel when it reaches the first pipe bend. Considering the fact that the pipe after this bend has a 14° downward slope, the warm water should not be able to move down past the bend due to the buoyancy forces. Heat could still be transported further down into the pipe by means of convection, conduction and radiation, although it would probably be done at a fairly slow pace. The pipe in the computational domain was therefore not extended far beyond this downward pipe bend.
The size of the computational region representing the inside of the reactor pressure vessel, more specifically the downcomer, was made sufficiently large enough to capture the flow field of interest. The flow field of interest would be the jet forming below the pipe insert, during the pump driven stage of the simulation, and the flow of warm water into the mouth of the pipe, during the buoyancy driven stage. Trial and error was a method employed to get a good size of the downcomer domain. By creating an arbitrarily sized domain and studying the results from it, it was possible to determine just about how small the domain could be kept and still produce reasonable results.

Figure 6: The simplified geometry of the pipe insert used in the simulation.

Figure 7: The simplified geometry used in the simulation.
Further simplifications in the model include ignoring the effects heat transfer due to radiation. This was done to simplify the simulation process and not introducing further unknowns in the form of a radiation model. Heat transfer from the fluid region to the solid region, such as the pipe and the pipe insert, was also ignored. Capturing the correct heat flux into the pipe would require the solid geometry to be correctly modelled, and remembering that parts such as the thermal insulation shown in figure 3 was left out of the model, the heat transfer to the surroundings would be quite inaccurate in these regions compared to the real case.

3.2 Computational mesh
Before a computational mesh is created, one must consider the possible flow field in the domain and try to estimate where a finer mesh is needed. For the problem at hand, this is a complicated task because two very different flows will be simulated on the same mesh. First, the cooling system will transport the cold water into the reactor vessel. After that, the cold water will stop flowing and buoyancy forces will drive the warm water up into the pipe. These are two very different scenarios and they would both gain from having a unique computational mesh created for each case. The actual domain could also be changed if one would only consider one of these flows, such as having a smaller downcomer region for the buoyancy driven flow, or a shorter pipe region for the pump driven flow. However, since the buoyancy driven flow case is of major interest for this project it was decided that the computational mesh should be generated with this case in mind and be used for both flow scenarios. The simulation of the pump driven flow would of course not be optimum with regards to time and results, but by only creating one mesh rather than two the time consumption for the project could be kept reasonable.

When considering the possible flow field for the buoyancy driven flow, one can imagine that chaotic flow structures would form near the mouth of the pipe, where the warm water enters and the cold water exits. The difference in temperature would be high, especially in the beginning of this flow scenario when the water in the pipe has not yet started to increase in temperature, and a chaotic mixing should occur between the warm and cold water. Further into the simulation, it can be imagined that distinct layers would be seen inside the pipe, with a layer of warm water on top of a layer of cold water, and a mixing layer in between the two. It should therefore be noted that a well resolved boundary layer near the walls of the pipe may not be sufficient for capturing the flow physics at hand. A fine grid concentration is also necessary in the centre of the pipe where the mixing of warm and
cold water occurs. Since the position of this mixing layer will change over time, a fairly uniform
distribution of cells was used, as shown in figure 9.

![Figure 9: The principle mesh structure in a cross section of the pipe.](image)

The downcomer region should also be properly resolved with considerations to the potential flow field
of the buoyancy driven flow. A downward flow in the downcomer is always present and will most
likely be highly disturbed as it passes the pipe insert. The mesh should therefore be refined around and
immediately below the pipe insert to capture this unsteady flow.

The software pre-processing tool ANSA was used for mesh generation in this work. The methods of
meshing with this tool involve creating surface meshes on boundaries of the domain and extruding
these to form the volume mesh. The extrusion of the surface meshes can be done in an ordered
fashion, which creates a properly structured volume mesh, although this method can however not be
used on all geometries as it puts certain requirements on the surface meshes connected to the volume
mesh. Employing ordered meshes can decrease the amount of cells in a mesh, and make it easier to
control the quality of the mesh. However, if the geometry is too complex, a less ordered mesh
generation must take place. This creates a mesh with a more unstructured appearance.

The ANSA meshes were generated using both methods. The inside of the pipe was created with an
ordered mesh of hexahedral cells. The cross section shown in figure 9 is consistent through the entire
pipe. An ordered mesh of hexahedral and pentahedral cells was made just above the mouth of the pipe,
and down to the bottom of the domain. The rest of the domain, which is around the pipe insert and
above it, was given an unordered mesh with tetrahedral and pyramid cells. Creating an ordered mesh
in this region proved to be difficult and would require a lot more time. It was found that the main
complication with using the ordered meshing method in this region was the lifting eye attached to the
pipe insert. Had this been left out of the model, the ordered method could have been used fairly easily.
The region above the pipe insert and near the inlet was kept fairly coarse since the flow here was
expected to be quite steady.

For the purpose of investigating how the results would be affected by simulating using a coarse or a
fine mesh, several meshes were generated. They all had the same basic structure described above, but
differed greatly when it came to the size of the cells in all regions.

In the interest of saving time when it comes to the mesh generation process, another method of
creating a computational mesh was investigated. The utility snappyHexMesh[10] implemented in
OpenFOAM 2.3.x has the ability of automatically creating 3D meshes from well-defined geometries.
It does require some user input, but is essentially a far quicker way of generating a high quality
computational mesh, especially for a complex geometry. The basic process of generating the meshes
can be described as follows:
3. Method

1. A base mesh is created without regard to the geometry boundaries.
2. The base mesh is refined by splitting the cells at the geometry boundaries.
3. The cells located outside of the domain boundaries are removed.
4. The vertices of the cells adjacent to the geometry boundaries are snapped to the geometry to form smooth mesh boundaries.

Further options include refining the mesh in the boundary layer region, although this was not utilized in the present work. It can be argued that it is more difficult to control the placement of the cells with the `snappyHexMesh` utility, since it is text based with no graphical user interface. The mesh constructed with the utility for this work was not optimal in this respect. More time could be spent on carefully refining the mesh in regions of interest, but due to time constraints a faster approach was used. It should be remembered that the geometry used in CFD simulations often needs to be somewhat modified before the mesh can be generated, by removing small details and smoothing surfaces. These modifications will still have to be made for the `snappyHexMesh` utility and could potentially be far more time consuming than the actual mesh generation process, meaning the `snappyHexMesh` utility would not save much time for the user.

In total, four meshes were used in the simulations and the size difference can in one way be quantified by looking at the number of cells in the mouth of the pipe. Shown in figure 10 are the pipe openings and the cell distribution for each mesh. It shows that the coarsest ANSA mesh only had 14 cells across the diameter of the pipe, whereas the finest ANSA mesh had 44 cells. The finest mesh was also the only one to have a notably different size distribution of cells, with thinner cells near the boundaries. The mesh generated by `snappyHexMesh` had only 12 cells across the diameter of mouth of the pipe. It should be noted that the number of cells in the diameter of the pipe increases as the diameter increases for the `snappyHexMesh` grid, but stay the same for the ANSA grid.
Figure 10: The cell distribution in the mouth of the pipe for the four different meshes investigated. Cells marked grey are surface cells and cells marked blue are volume cells.

Table 1 presents the meshes used in the present work.

Table 1: Cell-count for each mesh.

<table>
<thead>
<tr>
<th>Mesh name</th>
<th>Cells in the diameter of the pipe opening</th>
<th>Total number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (ANSA)</td>
<td>14</td>
<td>0.14M</td>
</tr>
<tr>
<td>Medium (ANSA)</td>
<td>28</td>
<td>1.5M</td>
</tr>
<tr>
<td>Fine (ANSA)</td>
<td>44</td>
<td>3.2M</td>
</tr>
<tr>
<td>Snappy (snappyHexMesh)</td>
<td>12</td>
<td>1.8M</td>
</tr>
</tbody>
</table>

In figure 11, the medium sized ANSA mesh is presented from different views. As mentioned earlier, the coarser and finer ANSA meshes are similar in design, only with differently sized cells. Figure 12 displays the snappy mesh from different views.
Figure 11: The medium ANSA mesh of the domain, shown in different cross sections around the pipe insert. Note the ordered mesh region below the mouth of the pipe, and the unordered region above.
3. Method

3.2.1 Mesh quality

It is important to have cells of good quality in a computational mesh, otherwise problems with stability and convergence of the simulation could arise. The two larger ANSA meshes were designed with quality in mind and the skewness and orthogonality of the cells, as well as the smoothness of the mesh was checked. The snappyHexMesh utility generally creates cells of very good quality, but this mesh was also thoroughly checked in order to quantify any issues present.

Exactly how the skewness quantity is defined in OpenFOAM will not be explained in this work but it can generally be said that it is a measure of how skewed the cell faces are in a computational mesh. A low value for the skewness indicates good cell quality. An implemented utility in OpenFOAM called checkMesh is used to check the validity of the computational mesh used in a simulation. If the utility fails to confirm the mesh to be of good quality, stability issues are prone to occur during the simulation. The utility fails if the maximum face skewness value of any cell face in the mesh is above the value 4. All of the meshes investigated in this work passed the checkMesh test.

For the ANSA-generated meshes, the ordered cells within the pipe and below the pipe insert showed excellent quality with regards to skewness, whereas the unordered cells above the pipe insert were of somewhat lower quality. The snappy mesh showed excellent skewness qualities throughout the domain. The cells of highest skewness in the snappy mesh were found along curved boundaries where
they have changed their configuration during the snapping stage of the meshing process to conform to the geometrical features.

It is always good to employ several quality quantities when studying a mesh and orthogonality is another measure of how good a cell shape is. It can be explained by studying figure 13. Considering vectors from the centre of a cell to the middle of the cell faces, and checking the angle between these vectors and the normal of the cell faces, one can estimate how good the cell shape is. If the angle between the vectors is small, a good orthogonality is present.

![Measurement of non-orthogonality](image13)

Figure 13: OpenFOAM’s definition of non-orthogonality. The figure shows two 2D cells located in the same plane and the non-orthogonality of the common face between them.

The `checkMesh` utility views a value above 70° for the non-orthogonality as too high. The orthogonality was overall good in both meshes, although the lowest quality was found in the pipe region of the finest mesh (see figure 14). The cells along the boundary here are seen to have a lower orthogonality, although still within tolerable limits. Again, no major quality concerns were found with the snappy mesh.

![Cells in the pipe region of the fine ANSA mesh](image14)

Figure 14: Cells in the pipe region of the fine ANSA mesh, colored by values of non-orthogonality.

Smoothness, also called growth ratio, is a measure of how the volumes of two adjacent cells differ. A fairly small growth ratio was achieved in practically all regions of the ANSA meshes. Large growth...
ratios are unwanted and the largest was found in the transition region between the ordered and unordered meshes, where the volume of a hexahedron could be up to nine times as large as its adjacent pyramid cell, as shown in figure 15. The transition region was therefore deliberately placed at a distance from the mouth of the pipe to minimize the effect of this poor smoothness (see figure 11).

![Figure 15: Cells around the transition region from ordered to unordered grid of the fine ANSA mesh, colored by the smoothness factor.](image)

The snappyHexMesh utility refines by essentially splitting larger cells into smaller ones. One hexahedral cell is always split into eight smaller hexahedral cells of similar size. This means there will be some issues when it comes to smoothness in the mesh. As seen in figure 12, the transition regions between larger and smaller cells was always kept far away from the pipe insert boundaries but is essentially impossible to rid of completely without having a uniform refinement over the entire domain. The largest smoothness discrepancy was seen in the pipe region, where such a transition is placed.

The overall quality of the three larger meshes was considered good. The quality of the coarsest mesh however was not of major concern as it was only generated to give an extreme example of how the problem could be meshed and perhaps even solved. This mesh was however checked using the checkMesh utility in OpenFOAM to make sure no degenerate cells existed.

Mesh quality statistics are presented in table 2.
Table 2: Mesh quality statistics.

<table>
<thead>
<tr>
<th></th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>Snappy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of cell-faces with skewness < 0,2</td>
<td>93,3</td>
<td>92,2</td>
<td>96,9</td>
<td>99,8</td>
</tr>
<tr>
<td>Max skewness of cell-faces</td>
<td>2,54</td>
<td>1,08</td>
<td>1,23</td>
<td>2,75</td>
</tr>
<tr>
<td>Percentage of cells with non-orthogonality < 40</td>
<td>92,5</td>
<td>99,9</td>
<td>94,8</td>
<td>99,99</td>
</tr>
<tr>
<td>Max non-orthogonality of cells</td>
<td>74,0</td>
<td>60,4</td>
<td>56,5</td>
<td>52,9</td>
</tr>
<tr>
<td>Max aspect ratio of cells</td>
<td>15,8</td>
<td>30,9</td>
<td>68,8</td>
<td>5,36</td>
</tr>
</tbody>
</table>

3.3 Initial and boundary conditions

It is of critical importance that the boundary conditions in a fluid flow problem are well posed and physically correct. Badly posed boundary conditions can cause faulty results or rapid divergence of the calculations, as noted by Versteeg & Malalasekera[3]. Choosing the right conditions for each boundary could be a matter of trial and error. It is not always clear which boundary condition will produce the most stable and correct solution, and in some cases when the computational domain is badly made, it may not be possible to set a correct boundary condition. The OpenFOAM software requires the user to specify boundary conditions for all quantities used in the simulation on all boundaries. All conditions are presented in table 5 in the appendix and certain selected conditions are described in greater detail below.

3.3.1 Inlet and outlet boundaries

This domain has two inlets and one outlet. The inlet of the pipe is the one that provides the flow of cold water through the pipe and into the downcomer during the pump driven flow, and the downcomer inlet simulates the downward flow in the reactor vessel. Both inlets were chosen as uniform velocity inlets. The pipe inlet could have been given a varying velocity profile, but it was assumed that the profile would evolve by itself further downstream the pipe since the pipe is long. The downcomer inlet had a constant velocity of 0,468 m/s, uniform across the whole face, and the pipe inlet had a uniform constant velocity of 2,708 m/s during the pump driven flow. The transition between the pump driven flow and the buoyancy driven flow took place during one second, meaning the pipe inlet velocity was linearly decreased to 0 m/s over the course of a second, as shown in figure 16. The downcomer velocity was kept the same. The outlet boundary, which is positioned at the bottom of the downcomer region, kept a zero gradient velocity condition.

Both inlet boundaries were given zero pressure gradient conditions, whereas the outlet boundary had a uniform constant pressure of 0 Pa across the whole face. Absolute values of the pressures in the domain are never used when solving the discretized equations for the problem, but rather pressure differences and since the thermophysical properties of the simulated water are set to vary with temperature, and not pressure, it is possible to set a 0 Pa pressure on the outlet even though the
The operating pressure of the reactor vessel is around 7 MPa. This could not have been done had the simulation utilized an equation of state operating like for example the ideal gas law, which requires an absolute pressure to calculate certain fluid properties.

The temperature of the pipe inlet boundary was set as 288K, and the downcomer inlet temperature was 555K. The temperature of the pipe inlet can be higher than 288K if the pool from which the water is pumped has insufficient cooling, although in the interest of simulating the worst case scenario for the pipe system, having a large temperature difference between the cold water and the warm water is desirable.

The downcomer outlet was given a temperature boundary condition specified as inletOutlet in OpenFOAM. This means it is possible to specify the temperature of the fluid coming into the domain when backflow occurs. A temperature of 555K was chosen as the inlet value on the boundary, since this was the expected temperature in the downcomer region during the buoyancy driven flow. When the boundary is working like an outlet, a zero gradient condition was used.

3.3.2 Symmetry boundaries

All four sides of the downcomer region inside the reactor vessel were given symmetry boundary conditions. Whether or not this is proper usage of the symmetry condition is debatable, although it is clear that in this particular flow case, the further away the symmetry boundary is placed from the region of interest, which is the mouth of the pipe, the less it will impact the results. With this in mind, a brief investigation was made in which the symmetry boundary of the domain closest to where the pressure vessel side would be located (see purple boundary in figure 17) was changed from a symmetry boundary condition to a no-slip wall condition (see table 5 in the appendix). The medium sized mesh was used for the investigation.

3.3.3 Wall boundaries

The inside of the pipe and the outside of the pipe insert were seen as no-slip walls with zero pressure gradients and a constant velocity of 0m/s in all directions on the faces. No wall functions were used on any wall boundaries in the domain. Furthermore, all walls in the domain were considered to be adiabatic, meaning they had zero gradient temperature conditions.

The boundaries of the domain are shown in figure 17.

![Figure 17: Boundaries of the computational domain.](image-url)
3.3.4 Initial conditions
Providing the solver with a good initial field can greatly reduce the computational costs and give better convergence for the first time steps of the simulation. In some cases, a good initial guess is required for the solution to converge at all. In this work, it was decided that a simple initialization would be used. It was mainly important to quickly form the correct temperature field inside the pipe during the pump driven stage of the simulation, and also to develop realistic velocity profiles. Therefore a steady state simulation was done on the domain with the above described boundary conditions and without the use of a turbulence model. A good convergence was seen and the initialization process was quick.

3.4 Fluid properties
Using a correct fluid model is essential for a simulation to be accurate. The fluid in the domain ranges in temperature between 288K and 555K which means some properties, which are temperature dependent, will differ greatly within the domain. The fluid model needs to capture these properties of water pressurized at 7 MPa in a realistic way. Using steam table calculators based on the work of IAWPS[12] the density \(\rho \), specific heat capacity \(c_p \), thermal conductivity \(k \) and dynamic viscosity \(\mu \) of the fluid was produced in tables. Unfortunately, it is not possible to import tables of data to represent the fluid properties into the solver used for the simulations. Instead, these properties were estimated using polynomials to match curves of the exact data. In figure 18, the polynomial curves are plotted against the exact data. The polynomials used are presented in table 6 in the appendix.
3 Method

Figure 18: The polynomial curves used to estimate the fluid properties ρ, c_p, k and μ, plotted against true property data. The grey regions mark the temperature operating range for the simulations.

These polynomials used are all of degree five, which may seem high but any lower degree of the polynomials would result in inaccurate predictions and could affect the results negatively.

3.5 Numerical solution properties
The simulations were all carried out using the open source CFD code OpenFOAM 2.3.x. It uses the finite volume method for solving partial differential equations and has the ability to solve a wide range of fluid flow problems with the pre-programmed solver applications. The OpenFOAM software has previously been used at Forsmarks Kraftgrupp AB in other LES analyses ([13]) and it was therefore of interest for the company to further strengthen their insight in the software. The pre-programmed solver used in this work was called buoyantPimpleFoam and is mainly designed to simulate transient compressible fluid flows with heat transfer. The fluid in the current work is water, which is considered to be an incompressible fluid, so the use of compressible governing equations could be seen as ill fitted. However, using a solver designed for incompressible flows often implies ignoring the term $\frac{\partial p}{\partial t}$ in equation (1), which is obviously not correct in the current flow problem. The system of equations used in the buoyantPimpleFoam solver is closed using the above mentioned polynomials, similar to how an equation of state is used.
3.5.1 Parallel processing
Parallel processing was utilized for all simulations conducted. Performing simulations using the LES method of modelling turbulence is known to be costly and if proper resolution in both time and space is wanted, serious computing power is required. The simulations were carried out on a computer cluster where between 32 and 112 cores were utilized for each simulation, depending on which mesh was used. The project was aimed to be completed from start to finish in about 6 months. This time constraint, along with the size of the computer cluster, put a limit on just how thorough well resolved the LES could be.

It is not always preferable to use as many cores as possible during a simulation, due to the fact that communication between the cores takes time. Solving a problem on a single core requires no communication between cores, but instead forces the single core to solve large matrices by itself. Using parallel processing, the matrices can be divided into smaller ones and dispersed amongst the cores. Quite simply, a balance needs to be found between reducing the size of the matrices each core has to solve, and reducing the time consumption of communications between the cores. Trial and error is the simplest way of finding out just how many cores will produce the fastest result for the current problem.

An interesting note to make on the topic of computational speed and the solution of these matrices is how a multigrid approach can effectively decrease the time it takes to solve them. The multigrid technique can be described as discretizing the system of equations on a mesh much coarser than the one provided for the solver. After the discretized equations are solved, the solver refines the mesh and repeats until it finally solves the problem on the specified mesh. This method has proved to increase convergence speed and is often utilized in CFD codes[3]. However, considering the above discussion about finding a balance between solving matrices on each separate core and reducing communications, it is easy to conclude that the first stages of this multigrid technique do not require a large amount of parallel cores. A method of letting only a small number of cores solve the problem on the coarsened meshes is implemented in OpenFOAM 2.3.x and was used in this work.

3.5.2 PISO iterative solution procedure
Solving the equations described in chapter 2 was done using an iterative procedure. The equations have to be discretized, and this is carried out using the computational mesh generated for the problem. There are several methods for coupling the set of equations to each other, one of which will briefly be described below.

The PISO (Pressure Implicit with Splitting of Operators) algorithm is a way to couple the velocity with the pressure in the domain. It was developed by Issa[14] and has its basis in the SIMPLE algorithm which was developed previously by Patankar & Spalding[15]. The PISO method implemented in OpenFOAM can be described as follows:

1. The pressure field for the current time step is guessed, often by setting it equal to the previous time step.
2. The momentum equations, discretized in each cell of the mesh, are solved to obtain the velocity field.
3. The discretized energy equation is solved.
4. The pressure field is corrected using the obtained velocity field to satisfy continuity.
5. The velocity field is corrected using the newly corrected pressure field.

After this, the PISO algorithm repeats step 4 and 5 simply by correcting the pressure field yet again, and updating the velocity field for the second time, with the newly corrected pressure field. In
OpenFOAM, it is possible to set the amount of correcting loops. In the current work, a total of 3 correcting procedures were used to ensure good convergence. Another option is to add a secondary pressure correction in each correcting loop to further enhance the convergence and make up for the use of a non-orthogonal mesh. This secondary correction was used since all cells in the computational meshes were not completely orthogonal. After all specified pressure correctors are done and the velocity field is updated, the transport equations for other quantities, such as the turbulent quantities, are solved and the PISO loop finishes.

It is possible to solve the problem using the SIMPLE algorithm, which does not repeat step 4 and 5 as the PISO algorithm does, but rather checks for convergence. If convergence is not met, the SIMPLE loop is repeated. For transient simulations, the PISO algorithm is stronger than the SIMPLE algorithm due to the fact that it requires no additional iterations after it finishes the PISO loop. This also means no relaxation factors should be used in the PISO loop. A sufficiently small time step is however required to yield accurate results[16].

If the simulation shows unstable behavior, it is possible to repeat the PISO loop until better convergence is met. This does of course increase the computational time, but could benefit certain simulations. When using the coarse computational mesh in this work, it was found that stability was a major issue possibly due to cells of low quality. By repeating the PISO loop several times until good convergence was met in each time step, the issues were resolved. This method of repeating the PISO algorithm is called the PIMPLE method in OpenFOAM, because it is done in the spirit of the SIMPLE algorithm which does not finalize a time step until convergence is met. It is hard to motivate the use of the PIMPLE algorithm for the larger meshes as additional PISO loops are costly, but computational cost for the coarse mesh still managed to be kept low.

To further strengthen the use of the PISO algorithm, as opposed to the tougher convergence criteria of the PIMPLE algorithm, a simulation was performed in which the PIMPLE algorithm was used on the medium sized mesh. The PIMPLE algorithm was activated in the beginning of the buoyancy driven stage of the simulation and it was found to do the PISO loop twice for each time step to achieve convergence. The computational time did therefore almost double, compared to the original simulation where only one PISO loop was used for each time step, and due to time constraints in the project, the PIMPLE simulation was only run for about 100 seconds of the buoyancy driven stage.

3.5.3 Further simulation properties
It should be stressed that the first stage of the simulation, when cold water flows into the reactor, is only done to give a good starting point for the second stage of the simulation, when buoyancy forces carry the warm water into the pipe. The first stage is meant to create turbulent structures in the domain, which the initialization had failed to do since it did not utilize a turbulence model. The forming of the turbulent structures is a process which may take some time. It was estimated that the time it takes for a particle to travel from the pipe inlet to the domain outlet was about 2 seconds and three flow-throughs of a particle, about 6 seconds, were seen as a sufficient simulation time to form the necessary realistic structures. The pipe inlet flow is decreased over the course of 1 second before the buoyancy driven stage of the simulation begins. At time 0, the pipe inlet flow is completely stopped. The lengths of the various simulations are presented in table 3.
To conform to the requirements of using a small time step to produce accurate results from the PISO loop, the time step size was set as adaptive and bounded by a maximum Courant number in the domain, set at 0.95. This means time steps would never be too large, as it would cause the maximum Courant number to be above 0.95. Having a Courant number below 1 ensures numerical stability for the discretization schemes as well as good convergence for the PISO algorithm. The approximate time step sizes during the buoyancy driven stage of the simulation with the four different meshes are shown in table 4.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Time elapsed [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse mesh</td>
<td>323</td>
</tr>
<tr>
<td>Medium mesh</td>
<td>245</td>
</tr>
<tr>
<td>Fine mesh</td>
<td>180</td>
</tr>
<tr>
<td>Snappy mesh</td>
<td>910</td>
</tr>
<tr>
<td>Medium mesh (PIMPLE algorithm)</td>
<td>101</td>
</tr>
<tr>
<td>Medium mesh (downcomer wall boundary condition)</td>
<td>189</td>
</tr>
</tbody>
</table>

The differencing schemes used when discretizing the equations in each cell were of second order accuracy for all variables when the mesh was sufficiently fine. If the mesh was too coarse, the schemes were only first order accurate. The turbulent kinetic energy had a differencing scheme of strictly first order accuracy.

3.5.4 Sampling of results

After each time step in a CFD simulation is completed, it is possible to save the results of all calculated quantities. It would, however, be unwise to gather all the data at all times as this would require a lot of space for storage, and further increase the total computing time. A better approach is to try to estimate which results are of interest and how often these results should be sampled. In the current work, the temperature field is of major interest, and so a comprehensive field of sampling points was placed in the pipe region of the domain. The temperature in each of these points was saved for each time step during the buoyancy driven stage of the simulation. The points are shown in figure 19. Only a select few of these points were eventually used in the analyses that followed the simulations.
It is of course wise to save restart points at certain time levels, where all fields necessary for a restart are saved. This was done every 3 seconds. In addition to this, the velocity and temperature fields of the whole domain were saved about 5 times per second so that a good visualization of these fields could be made in post-processing.

3.6 Relap5 software

To provide a stronger analysis of the method chosen to solve the current fluid flow problem, it is preferable to approach the problem with different methods. CFD analyses are costly, especially when using scale-resolving simulations. A cheaper approach is to utilize a code which does not model complex phenomena such as turbulence.

The Relap5 thermal-hydraulic code was created in 1979 and has been under development ever since. It is developed by Idaho National Laboratory and is designed to analyze the thermal-hydraulic behavior of light-water systems[17]. It uses a set of 1D equations coupled with correlations for specific component’s behaviors. Components such as pumps, valves and other can be represented in the code.

Being that the code is essentially 1D, and the problem investigated in this work is in 3D, some modifications to the software are needed in order for it to produce useable results. The modifications, and the general set up of this particular problem, will not be discussed as it is outside of the scope of this thesis. It is however important to stress that the Relap5 software can be used to analyze the current flow problem much faster than a CFD tool such as OpenFOAM. Results from a Relap5 simulation run for 2000 seconds will be presented and compared to the results of the CFD analysis. The results are sampled in slightly different locations than those sampled in the CFD simulations. This is due to the way the model is built in Relap5. The pipe section of the model consists of four to six “layers” of cells as shown in principle in figure 20, and 48 rows of cells, thus making a total of 264 cells.

![Relap5 computational cell](image)

Figure 20: Principle layout of the 2D computational cells within the pipe, in the Relap5 model.

4 Results

In this chapter, the results from the various simulations are presented. Visualizations of the instantaneous flow field are shown, along with graphed data of the temperature profiles in the fluid inside the pipe. The results will be analyzed in the discussion chapter which follows.

4.1 Visual representation of instantaneous results

A visualization of the general flow field in the domain can prove to be very useful for analyzing the results of a simulation. By studying images, or even animations, of parameters such as temperature and velocities in the domain, one can come to important conclusions regarding the flow problem, or even the validity of the results. In this section, the general flow field is presented from different views with images created in the Paraview 4.1.0 post-processing tool[18]. The ranges of the color scales used in each figure are chosen to highlight temperatures, velocities or y^+ values in the domain. Values above or below the limits of the range are colored according to the maximum or minimum value used in the range.

Figure 21 shows an instantaneous shape of the cold water jet in the downcomer, during the pump driven stage of the simulation. Cells of temperature between 288K and 480K are displayed, along with the boundaries of the pipe structure and two of the sides of the downcomer region. The cells and the boundaries are colored by temperature.

Figure 21: Cells of the fine mesh with temperature between 288K and 480K, colored by temperature, during a time step in the pump driven flow.

Figure 22 displays a cross section through the middle of the fluid inside the pipe and downcomer region, along with several cross sections of the fluid inside the pipe. The instantaneous temperature in each cross section is displayed after about 160 seconds of the buoyancy driven stage has been run. The image shows how the temperature profiles reach a steadier and diffuse state further away from the pipe opening.
Figure 22: Various cross sections of the fluid domain, colored by temperature, during a time step in the later stages of the buoyancy driven flow.

In figure 23, a close-up of the pipe insert and downcomer cross section is shown, colored by instantaneous temperature results during the buoyancy driven stage of the simulation. Two different temperature scales are used to show more clearly how the cold water exits the pipe opening, and to show the turbulent mixing near the pipe opening.

Figure 23: Two identical cross sections in the middle of the pipe, colored by temperature of two different scales, during a time step of the buoyancy driven flow. It shows the turbulent motions near the pipe opening and how the cold fluid exits the opening.
4 Results

Figure 24 displays the instantaneous velocity in the y-direction in a cross section in the middle of the pipe and downcomer. One can note the slightly chaotic motions near the pipe opening, and a more steady velocity profile far away from the opening.

In figure 25, the instantaneous velocity in the z-direction is displayed in several different cross sections of the downcomer region during the buoyancy driven stage of the simulation. It shows a recirculation region just beneath the pipe insert and in general how the bluff body of the pipe insert disrupts the downward flow past it. The image also shows how the lifting eye mounted on the pipe structure affects the general look of the flow field.
In figure 26 and figure 27, the instantaneous y^+ values on the pipe structure are displayed for the fine and the snappy mesh, during the pump and buoyancy driven stage of the simulations. Different scales are used to highlight certain regions where higher y^+ values can be found.

Figure 26: Different scales of instantaneous y^+ values of the walls of the pipe during the pump driven flow (left) and the buoyancy driven flow (right), for the fine mesh. One half of the pipe structure is shown in the top of the figure, and the pipe insert is shown at the bottom.

Figure 27: Different scales of instantaneous y^+ values of the walls of the pipe during the pump driven flow (left) and the buoyancy driven flow (right), for the snappy mesh. One half of the pipe structure is shown in the top of the figure, and the pipe insert is shown at the bottom.
4.2 Temperature profiles from the buoyancy driven stage of the simulation

As previously stated, interest does not lie in the pump driven flow or the dynamics of the jet forming below the pipe insert, but rather the temperature profiles of the fluid inside the pipe as buoyancy forces dominate the flow. In this section, the absolute temperatures as well as temperature differences in selected points for the different simulations are plotted against time. The points used to sample the temperatures during the CFD and Relap5 simulations respectively are shown in figure 28. Note the slight difference in the placement of the OpenFOAM points and the Relap5 points. Studying figure 22, it is clear that a temperature gradient in the cross section of the fluid in the pipe is practically only present in the z-direction, which is why the sampling points were not placed at different x-coordinates.

Figure 28: Locations of the temperature sampling points used in the analyses.
4.2.1 Mesh investigation
In the present work, four different computational meshes were created (see table 1) and used for the transient simulation. A comparison of the results from the buoyancy driven stage of the simulation with the different meshes are shown in figure 29, where absolute temperature and temperature differences between point 1 and point 3 (see figure 28) are plotted against simulation time.

Figure 29: Temperature profiles during the buoyancy driven stage of the simulation, generated by the four different meshes. Left shows the absolute values in points 1, 2 and 3 at the chosen location, and right shows the temperature difference between point 1 and point 3 at the chosen location.
4.2.2 Comparisons with Relap5 profiles
In figure 30, the temperature profiles generated using the 1D thermal-hydraulic code Relap5 are compared with the profiles created using the fine mesh and the snappy mesh. Absolute temperature and temperature differences between point 1 and point 3 (see figure 28) are plotted against simulation time.

Figure 30: Temperature profiles during the buoyancy driven stage of the simulation, for the Relap5 simulation and the CFD simulations using the fine and snappy mesh. Left shows the absolute values in points 1, 2 and 3 at the chosen location, and right shows the temperature difference between point 1 and point 3 at the chosen location.
4.2.3 PIMPLE algorithm and wall boundary condition investigation

The results generated from the medium mesh are presented below in figure 31, and compared to the results from the convergence investigation, in which the PIMPLE algorithm was used (see section 3.5.2), and to the results from the wall boundary investigation in which one of the symmetry conditions was changed to a no-slip wall condition (see section 3.3.2). Absolute temperature and temperature differences between point 1 and point 3 (see figure 28) are plotted against simulation time.

Figure 31: Temperature profiles during the buoyancy driven stage of the simulation, generated by the medium mesh with different settings and boundary conditions, at location C and F.
5 Discussion

In the following sections, the results seen in the previous chapter are analysed, followed by a discussion strictly regarding the setup of the model.

5.1 Discussion regarding the simulation results

5.1.1 Computational meshes

Providing any finite volume CFD solver with a well-made high quality computational mesh well suited for the flow problem and turbulence model is crucial for acquiring reliable results. Both experience and talent is required from the user in order to produce an appropriate yet economical grid. An improper mesh with cells of low quality or a bad distribution of cells in the domain could lead to stability and convergence problems. Perhaps even worse, a bad mesh could produce results which could be interpreted as reasonable, but are essentially far from correct.

It is widely known that the LES turbulence model requires a computational mesh far more expensive than more common turbulence models, such as the k-ε and k-ω models. Completely resolving the highly unsteady turbulence phenomena is near impossible, especially close to wall boundaries where the smallest length scales of the turbulent structures are found. In order for LES to be cheap enough to use in an industrial analysis such as the one investigated in this work, one will have to settle for a computational mesh which is in theory not sufficiently fine to utilize all the strengths of LES. The simulations done in this work qualifies as a VLES, and is probably very far from being anything better. A proper investigation using a two-point correlation method, or studying the energy spectra of the resolved flow field is required to estimate just how well resolved the turbulence is, as is described by Davidson [19], but was not done in this work due to time constraints and lack of knowledge. However, as shown by Smith et al. [13], accurate results can well be achieved with coarser meshes and creating a very fine mesh is no guarantee of good results.

Furthermore, using a mesh in which the cell sizes vary (such as having a finer spacing near wall boundaries) can cause erroneous results, as noted by Ghosal & Moin[20]. Using a variable filter width, as is done in this work (see equation (11)) actually invalidates the standard LES equations which are derived for a case with a constant filter width. However, Ghosal & Moin also manage to show that the error introduced from using the standard LES equations along with a variable filter width is of the same order as the numerical differencing schemes used. In other words, when using a second order differencing scheme for approximating the derivatives in the simulation, this error will also be of second order. In any case, any other approach of this problem (either using another set of LES equations derived for the use of a varying filter width, or using a mesh made up entirely of isotropic cells) is outside the scope of this work.

Focusing on the computational grids used in the present work, none of them are a perfect match for modelling turbulence using the LES method. The coarse mesh is obviously far too coarse to resolve the turbulence sufficiently, and large errors can be expected in the modelling of the turbulent viscosity. Even the fine mesh, consisting of 3.2M cells, can be considered coarse as it does not provide y’ values below 1. Figure 26 shows contours of the y’ values on the walls of the pipe for the fine mesh during the pump and buoyancy driven stages. It is clear that the boundary layer is not sufficiently resolved for the pump driven stage, which has a Reynolds number of about 315000 in the wider part of the pipe, and 900000 in the thinner part. y’ values of around 500 can be seen near the expansion from thin to wide pipe, and values of around 700 are present in the more turbulent region of the mouth of the pipe.
The fine mesh does however seem to be fairly well suited for the buoyancy driven stage, as y^+ values of below 3 can be found in most regions of the inside of the pipe, although some regions showed values of up to 40. Again, the mouth of the pipe has the highest y^+ values, being up to 100. The outside of the pipe structure is mostly surrounded by an unordered mesh which was not created with good boundary layer resolution in mind. This leads to high y^+ values around the pipe insert, as shown in the bottom of figure 26. The underside of the pipe insert experience lower shear velocity and have therefore lower y^+ values. It is also interesting to note how the buoyancy driven flow produces lower shear velocities on the outside of the pipe opening than the pump driven flow does. This is due to buoyancy forces carrying warm fluid upwards, effectively reducing the downward velocity around the pipe opening and creating a low velocity wake around it (see figure 25). We can also note how the lifting eye has an effect on the flow field, in that it disrupts this wake and allows faster moving fluid close to the pipe, resulting in slightly higher y^+ values below the lifting eye.

Using figure 27 to compare the above mentioned y^+ values with those of the snappy mesh simulation, which does not have a refined boundary layer mesh at all, we see the same general features, although with generally higher y^+ values. The y^+ values ranges up to 100 in most of the pipe region during the buoyancy driven flow, and above 500 near the pipe opening. The y^+ values on the outside of the pipe insert are comparable to those of the fine mesh simulation. During the pump driven flow however, the y^+ values are in the thousands and the mesh is clearly too coarse near the wall boundaries to resolve the small turbulent structures.

Being that the finest of the meshes, with 3,2M cells and a refined boundary layer, barely manages to produce adequate y^+ values, it may be seen as unnecessary to even begin investigating coarser meshes. However, the y^+ value is not always a good indicator of well resolved flow. Remembering the y^+ value is linearly dependent on the shear velocity, there will be regions of reversed flow where the shear velocity, and thus also y^+, will be 0. Furthermore, in separated flows with high shear velocity it is difficult to generate low y^+ values even with very fine meshes. So the formulation of the y^+ value is just not easily applicable to all flow conditions.

Also concerning the coarser meshes, buoyancy effects stem from larger scales meaning the need to properly resolve all of the small scales may not be of crucial importance. The buoyancy driven stage of the simulation could then possibly be sufficiently resolved with the coarser meshes. Although, the results generated from the pump driven stage of the simulation, where buoyancy forces have little effect on the fluid motions, may still be quite inaccurate due to the low boundary layer resolution.

Using the dimensionless Rayleigh number, we can form an idea of just how turbulent the boundary layer may be due to the buoyancy effect. Although equation (20) is derived for the case of a vertical hot plate immersed in cold water, it can be used to roughly approximate if the boundary layer in the pipe insert should behave in a turbulent or laminar manner. The local Rayleigh number, based on the distance between the mouth of the pipe and the 90° bend inside the pipe insert, was computed as $7.35 \cdot 10^9$, which is above the critical value suggested by Bergman et al. [8] and Holman [9] for when the boundary layer starts to become turbulent. This suggests that a well resolved boundary layer is required to fully capture all the turbulence effects in the domain. Since the length scales of the turbulent motions near solid boundaries often are small, a very fine boundary layer grid is required, most likely finer than those provided in the computational meshes used in this work. The validity of this investigation could be questioned since the equations for calculating the Rayleigh number are derived for a completely different flow scenario.
Studying figure 29, the temperature profiles in selected points in the pipe region are shown for the simulations run with the four different meshes. Common characteristics of the flow field generated by all four meshes include the heavily fluctuating velocity profile near the pipe insert, and a more dampened steady appearance further down the pipe. Figure 23 shows this in principle as chaotic motions occupy the pipe insert and the regions around the pipe opening. Figure 24 also provides a clear picture of how the velocity profile becomes more steady the further away it is from the pipe opening.

It is also possible to see how the thickness of the warm water layer varies throughout the pipe, by studying figure 22. It seems to retain a fairly constant thickness all the way from region D to region F, although the temperature profile takes on a more diffusive appearance further down the pipe. Looking at figure 24, one can see how the well-defined stratification at region D becomes more diffuse further down the pipe. More diffusion of course leads to a smoother temperature gradient in the cross section of the pipe. Coarser computational meshes usually cause more diffusion than fine meshes, and this can be seen by studying point 3 in figure 29. Point 3 is located at the very bottom of the pipe cross section, which is occupied by cold water flowing out of the pipe. As the simulation carries on, the bottom of the pipe slowly warms up, as seen easiest in sample point 3 at location A in figure 29, and this occurs earlier for the coarser meshes. Unfortunately, the fine mesh simulation was not run for long enough for point 3 to be heated up, so a good comparison of the differences between the finest and the coarsest mesh cannot be done. However, by comparing the graphs of the coarse mesh with those of the medium mesh (which generally seem to be similar to those of the fine mesh), one can see that the “Coarse mesh 3” point increases in temperature far earlier than the “Medium mesh 3” point does. This difference could be of importance for a structural analysis, since a clearly stratified temperature field with high temperatures at the top and low temperatures at the bottom could produce unwanted stresses in the material. How long this stratification lasts could affect the loads on the pipe structure and the point in time when the bottom of the pipe starts warming up is therefore of interest. Perhaps an even more important quality to note is the overall temperature difference between the top and bottom points in the cross section of the pipe. This gives a good insight in just how severe the temperature gradient in the pipe’s cross section is.

The temperature difference graphs in figure 29 displays the temperature difference between point 1 and point 3 in the selected locations. In general, the graphs show a larger temperature difference in the pipe with the coarse mesh than with the finer meshes. So with this in mind, the coarse mesh seems to produce a temperature field which would cause greater thermal loads on the pipe, than the finer meshes do, although the general difference between these results can be considered minor.

If we again turn our attention to the absolute values shown to the left in figure 29, and this time focus on the initial rise in temperature in point 1 of the different locations, we can note several differences between the meshes. In sections A and C, the coarse mesh results show a higher initial temperature increase in point 1 than the other results do. However, in section F it is the fine mesh which generates a higher initial temperature increase. The fine mesh seems to retain a higher temperature in the warm water front flowing into the pipe. This seems reasonable, remembering that a coarser computational mesh will produce more diffusive results than a finer. Again, the differences between the mesh results here are notable but not large enough to be of any major concern for this particular application.

There is a level of uncertainty when comparing results using data in single points, as is done in figure 29, 30 and 31. A layer of warm fluid and a layer of cold fluid are separated by a boundary layer. If this separating boundary layer is very thin, a sampling point may in one simulation be located in the warm region of the fluid, and in another simulation located in the cold region, even though the separating
layer may just be located slightly higher or lower in the pipe. Data from more sampling points should be analysed to make sure this is not the case, although since no large discrepancies are seen in any comparison of the different CFD simulations, this extra work would probably prove to be unnecessary.

An important factor to consider when designing a computational grid is time. Generating a well-made mesh can take up a lot of time in a project, but the mesh itself can also put constraints on the simulation time. A high number of cells in a mesh is of course expensive to use, but one must also remember that the size of the cells can have a large impact on how big the time steps in a simulation can be. Since the time step used in this work was adaptive and depended on the largest Courant number in the domain (see the Courant number equation (22)), it was strongly coupled to the cell sizes in the mesh. Using very small cells in a region of high velocities leads to the solver having to use very small time steps in order to conform to the constraint of keeping the maximum Courant number in the domain below 1. The limiting cells in the ANSA generated meshes used in this work were often found in the transition zones between the ordered mesh and the unordered mesh (see figure 11).

The time step size during the buoyancy driven stage of the simulation was held fairly constant. Looking at table 4, we clearly see a major advantage of the snappyHexMesh utility in generating a computational grid for this particular problem. The solver can take time steps almost six times as large with the snappy mesh as it can with the medium mesh, and remembering that the snappy and medium meshes are comparative in size (1,5M and 1,8M cells respectively), the difference in simulation time between the two meshes is almost solely dependent on the difference in time step size.

Analysing a flow problem such as this one to see how the temperature profile of the pipe evolves from a fully cooled to fully heated state is of interest. Using the CFD method to do such an analysis is however very costly in this case, as it would take extremely long for the fluid in the entire pipe to reach a fully heated state. Briefly studying the simulation results from the snappy mesh in figure 30, it is clear that the entire pipe will not reach a steady state for a long time. Even after 900 seconds, the fluid is slowly increasing in temperature. But if such a lengthy analysis is to be done, using the snappy mesh, in this case, is clearly the best choice.

An improved ANSA mesh could have been made if the lifting eye on the pipe insert was removed in the model. It would then have been possible to create a fully structured mesh throughout the domain, and as a result, the transition zones from tetrahedral to hexahedral cells could have been excluded. This would allow the solver to take larger time steps and thus make the simulation progress faster. However, the lifting eye does seem to have an impact on the results. Looking at figure 25, one can see how the lifting eye appears to split the wake beneath the pipe opening. This could potentially have an important impact on how the cold water exits and the warm water enters the pipe. Studying figure 23, it can be noted that the cold water exiting the pipe immediately gets pulled underneath the pipe insert. This effect would most likely also be seen in a model omitting the lifting eye, although it may be of a different magnitude. Unfortunately, no such model was created to investigate this phenomenon.

5.1.2 Comparison with the Relap5 results
Modelling fluid flow problems involving heat using the 1D code Relap5 is already an accepted method in the nuclear power plant industry. Geometries very similar to the one studied in this work have been used in previous analyses regarding the fluid’s transient temperature profiles in the pipes connected to the reactor pressure vessel. The Relap5 code generally produces results which can be favourably used in structural analyses on the components. The code has been used extensively at Forsmarks Kraftgrupp AB and is generally well understood by its users. It is therefore possible to create useable computational models of flow problems such as this one in the Relap5 software. It
should be noted that if the employees at Forsmarks Kraftgrupp AB had not had previous experience with the code, this Relap5 approach might not have been as simple as it was in this work.

By using the Relap5 software to calculate the temperature profiles of the fluid for this particular problem, and comparing these profiles to those generated by the CFD analysis, it is possible to evaluate the validity of both results with regards to conservativeness and important flow phenomena captured.

Figure 30 provides a clear comparison of the fluid temperature profiles in certain sections of the pipe, for the Relap5 simulation and the fine and snappy mesh CFD simulations. A very different appearance of the profiles can be seen in all locations studied. Near the pipe opening, at location A, the CFD results showed a heavily fluctuating temperature profile, which did not take on a dampened appearance until farther down the pipe. The Relap5 results do not show these intense fluctuations, although some fluctuating behavior can still be noted. The CFD fluctuations, which lose intensity over time, are mainly caused by turbulence, a phenomenon which the Relap5 code does not attempt to model.

Another important difference is just how steep the temperature rise is at each location. The Relap5 code estimates the top and middle of the fluid in the pipe to take on the maximum temperature of the domain, 555K, after a very short period of time. The CFD calculations showed no such immediate behavior and it seems that a far longer simulation time is required to reach this maximum temperature.

Studying point 3 in figure 30, the point located in the bottom of the pipe’s cross section, for the F location, we see that the temperature calculated by Relap5 rises initially, and then levels out after about 200-300 seconds of simulation time. The temperature in these bottom cells remains constant at just above 450K as the simulation progresses. This can be explained through viewing figure 32. It shows the principle setup of the computational cells and how they are related to the actual geometry. Figure 32 shows the bottom cells occupied by a lower temperature fluid than the above cells, and since this lower temperature leads to a lower density, buoyancy forces will maintain the stratified appearance. The current Relap5 model does not take conduction in the z-direction into account, an effect which obviously would have created a steadily rising temperature of these bottom cells.

Studying the temperature differences in figure 30, we see the absolute temperature difference between the upper and the lower cell in the pipe’s cross section. In the thinner part of the pipe, where the Relap5 model only uses 4 computational cells in the z-direction, the temperature difference always levels out to 0K within 400 seconds. The wider part of the pipe however, at section F, maintains a constant temperature difference of around 100K after 400 seconds. Comparing this to the CFD simulations, a large difference is seen. The CFD results show a temperature difference which initially rises fairly quickly and then climbs to a peak difference after 200 seconds in the thin part of the pipe and 400 seconds in the wide part. The difference is then reduced at a slow pace of about 6K per minute. The largest temperature difference in the CFD simulation was seen to be well above 150K. The Relap5 results do show higher temperature differences with about 225K, but only maintains them for 50 seconds.
So a main point to take away from this comparison is that both the CFD and the Relap5 simulation provide temperature distributions of the fluid in the pipe which would impose thermal loads on the surrounding materials. The Relap5 model creates results with fast temperature changes, often estimating parts of the fluid in the pipe to rise from 288K to 555K within one minute, which could prove to be troublesome when doing a structural verification using these results. The CFD results show a much slower rise in temperature, but maintain the stratified appearance throughout the entire pipe for a very long time.

Another key factor to how thermal loads are imposed on solid boundaries is the heat transfer coefficient. Simply transferring the temperature on the boundaries of the fluid flow calculations to a structural calculation would not be entirely correct and it is always preferred to make use of a heat transfer coefficient in the structural calculation. This coefficient depends on both the temperature of the fluid, and the velocity of the fluid. If the simulations predict the velocity of the fluid inside the pipe to be stagnant, the heat transfer coefficient will be very low and thus the heat of the fluid will not transfer quickly to the pipe. So investigating the heat transfer coefficient and its impact on the final results is of importance, but has not been done in this work.

In any case, it is always preferable to do structural verifications of the components in a nuclear power plant using accurate yet conservative estimates of the loads on the components. Judging whether the CFD or the Relap5 model produces the most conservative loads has to be done with respect to how severe the thermal loads are. Fast thermal shocks, seen in the Relap5 results, are of course more harmful than slow temperature increases, just as a sharp temperature gradient in the fluid, seen in the CFD results, are more harmful than a smooth gradient. In this work, it is assumed that the Relap5 results are more conservative than the CFD results since they show these fast thermal shocks along with the stratified appearance in the wider part of the pipe. Further conservativeness can manually be introduced in the results and will be discussed in an upcoming chapter.

5.2 Computational model

Making simplified assumptions when analyzing a fluid flow problem using the CFD method is required to keep computational costs at a reasonable level. However, it is important to take extra care when creating a simplified model of a real physical problem. All assumptions introduced to the model must have a realistic background, or at least be proven to give good results while simplifying the calculations. For the current work, creating conservative results is of importance and thus all the assumptions must be analyzed with respect to how they affect the results. In this section, the CFD model created in this work will be analyzed and the strengths and shortcomings of it will be highlighted.

5.2.1 Geometrical simplifications

As stated earlier in this report, the geometrical features of the cooling system were simplified to a large degree. Modeling the entire cooling system would of course be preferable, but the time consumption for the calculation and creation of such a domain would simply not be feasible. Perhaps
the geometrical simplification which affects the results the most would be to not include the elaborate suspension system for the pipe insert. The suspension is positioned as close to 3D from the mouth of the pipe, and continues all the way to the vessel wall. It should be noted that this simplification is mainly made to decrease the complexity of the meshing stage. Manually creating a computational grid around this complicated geometrical feature is time consuming and it will increase the difficulty of maintaining a good mesh quality throughout the domain. Instead, the domain boundary was placed 3D from the mouth of the pipe, completely leaving out this complicated region of the geometry. It would definitely be of interest to investigate how much of an impact the suspension system has on the flow field, and how it will affect the flow of warm water into the pipe insert as this could lead to conclusions on just how simplified the geometry of a buoyancy driven flow problem can be. Such an investigation will be left as future work.

The real pipe insert is surrounded by a thermal insulation, which was not included in the computational domain. Accurately capturing the flow field in such geometries, which are similar to those of plate heat exchangers, is difficult and resolving the flow dynamics within them would require a sufficiently fine mesh which would further increase the computational cost. Including the insulation in the model would introduce another unknown into the problem and just judging whether or not the modelling of it is correct would require far more work than what is reasonable for this project. Other solutions to this problem, such as introducing a porous media in place of the thermal insulation, will be discussed in the future work segment.

It should be pointed out that by ignoring the effect of the thermal insulation, more thermal energy will be kept inside the pipe, and transported out of the reactor pressure vessel. Therefore, this can be seen as a simplification made with conservativeness in mind, as the components will be exposed to a larger heat gradient than they would if the insulation was there.

The distance from the upper boundary of the downcomer region to the pipe insert needed to be long enough for the flow in the downcomer to develop and become fairly steady. Placing the inlet to the downcomer region too close to the pipe could create a situation where the flow behaves unrealistically, whereas too far away would simply be a waste of computing time.

Extending the domain sufficiently below the mouth of the pipe is also an issue to be concerned with. When simulating the pump driven flow, a jet forms below the mouth of the pipe (see figure 21). The length of this jet is difficult to estimate without initial simulation tests, but it is almost certain that it will not be a coherent jet very far below the mouth of the pipe, but rather break up and disperse its momentum to the fluid around it. It was decided that the coherent jet should be captured in the domain, as well as some part of the region below the jet where it has broken up. It would be preferable to extend the domain downwards far enough from the jet so that the flow field regains a stable profile, although this would also increase the computational time significantly. The flow can be seen to be very chaotic in appearance even near the outlet of the domain, which could cause some stability issues. Versteeg & Malalasekera[3] notes that sizeable errors may occur if an outlet boundary (using a zero gradient velocity condition) is placed in a region where the flow is not fully developed. However, since the pump driven flow and the flow field in the lower regions of the downcomer are not of particular interest in this work, having a badly positioned outlet is not a major concern. Furthermore, stability issues caused by backflow occurring at the outlet were not found to be an issue.

5.2.2 Heat transfer simplifications
The effects radiation has on any fluid flow problem depend on a number of factors such as the temperature ranges involved in the domain and the magnitude of the other modes of heat transfer:
convection and conduction. If, for example, conduction is negligible and the flow velocities in the problem are small, meaning heat transfer by convection is small, the radiative heat flux can have a considerable impact on the total heat fluxes in the domain. However, taking radiation effects into account when analysing a problem using the CFD method will increase the complexity of the model and bring further uncertainties into the solution. A separate radiation model must be introduced and several exist[3], although all require special attention in order to give accurate results. A modification of the governing equations for the fluid is needed if the fluid itself can absorb and emit radiative fluxes.

Focusing on the present case, the radiation heat transfer phenomenon could be of major importance when studying the temperature profiles in the cooling pipe. As seen in figure 22, a stratified field of warm and cold water occupies the pipe region, and it is reasonable to think that the surrounding pipe would also have this distinct temperature gradient. The difference between the highest temperature in the warm layer and the lowest in the cold layer were found to be almost 200K in certain regions of the pipe. Water is an efficient absorber and emitter of radiative heat fluxes so radiation immediately from the upper part of the pipe to the lower part would be inhibited, but the temperature of the fluid would surely be affected. Heat transfer from radiation could result in a smoother temperature gradient in the cross section of the pipe, although this is only speculation.

A perhaps even greater simplification is to not model heat flux from the fluid to the solid region in the domain. That is, to take into account the pipe structure being heated or cooled, and also how the temperature varies through this solid. There are implemented solvers in OpenFOAM 2.3.x which can couple a fluid and solid domain and the heat transfer between the two. The solid region would obviously have to be given correctly chosen material properties, as well as a separate computational mesh adjacent to the fluid region. Using the coupled fluid-solid model approach to capture the temperature in the structure would however require the geometry of the solids to be accurate. Due to several geometrical simplifications around the pipe insert, primarily the omitting of the thermal insulation surrounding the pipe, the conjugate heat transfer would not be accurate here. An alternative approach could be to consider the effect of heat conduction through the solids only in certain areas, such as the pipe outside of the reactor pressure vessel, where no insulation is fitted. The geometry in this region is fairly accurate (apart from omitting the suspension system for the pipe structure) and so the conjugate heat transfer may produce accurate results. It should be stressed that the inclusion of the solid region in the model would be done purely to capture the effect it has on the flow field, and not to do a structural analysis.

5.2.3 Boundary conditions
On the topic of choosing the correct boundary conditions, one must base their choice on experience and common sense. Whether or not the condition would be a good representation of the real boundary is not always a trivial question to answer, especially when a boundary has been created in the computational model which is not present in the problem being modeled. In the current work, the four parallel sides of the downcomer region were given symmetry boundary conditions. Considering the placement of the two boundaries situated closest to the internal surface of the reactor pressure vessel and the reactor core shroud respectively (see figure 33), it is easy to see that a no-slip wall boundary condition may be better suited. The perhaps best solution, without having to decide which boundary condition is the most accurate, would be to extend the domain all the way to the vessel and core shroud walls as depicted in figure 33. This was decided against as it was speculated early on that the computational cost of the simulations would very high, even with the smaller domain. The same reasoning was used for not extending the other two symmetry boundaries.
The symmetry condition implies there is no flow across the boundary. Considering the buoyancy driven flow in the simulation, the flow in the downcomer could be seen as fairly stable, at least near the sides of the computational domain. The bluff body of the pipe insert would of course interrupt the stable flow and perhaps cause the flow to be directed out through the sides of the domain, and the symmetry boundary conditions would then be improper. The symmetry boundary imposes an unphysical constraint on the turbulent structures, even in cases where geometry and the time-averaged variables are symmetric with respect to the boundary. Periodic boundary conditions would be better suited as they do not impose any constraints on the resolved turbulence, although these conditions imply whatever quantities exits one of the boundaries, must enter the other boundary, which of course is not entirely correct.

A brief investigation was made regarding the boundary condition on the downcomer side closest to the pressure vessel side (purple in figure 17). In order to further motivate the use of the symmetry boundary condition, the boundary condition was changed to the perhaps more intuitively chosen no-slip wall boundary condition as noted in table 5 in the appendix. The purpose of this investigation was to see if the simulation results depend heavily on which condition is specified on this specific boundary.

Shown in figure 31 are the temperature profiles of said investigation, along with profiles from a reference simulation in which the only difference was the boundary condition. We see a very good agreement between the two cases; only small discrepancies can be noted. The main difference to note is how the initial temperature rise is slightly higher for the reference case (see location F), although this difference is only of about 10K, and remains the same throughout the simulations. The time it takes for the warm water to reach the back of the pipe region (location F in figure 28) is roughly the same for both cases. So whether the specified boundary condition is a symmetry condition or a no-slip wall condition does not seem to have a significant impact on the results in any way.

Using wall functions to model the flow field close to walls is an approach used when the mesh is too coarse to properly resolve the boundary layer. However, wall functions can only model the flow accurately when used within their operating limits. Having a too coarse or too fine boundary mesh can cause the functions to perform poorly and it is difficult to create a proper boundary mesh for a complex geometry. Wall functions especially have troubles modeling a correct flow field when the
flow is detached from solid boundaries and should simply not be used in those regions. Since the flow in the domain studied in this work was not expected to behave similarly across all wall boundaries, no wall functions were used. This would probably mean the boundaries would require a much finer mesh to resolve the flow field properly.

Giving the inlet boundary a uniform steady velocity profile is also questionable, considering the various components positioned above the pipe insert (see figure 4). The main feedwater system is not sufficiently far away from the inlet boundary of the computational domain for the flow conditions to be considered stable. Surely, a fluctuating profile would be present here, and it would also depend on the current operating scenario of the power plant. Prescribing a stable velocity profile directed downward on the downcomer inlet could potentially flaw the results. However, a somewhat correct inlet velocity profile is virtually impossible to obtain without doing costly analyses on the flow field above the domain, which is obviously out of the scope of this thesis. A simpler solution would be to apply a mildly fluctuating velocity profile on the inlets to represent the instabilities. However, the velocity profile discrepancies are not expected to have a large impact on the results.

5.2.4 Initial conditions
The arguably most interesting flow condition in this work is the buoyancy driven flow, as opposed to the pump driven flow. Since the analyses of cooling systems such as this one are mainly geared towards studying the temperature field in the fluid, a flow scenario such as the pump driven flow is not of much interest. Since the fluid velocity inside the pipe is very high during the pump driven flow (above 2m/s in the slowest region), the temperature within the pipe is predicted to be stable. The temperature around the pipe insert inside of the reactor pressure vessel can also be assumed to remain stable during the pump driven flow. The mixing process of water with varying density in the downcomer and other parts of the nuclear reactor is an interesting topic to study and have been in several works ([21], [22],[23]), although is not the focus of this work.

Considering this, the pump driven flow stage can be seen as the creating of initial conditions for the buoyancy driven flow. Turbulent structures form in the initialization process, both in the pipe region and in the downcomer region. A long initialization process is preferable as this will mature the turbulent structures and make the flow field statistically steady state. It is possible to analyze fluctuating quantities such as velocities and temperature to make sure the flow field has reached a sufficiently developed state, although this approach was not used in the current work. Instead, it was assumed that three flow-throughs (6 seconds of simulation time) of a particle from the inlet of the pipe to the outlet of the downcomer would be sufficient for all relevant turbulent structures to form in the domain. The temperature distribution in the downcomer region showed no significant change after six seconds had passed. The linear transition from the pump driven stage to the buoyancy driven stage, where the inlet velocity is reduced to 0m/s over the course of one second, is also a factor affecting the initial conditions. The real scenario of halting the flow of cooling water would with all certainty be very different than the scenario simulated. A check valve installed on the cooling system is the component which stops the cooling procedure, and the characteristics of this component, such as the shutting speed, are not easy to approximate. How this flaw in the simulation model impacts the overall results is hard to tell, but is probably not noteworthy especially far into the buoyancy driven flow. There are ways to approximate how the velocity changes as the check valve shuts by using simulation tools such as the Relap5 software, but the linear transition of the inlet velocity was seen as good enough for simplistic reasons.
5.2.5 Choice of turbulence model and numerical solver properties

Modeling turbulence can be done in numerous ways, and the choice of turbulence model is often a question of computational costs. Generally, turbulence models which numerically resolve parts of the turbulent spectrum are more expensive than those which model the entire spectrum. Using the Reynolds Averaged Navier-Stokes (RANS) equations implies modeling the entire turbulent spectrum, often by using two-equation models to simulate the turbulent behavior. Applying these equations to the current problem would require the use of the unsteady RANS (URANS) method of modelling turbulence, since the problem at hand is inherently transient. Scheuer et al. [22] performed CFD calculations on a flow problem involving coolant injection into a pressurized water tank, and compared these with experimental results on a similar domain. They used both an URANS approach of modelling turbulence, as well as the more costly ω-based Reynolds Stress Model (RSM) approach. They noted that a modification of the URANS turbulence models is needed when simulating fluid flow problems which have a stratified temperature field. Extra turbulence production and destruction terms due to buoyancy effects are needed in the model to achieve accurate results. Furthermore, Scheurer et al. found that the URANS models could not accurately predict temperature oscillations in the domain, a phenomenon of great importance in the study of nuclear reactor safety. It is these oscillations which can cause thermal fatigue of components, and although this particular phenomenon was not investigated in this work, it is important to take note of their existence and how to capture them accurately.

Scheurer et al. noted that the RSM model provide good results for their particular flow problem, which bares many similarities to the current work such as having large density gradients within the fluid, and a stratified appearance of the temperature field in certain regions of the domain. The work of Höhne & Kliem [21] also carries these similarities, in which the mixing properties of two fluids with different densities inside a reactor pressure vessel were investigated. This investigation was carried out using experiments and compared with CFD results, in which an ω-based RSM was used. The CFD simulations were found to provide good qualitative results, showing a flow field similar to the experimental results. However, the authors noted the results lacked accuracy in some local points in the domain and their recommendation was to use a more advanced turbulence model, such as the hybrid RANS/LES model DES (Detached Eddy Simulation).

The application of the LES turbulence modelling technique in the current work can be motivated from several sources, including the above. Mahaffy et al. [24] states that LES is an approach suitable for flows involving the buoyancy phenomenon, as buoyancy effects take place at large scales and LES, provided a good computational mesh is used, manages to resolve all large turbulent scales in the flow field. Ignoring the buoyancy effects stemming from the smaller scales, no additional terms needs to be included in the turbulence model. LES can be successfully used for moderate Reynolds number flows even in complex geometries, according to Mahaffy et al., if the CPU resources are sufficient.

In general, it was difficult to find works which dealt with similar flow dynamics as the ones seen in this project, and also utilized LES turbulence modeling. It was therefore interesting to get some knowledge on what kind of results could be expected from using LES. Fluctuating temperatures were seen in all simulations and is, as previously stated, of great importance in thermal fatigue calculations. Even though Scheurer et al. [22] stated that these fluctuations were not properly captured using the URANS models, it would still be interesting to compare URANS results with LES results. Unfortunately, setting up a proper URANS simulation would be too time consuming for this project. Some previous knowledge of using LES in OpenFOAM exists at Forsmarks Kraftgrupp AB, but the company is of course always interested in increasing their know-how about the topic.
The LES SGS model used in this work was chosen simply because it was the best suited model amongst those available for the transient compressible solver buoyantPimpleFoam. A dynamic SGS model is available, which uses two filtering operations to adapt the model to best fit the local flow field rather than behaving the same throughout the entire domain. However, initial simulations run with this model proved to give faulty results such as a negative SGS kinematic viscosity, implying there is something wrong with the implementation or application of the model. This is unfortunate, as the dynamic approach of modelling the SGS viscosities could potentially give different predictions of the flow field and it would then be interesting to compare these results to the results from the SGS model used here.

Further comparisons which would be interesting are the choice of solver application. The buoyantPimpleFoam solver was the clear choice for this project, although a possible alternative would be to use another implemented solver application, called buoyantBoussinesqPimpleFoam which utilizes the Boussinesq approximation. This was decided against due to the large density differences in the fluid domain, and how the Boussinesq approximation is only valid for small density differences. It would of course be possible to create a CFD solver designed for this particular case, but that is beyond the scope of this thesis.

The iterative solution procedure used in all simulations was PISO, although a brief investigation with the PIMPLE procedure was made. The PIMPLE method forces the solution to converge below set convergence levels by repeating the PISO loop several times, rather than just assuming a good convergence is met, as what is done in the PISO method when the loop is only done once. The PIMPLE method can then be seen as a way of creating tougher convergence criterions for the solution. Figure 31 displays the results of the investigation. Although the PIMPLE algorithm was only used for just over 100 seconds of the buoyancy driven stage in the simulation, the results are extensive enough to be compared with those of the PISO algorithm. A very good agreement is seen in both graphs presented, and it can be concluded that the PISO algorithm manages to converge the solution to a sufficient level.

5.2.6 Ensuring conservativeness in the results

From a perspective concerning if the simplifications of the flow calculation will make the results more or less conservative, it is hard to make a trustworthy prediction. Geometrical changes such as omitting the lifting eye and the suspension system of the pipe insert can be considered minor and will probably have little effect on the general results. It may be possible to create an even further simplified domain and still achieve the desired results, namely the stratified temperature field and the slow temperature increase of the fluid within the pipe region. If these two phenomena are seen in the results, one can be certain that the geometry has not been overly simplified.

It is also difficult to make a good prediction of how changing the heat transfer setup of the problem would affect the results. It is assumed that including radiation and conjugate heat transfer methods in the calculations would only have a small impact on the final results. Choices of boundary conditions, initial conditions and turbulence model were made strictly to be as realistic as possible, while still being economical. In other words, conservativeness was not the driving force behind how these choices were made. Therefore, since it is difficult to judge just how conservative the final results are, it is often preferable to modify the final results to make sure they are conservative. For instance, the stratified temperature gradient in the pipe region, during the buoyancy driven flow, can be split into sections of constant temperature as shown in figure 34.
This sectioned temperature distribution would put larger stresses on the surrounding material and therefore make the results more conservative. Similar approaches can be taken for the transient temperature profiles, as shown in Figure 35.

By having the temperature of the fluid rise in large increments rather than having a smoother profile, the material surrounding the fluid will be put through a much tougher operating scenario, making the structural calculations more conservative.

These are just two examples of how results from a fluid flow calculation can be modified to ensure conservativeness for future structural investigations. The framework for making these modifications will not be established in this work, but rather left as an option for future projects.
6 Conclusions

A robust CFD model of the cooling system has been created using the OpenFOAM 2.3.x software and simulations of a cooling scenario have been performed. The computational domain was simplified and it was speculated that the simplifications did not have a significant impact on the results, meaning detailed geometrical features are not necessary to obtain good results in this particular case.

Four computational meshes were created for the domain, and ranged in size from 0.14M cells to 3.2M cells. One of the meshes was generated using the OpenFOAM 2.3.x utility *snappyHexMesh*, which proved to be far less time consuming than creating a mesh in the ANSA software. The time consumption for the simulations with each mesh also differed greatly, with the coarse and the snappy mesh being far more economical than the medium and the fine mesh. Furthermore, it was found that all meshes produced roughly the same results with only minor differences, pointing towards the case not being very mesh sensitive.

A main issue is to make sure the results are conservative and, for example, do not underestimate the intensity of thermal shocks or the sharpness of temperature gradients within the fluid. The calculation results can be modified in the post-processing stage to become more conservative for use in future structural calculations, although this has not been done in the present work.

When comparing the CFD results to those of a simpler 1D fluid flow analysis tool, Relap5, it was found that the CFD tool could capture more interesting, and possibly more realistic, flow phenomena. Although using the CFD method for analysing these types of problems is far more expensive than the 1D approach, the difference in accuracy may be of great importance. This is especially true in cases where the 1D code is unable to predict large temperature gradients or fast thermal shocks. However, in this particular problem it was concluded that the Relap5 software managed to capture the temperature field well and it was assumed that it gave a conservative estimate of the transient temperature profiles of the fluid and could therefore be used successfully in similar analyses. A different way to look upon this is if a Relap5 analysis produces temperature profiles which are too conservative, making a structural verification impossible to make, the CFD approach can be applied to the problem and possibly give less conservative results. It should be noted that the heat transfer coefficient should also be studied to make a definite decision on how the Relap5 results differ from the CFD results.

The general approach used in this work for investigating the CFD method for these types of flow problems can be seen as successful. It eventually gave a broad scope of the strengths and weaknesses of the method as well as the LES turbulence modelling approach. It also provided insight on how time can be saved in the meshing stage simply by considering different software. The evaluation of the CFD results would be stronger if there were experimental results of the case available in addition to the Relap5 results. A more solid investigation would perhaps be to analyse a flow scenario which already has an experimental basis. Overall, a lot of knowledge has been found regarding how to simulate buoyancy driven flow using the CFD and LES methods.

6.1 Future work

From a perspective of improving the simulations’ accuracy and credibility, several changes can be made. Most of the changes regard the geometrical simplifications made in the current work. A more complex geometry was avoided in order to simplify the ANSA meshing process. However, through studying the *snappyHexMesh* utility, it was found that a complex geometry can be dealt with automatically, with only minor inputs from the user. It would then be of interest to create a
computational domain including the suspension system (see figure 2) and other geometrical features, and mesh it using the \textit{snappyHexMesh} utility. In general, the functioning of the \textit{snappyHexMesh} utility should be studied further as it could reduce the time cost of any CFD analysis while still providing a computational mesh of good quality.

With regards to how these types of problems should be dealt with in the future, it would also be interesting to simplify the geometry further to investigate how sensitive the results are to the geometrical features, such as the lifting eye on the pipe insert. If it can be found that simple geometries represent the cases well, a large amount of time can be saved.

Future work also includes creating a framework for how the CFD results should be transferred to a structural calculation. If conservativeness can be ensured in the CFD results, it would be preferable to transfer the results directly to a structural calculation setup. However, if the CFD results cannot be proven to be conservative, it would be recommended to divide the temperature field into sections along the solid boundaries and the transient temperature data also needs to be modified. A script could be created to do these tasks with as little user input as possible.
7 References

[1] "Forsmark 3 Tryck- och temperaturbelastningar i rörsystem inom RCPB", (2013), Forsmarks Kraftgrupp AB, internal report

8 Appendix

Presented in table 5 is the complete set of boundary conditions specified in the OpenFOAM software.

<table>
<thead>
<tr>
<th>Boundary</th>
<th>α_{SGS} [kg/ms]</th>
<th>k [m2/s2]</th>
<th>μ_{SGS} [kg/ms]</th>
<th>p [Pa]</th>
<th>p_{ref} [Pa]</th>
<th>T [K]</th>
<th>U [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls of pipe</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform 0</td>
<td>zeroGradient</td>
<td>calculated (from p_{ref})</td>
<td>zeroGradient</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform (0 0 0)</td>
</tr>
<tr>
<td>Downcomer inlet</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform 2e-05</td>
<td>zeroGradient</td>
<td>calculated (from p_{ref})</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform 555</td>
<td>fixedValue value: uniform (0 0 -0.468)</td>
</tr>
<tr>
<td>Downcomer outlet</td>
<td>zeroGradient</td>
<td>inletOutlet value: uniform 2e-05</td>
<td>zeroGradient</td>
<td>calculated (from p_{ref})</td>
<td>fixedValue value: uniform 0</td>
<td>inletOutlet value: uniform 555</td>
<td>zeroGradient</td>
</tr>
<tr>
<td>Pipe inlet</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform 2e-05</td>
<td>zeroGradient</td>
<td>calculated (from p_{ref})</td>
<td>zeroGradient</td>
<td>fixedValue value: uniform 555</td>
<td>uniformFixedValue</td>
</tr>
<tr>
<td>Downcomer sides</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
</tr>
<tr>
<td>Pressure vessel side</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
</tr>
</tbody>
</table>

Presented in table 6 are the polynomials used to model the density ρ, specific heat capacity c_p, thermal conductivity k and dynamic viscosity μ for the fluid.

<table>
<thead>
<tr>
<th>Property</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>$502.233283399642 + 4.121205613195357 - 0.007999321142600197^2 - 1.04256052517963E^{-5}T^3 + 4.31498908580714E^{-8}T^4 - 3.58862897056712E^{-11}T^5$</td>
</tr>
<tr>
<td>c_p</td>
<td>$-17498.3841906143 + 297.2120761937537 - 1.609623204326687^2 + 0.00430527541922481^3 - 5.70526640979518E^{-6}T^4 + 3.01879403863963E^{-9}T^5$</td>
</tr>
<tr>
<td>k</td>
<td>$-0.717823124965878 + 0.003225994334230297 + 3.38243309167917E^{-5}T^2 - 1.68962323132032E^{-7}T^3 + 2.82875170564099E^{-10}T^4 - 1.68387529439480E^{-13}T^5$</td>
</tr>
<tr>
<td>μ</td>
<td>$0.129165352941427 - 0.001427807728655217 + 6.3252787770466E^{-6}T^2 - 1.39840556944171E^{-8}T^3 + 1.5401315511925E^{-11}T^4 - 6.75338078384349E^{-15}T^5$</td>
</tr>
</tbody>
</table>