
Model-Based Reinforcement Learning in Continuous Environments Using
Real-Time Constrained Optimization

Olov Andersson, Fredrik Heintz and Patrick Doherty
{olov.a.andersson, fredrik.heintz, patrick.doherty}@liu.se

Department of Computer and Information Science
Linköping University, SE-58183

Linköping, Sweden

Abstract

Reinforcement learning for robot control tasks in continuous
environments is a challenging problem due to the dimension-
ality of the state and action spaces, time and resource costs
for learning with a real robot as well as constraints imposed
for its safe operation. In this paper we propose a model-
based reinforcement learning approach for continuous envi-
ronments with constraints. The approach combines model-
based reinforcement learning with recent advances in approx-
imate optimal control. This results in a bounded-rationality
agent that makes decisions in real-time by efficiently solving
a sequence of constrained optimization problems on learned
sparse Gaussian process models. Such a combination has
several advantages. No high-dimensional policy needs to be
computed or stored while the learning problem often reduces
to a set of lower-dimensional models of the dynamics. In ad-
dition, hard constraints can easily be included and objectives
can also be changed in real-time to allow for multiple or dy-
namic tasks. The efficacy of the approach is demonstrated on
both an extended cart pole domain and a challenging quad-
copter navigation task using real data.

Introduction
Reinforcement learning holds great promise for robotics. By
modeling the robot as a reward maximizing agent that plans
ahead one can express a utility function that captures the
objective of the task and let the agent figure out the optimal
sequence of actions by learning from interactions with the
environment.

There are however a number of difficulties with scaling
up reinforcement learning methods to real-world robotics
problems. The state and action spaces are continuous and
often high-dimensional. At the same time operating a real
robot is both time and resource intensive, requiring an agent
to be able to learn in these environments from a reasonable
number of interactions. In addition many tasks in robotics
have failure modes that have real costs associated with them.
Here the classical approach of considering them terminal
states with large negative rewards and letting the agent learn
by trial and error is simply not feasible.

To overcome these obstacles a number of improvements
have been suggested. To improve sample efficiency there

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

has been renewed interest in model-based reinforcement
learning like R-MAX (Brafman and Tennenholtz 2003)
where the agent also learns models of the environment. Most
of this work is on discrete models, but (Deisenroth, Ras-
mussen, and Peters 2009) proposes a solution using Gaus-
sian process models. Another line of research is batch RL
algorithms like Least Squares Policy Iteration (Lagoudakis
and Parr 2003) and Fitted Q-Iteration (Ernst, Geurts, and
Wehenkel 2005) that can be bootstrapped with manually col-
lected data. Unless one can find a clever low-dimensional
representation of the task all of these still have problems
scaling up to higher dimensional problems.

Since learning a policy or value function for high-
dimensional continuous domains is challenging, policy
search approaches has recently seen more use in continu-
ous robotics problems, e.g. (Bagnell and Schneider 2001;
Ng et al. 2004; Peters and Schaal 2006; Kober and Peters
2011). These rely on an expert finding a reduced paramet-
ric representation of the policy that is then optimized by
evaluating it directly on the robot. Since optimizing policy
parameters with a robot in the loop is very time consum-
ing this only works for representations with a small num-
ber of parameters or where a simulator is available. Policy
search and Gaussian process model-based learning has also
been combined in (Deisenroth and Rasmussen 2011) which
exploits closed form solutions to the expected reward over
time. This allows using policy search with more parameters
but requires that the state distribution is well approximated
by a Gaussian and imposes restrictions on the reward func-
tion.

In this paper we instead explore addressing the original
challenges of robotics directly by letting the agent maximize
the long term utility of its actions in real-time using learned
models of the environment. Trajectory optimization has pre-
viously been used in the RL community by e.g. (Abbeel,
Coates, and Ng 2010) where demonstrated aerobatic tra-
jectories were tracked using application-specific parametric
models. Our work differs from earlier work by learning non-
parametric models and considering constrained state spaces
which are common in robotics. Sparse Gaussian process
models allow the agent to learn from a reasonable number
of interactions while being computationally efficient. We
sidestep the policy representation problem by iteratively re-
planning from the current state in real-time, and we can take

hard constraints into account by solving it as a constrained
optimization problem.

The resulting optimization problem is typically studied in
non-linear model-predictive control, a type of approximate
optimal control. Combining model predictive control with
Gaussian process models has also been previously suggested
in the control community (Kocijan et al. 2004) where it was
used in a small trajectory tracking problem, planning just
one step ahead. Since then both fields have advanced consid-
erably and in this paper we show that with recent advances
we can now plan hundreds of steps ahead in real-time to
feasibly solve challenging reinforcement learning problems
with constraints.

We demonstrate the performance and sample efficiency
of the approach on an extended cart pole domain and a
high-dimensional quadcopter navigation task using using
real data. By incorporating constraints it is feasible to pro-
duce learning agents that are well-behaved in a target envi-
ronment and can learn with a minimal of potentially costly
errors.

The remainder of this paper is structured as follows. First
we formalize the optimization problem, then we introduce
the sparse Gaussian process models used to learn the dy-
namics. Next we introduce the optimization algorithm used
with the models to plan an optimal trajectory and finally we
demonstrate the efficacy of the approach on simulated and
real world data.

Problem Definition
The reinforcement learning problem is informally defined as
a rational agent trying to maximize its long-term utility in a
potentially unknown environment. In continuous environ-
ments this is formalized by a state vector x ∈ Rp, a set of
actions a ∈ Rq , a utility function U(x,a) and an unknown
environment dynamics model p(xt|xt−1,at−1). While this
is usually solved by attempting to compute a stochastically
optimal policy function over the chosen state representation,
we attempt to address the needs of robotics by instead ap-
proximating it with the following optimization problem

arg max
x1...xT ,a1...aT−1

T∑
t=1

U(xt,at)

subject to x0 = current agent state,
xt = E[p(xt|xt−1,at−1)],
g(xt,at) ≤ 0,

h(xt,at) = 0,

where t = 1, . . . , T.

(1)

By iteratively solving this finite horizon problem in each
time step we get a bounded-rationality agent that plans ahead
in real-time to maximize its cumulative utility.

A key advantage of this formulation of the reinforcement
learning problem is that we can include hard constraints on
the solution, represented by g(xt,at) ≤ 0 and h(xt,at) =
0, which can be crucial for safe operation of physical robots.

Another advantage is that for many real-world robotics
problems the dimensionality of the policy function may be

larger than what is feasible to learn without making non-
trivial simplifying assumptions on its shape. The environ-
ment dynamics p(xt|xt−1,at−1) on the other hand often
only depends on a small set of weakly coupled forces act-
ing on the agent. Due to the laws of motion this means
that learning a full state transition model decomposes into
learning a set of often simple acceleration models and their
integration over time.

Unlike Monte Carlo tree search approaches (Kearns,
Mansour, and Ng 2002; Walsh, Goschin, and Littman 2010)
that have seen increasing popularity for high-dimensional
discrete environments we do not attempt to produce stochas-
tically optimal plans, but we make efficient use of gradi-
ent information instead. In continuous domains the gen-
eral constrained stochastic planning problem is intractable.
In addition, when controlling a robot in real-time we are
more interested in quickly and reliably finding a good so-
lution than finding the best solution, which makes introduc-
ing more complexity into the problem unfavorable. A prag-
matic heuristic to deal with both observation and model un-
certainty is to add a margin of error to the constraints.

Finally, for a policy-based agent to be able to take differ-
ent objectives into account these need to be represented by
variables in the state space to be included in the policy, fur-
ther increasing the dimensionality of the policy function. In
our case it becomes as simple as changing the utility func-
tion, which can be done in real-time. As any information
the agent has previously learned about the environment is
also exploited when performing the new task this allows for
a degree of implicit transfer learning between tasks.

Learning the Dynamics
The dynamics model p(xt|xt−1,at−1) used to plan ahead
in (1) is learned from training data by using Gaussian
processes, a Bayesian non-parametric regression approach
(Rasmussen and Williams 2006).

Gaussian processes
Given a training set of n observations on input variables X ∈
Rd×n and outputs y ∈ Rd where y is corrupted by additive
noise y = f(x) + ε, we put a Gaussian process prior on the
latent function f(x) and attempt to learn it from data.

A Gaussian process is defined as a set of random vari-
ables, any finite number of which have a joint Gaussian dis-
tribution (Rasmussen and Williams 2006). The process is
completely specified by a mean function m(x) and a covari-
ance function k(x, x′) that are functions of the input vari-
ables. For clarity we assume that all data is standardized
with mean zero, turning the covariance function into

k(x,x′) = E[f(x)f(x′)]. (2)

This defines the covariance between input points such that
the distribution of any points on f(x) is completely specified
by a joint multivariate Gaussian.

Here we use the ARD squared-exponential covariance
function which decays with the distance between the points

kf (x,x
′) = σ2

fexp

[
−1

2

d∑
i=1

(
xi − x′i
`i

)2
]
. (3)

The parameters σ2
f and `i represent signal variance and the

length-scales respectively which together make up the hy-
perparameters θf . During hyperparameter inference the
length-scales will adapt to attenuate the unneeded variables
from the problem, termed automatic relevance detection.

The covariance function is used to define matrices of co-
variances between all the input points X, any set of pre-
diction points X∗ as well as their cross-covariances. We
denote these as ΣX,X, ΣX∗,X∗ and ΣX,X∗ respectively. As
points on p(f |X,θf) are multivariate Gaussian and the noise
is Gaussian, the marginal conditional p(y|X,θf , σ

2
n) will

also be multivariate Gaussian with covariance ΣX,X +σ2
nI .

The predictive distribution p(y∗|X∗,y,X,θ) of any new
point x∗ therefore follows directly from the conditional dis-
tribution of a multivariate Gaussian.

Sparse Approximations

Gaussian processes normally have O(n3) computational
complexity for training, O(n) for computing the predictive
mean and O(m2) for the predictive variance. Since com-
putational performance is crucial for real-time operation we
employ a sparse approximation to get this down toO(m2n),
O(m) and O(m2) respectively, where m is fixed to some
value much smaller than n. We chose a FITC approximation
(Snelson and Ghahramani 2006) since it is non-degenerate
and does not make the variance estimate overly optimistic
(Quinonero-Candela, Rasmussen, and Williams 2007). The
FITC approximation adds a set of m latent inducing targets
and inputs {u,Xu} where u ∼ N (0,Σu,u) and Xu is typ-
ically taken to have a flat prior. By assuming conditional
independence between prediction points f∗ and the underly-
ing GP prior so that p(f∗|u, f) = p(f∗|u), as well as making
any points on f fully conditionally independent given u, we
not only drop the dependence on training data for mean and
variance prediction but also get a more manageable com-
plexity for training the hyperparameters. The latent u are
then marginalized out which leads to the following FITC
posterior predictive distributions

E[y∗|X∗,y,X,θ] = QT
X,X∗

[QX,X + Λ]
−1

y (4)

Var[y∗|X∗,y,X,θ] = QX∗,X∗ (5)

−QX,X∗ [QX,X + Λ]
−1

QX∗,X

where QA,B = ΣA,XuΣXu,XuΣXu,B and Λ =
diag[ΣX,X−QX,X+σ2

nI]. The joint hyperparameter vector
θ enters the equation through the covariance matrix ΣX,X.
This is then used in the optimization problem in (1). The
marginal FITC likelihood for hyperparameter training simi-
larly becomes

log p(y|X, θ) =− 1

2
yT [QX,X + Λ]

−1
y−

1

2
log |QX,X + Λ| − n

2
log 2π.

(6)

We got good results by simply fixing the inducing inputs Xu

to be a random subset of the data.

Learning in Dynamical Systems
To put this in the context of the reinforcement learning
problem in (1), we want to learn the dynamics model
p(xt|xt−1,at−1) from the history of state-action transitions
H so that we can compute

E[p(xt|xt−1,at−1,H)]. (7)
In this paper we reduce this to learning a model for each di-
mension separately. For typical robotics problems this can,
due to the invariances induced by the laws of motion, be fur-
ther reduced to learning only a subset of linear and angular
accelerations models. Simple Euler integration can then be
used to recover the velocity, position, rates and angles of
the agent. If state estimates of accelerations are not avail-
able they can be recovered by filtering or simple differenc-
ing. Each such GP is trained on the history H of state-action
transitions (xt,at) → xi,t+1, which take the place of the
GP data terms X and y in (4) - (6), for each target state di-
mension i. We used 10 random restarts of hyperparameter
inference to avoid the occasional bad minima.

Constrained Trajectory Optimization
In principle the constrained non-linear optimization problem
in (1) can be solved by a standard non-linear programming
approach like sequential quadratic programming (Wright
and Nocedal 1999). In SQP the non-linear problem is re-
duced to solving a sequence of convex sub-problems. Since
even convex constrained optimization is polynomial in prob-
lem size and (1) has T (p+ q) variables this may not be fea-
sible in practice.

However, as only the immediately preceding time steps
are coupled through the equality constraints induced by
the dynamics model, the stage-wise nature of such model-
predictive control problems result in a block-diagonal struc-
ture in the Karush-Kuhn-Tucker optimality conditions that
admit efficient solution. There has recently been several
highly optimized convex solvers for such stage-wise prob-
lems, on both linear (Wang and Boyd 2010) and linear-time-
varying (LTV) (Ferreau et al. 2013; Domahidi et al. 2012)
dynamics models.

Since at least the learned dynamics model
E[p(xt|xt−1,at−1)] is non-linear our original problem
in (1) falls into the class of non-linear model predictive
control problems. With an approach like SQP these can
be solved by sequentially applying any convex LTV solver
to QP approximations around each point (xt, at) along
the current trajectory, resulting in the following structured
optimization problem

arg max
δx1...δxT ,δa1...δaT−1

T∑
t=1

δxTt Qtδxt + qtδxt

+ δaTt Rtδat + rtδat
subject to xt = Fx,tδxt−1 + Fa,tδat−1 + ft,

Gx,tδxt + Ga,tδat + gt ≤ 0,

Hx,tδxt + Ha,tδat + ht = 0,

where t = 1, . . . , T.

(8)

We optimize the relative improvement over a previous tra-
jectory, where δxt = x

(k)
t − x

(k−1)
t , δat = a

(k)
t − a

(k−1)
t

Algorithm 1 RL-RCO: Real-time Constrained Opt.
1: For each episode repeat:
2: Learn models on accumulated data with (6).
3: while not terminal do
4: if new objective then
5: Linearize (7) at x0 for all time steps.
6: Solve (8) until convergence.
7: else
8: Shift previous trajectory one step forward.
9: for i = 1 to num linearizations do

10: Linearize (7) around current trajectory.
11: Get step direction from (8).
12: Update constraint relaxation.
13: end for
14: end if
15: end while

and the superscript is the iteration number. The first row
of constraints corresponds to linearizations of the model (7)
while the second and third are linearizations of the addi-
tional state-action constraints from (1). Ideally the objec-
tive is a quadratic approximation of the Lagrangian, which
includes the utility function as well as Lagrange multipliers
to not stray from the region where the constraint lineariza-
tion is valid. Since we solve it in real-time where the state is
noisy and continually changing, a fast answer can be better
than asymptotic convergence. For the tasks in this paper we
only use quadratic objectives, linear state-action constraints
and ignore second order approximations. More elaborate
approximations with provable superlinear convergence have
been studied in the control community (Diehl, Ferreau, and
Haverbeke 2009). These typically put more focus on issues
arising from accurately integrating a known physics model.
This is less relevant for us since we learn an approximate
non-parametric model entirely from data and use simple Eu-
ler integration.

As stage-wise convex solver for (8) we chose the re-
cent FORCES (Domahidi et al. 2012) stage-wise LTV MPC
solver. FORCES is an interior-point solver with cubic com-
plexity in the number of constraints and linear time com-
plexity in the planning horizon, which is important for long
planning horizons typically encountered in reinforcement
learning problems.

A high-level view of the algorithm is presented in Algo-
rithm 1. When the agent receives a new objective it plans an
initial trajectory through the state-action space by lineariz-
ing all stages around the start state x0. To quickly find an
initial trajectory satisfying the constraints in the vicinity of
the start state we run the LTV solver once until convergence.
For each subsequent step we warm-start with the previous
state-control trajectory as the starting point. We optimize
for relative improvements using a sequence of linearizations
of the learned dynamics at each step of the current trajectory.
The warm-starts are crucial as they will iteratively refine the
planned trajectory and automatically replan to repair any de-
viation from it.

We take a soft real-time approach by running a fixed num-

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

P
o

s
it
io

n
 x

 (
m

)

Planned trajectory (time steps)

Inital

5 cycles

7 cycles

Figure 1: Forward simulation of planned actions for a quad-
copter control agent told to reach position x = 1. While it
plans in a 10-dimensional state-action space, only the target
variable is shown.

ber linearizations per interaction cycle, which in our experi-
ments was set to 4. We found that we did not need to solve
the linearized sub-problems until convergence to produce
a step with sufficient improvement. For performance con-
strained applications this is a trade-off that can be tuned. As
a bonus multiple small steps might improve global conver-
gence as linearizations are only locally valid, but this needs
further study. Strong non-linearities may also introduce bad
minima for trajectory optimization but thas has not been a
problem so far.

An example of the iterative improvement of the plan can
be seen in Figure 1. The agent was given a new objective and
computed an initial trajectory by planning 100 steps ahead
using a linearized model. The RL-RCO algorithm runs once
per agent interaction cycle and as can be seen it only took 7
cycles for it to converge to a good approximation. It should
be noted that the small overshoot seen here is an artifact of
the planning horizon and will tend towards zero as it gets
closer.

One issue with constrained trajectory optimization is that
the optimal trajectory is often along constraint limits. Due
to inaccuracies in learned models, solution trajectories, or
sensors some constraint boundaries may be temporarily
crossed, making the optimization problem unfeasible. At
this point we employed a simple constraint relaxation strat-
egy where 5% of the planning horizon was relaxed at a time
to make the current solution trajectory feasible.

The RL-RCO agent can also easily be combined with ex-
ploration by taking random actions, or even directed explo-
ration by adding a model uncertainty term from (5) to the ob-
jective. However, aggressive exploration can make the agent
lose control and violate constraints. In our experiments the
GP dynamics models were so sample-efficient that we did
not need explicit exploration and we therefore leave safe di-
rected exploration as future work.

Experiments
We demonstrate the sample efficiency, accuracy and com-
putational viability of the approach in the experiments be-
low. Using one core of a desktop CPU all agents could run
faster than real-time while planning 100 steps into the fu-
ture. Hard constraints used by RL-RCO were taken directly
from the problem description. Terminal ones were tightened
by a small margin of error to cope with approximate solu-
tions close to the limit. Dynamics models for the state tran-
sition distribution p(xt|xt−1,at−1) were iteratively learned
between episodes for both linear and angular accelerations
using sparse Gaussian processes with 40 inducing inputs and
ARD kernels. Where noted some initial variable selection
was done, but no feature engineering or careful choice of
state representation was required.

Extended Cart Pole
Pole balancing tasks are common RL benchmarks and come
in many variations. The classic cart pole scenario (Sutton
and Barto 1998) consists of a cart with a pole running on a
track where the objective is to keep the pole upright and the
cart on the track by applying a lateral force to the cart. The
state space is x = [x, ẋ, θ, θ̇], the action a is a force in the
interval −10N to +10N and the time step used is 0.02s.

Normally the cart starts in position x = 0 with the
pole angle θ = 0 (upright). The cart has to stay within
|x| < 2.4m and |θ| < 12 degrees or the episode is consid-
ered a failure and terminates. We extend this by instead of
just balancing the pole also have the cart move back to x = 0
from a random start position and angle within±1m and±10
degrees respectively. This is a difficult control problem be-
cause the agent may need to move further from the target to
tilt the pole forward to then be able to move closer to the
goal without violating its constraints. Like with other batch
RL methods an initial data collection episode was used to
bootstrap the agent, using sinusoid actions capped to 30 in-
teractions. The maximum number of interactions of the RL
episodes was then set to 200 and the utility function to the
negative square distance to the target position.

Model-free approaches often require at least a couple of
hundred episodes for non-trivial versions of the cart pole. A
similar positional cart pole using more relaxed constraints
was for example solved by NFQ, a fitted Q-iteration ap-
proach using neural networks, in 197 episodes (Riedmiller
2005). A related inverted pendulum balancing problem was
solved using LSPI in 1000 episodes (Lagoudakis and Parr
2003).

As can be seen from Figure 2 RL-RCO learns in just a
few episodes how to successfully move the cart to a tar-
get position while balancing the pole. Experiments were
run for both fully automatic variable selection (ARD) of the
Gaussian process dynamics models as well as with manual
selection first using only [a, θ]. Clearly variable selection
can help but learning with just ARD took only a few more
episodes. In Figure 3 we examine its accuracy by measur-
ing how close it can stay to the target position while bal-
ancing the pole. In (Riedmiller 2005) success was defined
as staying within 5cm. RL-RCO reaches 1cm accuracy in 5

0 5 10 15 20
0

20

40

60

80

100

S
u

c
c
e
s
s
 r

a
te

 (
%

)

Episodes

Fully Automatic (ARD)

Manual selection + ARD

Figure 2: The success rate per episode in terms of the per-
centage that completed without violating pole or track con-
straints, averaged over 50 runs.

episodes and 1mm in 20 episodes.

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

A
c
c
u

ra
c
y
 (

m
)

Episodes

Fully Automatic (ARD)

Manual selection + ARD

Figure 3: Log plot of the final cart distance to the target
position while keeping the pole balanced. The results are
averaged over 50 runs.

Great sample efficiency in continuous domains has pre-
viously been reported in (Deisenroth, Rasmussen, and Pe-
ters 2009) on a 2D inverted pendulum task using GPDP,
a dynamic programming approach based on Gaussian pro-
cesses. Unfortunately, dynamic programming requires ex-
tensive pre-computation and tends to scale poorly with di-
mension. Another sample efficient approach is PILCO
(Deisenroth and Rasmussen 2011), a model-based policy
search exploiting Gaussian closed form solutions of the ex-
pected value integral over the sum of future rewards. Not all
reward functions admit closed form solution, making hard
constraints non-trivial, and we still need to pre-compute a
policy covering the controlled space.

Quadcopter Navigation
We learn positional control for a quadcopter from a batch of
real flight data like one might do in a typical robotics ap-
plication. The resulting controller is then evaluated against
a simulator using a previously manually identified physics
model.

Initially 8 minutes of training data was collected from
manual flight using on-board sensors as well as an external
camera-based positioning system, resulting in about 12 000
samples at the controller target time step of 0.04s.

In real robotics tasks the dimension of the state space xt
might be large. A rigid body representation of a quadcopter
is for example 12-dimensional with just positions, veloci-
ties, angles and angular rates. However, these are just the
integration of accelerations caused by forces acting on the
object, which in many cases depend on only a few vari-
ables. This makes the model learning problem often much
more tractable than trying to learn a policy for the whole
state space. We simply decompose the model into learning
discrete-time differential models for translational velocities
and angular rates. Since terminal failures are unacceptable
in a realistic flight scenario we need an agent that is at least
flightworthy in one episode using the limited amount of data
we have. Using insights from basic physics we exclude un-
likely variable combinations from the dynamics models as
this was shown to speed up early success rate in the posi-
tional cart pole experiment.

To emulate the safety requirements of indoor flight a box
constraint of ±1m/s was set on the velocity components.
Using the predictive uncertainty of the GP models, con-
straints were also manually set on angles, rates and actions
to keep the agent within regions where the dynamics were
well known.

−3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

x
 (

m
)

y (m)

Figure 4: Positional control of quadcopter commanded to
fly a rectangle pattern. Blue indicates acceleration, and red
deceleration, by getting the quadcopter to tilt in or against
the direction of movement. Green is constant velocity.

We used the RL-RCO agent for positional control by
defining a utility function that gave reward proportional to
the negative square of the distance to a target point. Since
RL-RCO plans in real-time it is of course easy to change the

objective or constraints if we want it to solve a different task
in the same domain. We also used this to fly to waypoints
by simply moving the target to the next waypoint when the
agent got within 10cm of the previous one. In this experi-
ment we controlled pitch and roll, both rates and angles, as
well as velocity and position in the x and y direction. This
results in an 8-dimensional state space and 2-dimensional
action space. These are the most interesting as a quadcopter
first has to tilt to induce lateral acceleration. To maximize
long-term reward and avoid large overshoots without vio-
lating constraints therefore requires that the controller plans
ahead so it is able to start tilting back in time. To the best of
our knowledge no other RL approach has solved a high di-
mensional navigation problem like this one without assum-
ing fixed trajectories or known models in advance.

The results of a simple way-point flight between the
points (±2,±3) can be seen in Figure 41. As is evident
from the acceleration and deceleration trails it automatically
starts tilting back in advance to be able to stop on the tar-
geted location. It should be noted that since the controller
was built from real data but the simulator only uses a sim-
plified physics model without drag, we had to fix that input
to zero in the lateral acceleration models in order to make a
fair comparison.

As can be seen in Figure 5 the controller manages to ag-
gressively pursue its objective within the given velocity con-
straint of ±1m/s without overshooting the target position.

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

S
ta

te

Time (s)

x
y
ẋ
ẏ

Figure 5: Quadcopter x,y position and velocity while flying
the rectangle pattern. The dotted line represents the indoor
domain constraint on velocity.

Conclusions
We addressed the challenges of doing continuous reinforce-
ment learning on real robots by letting the agent plan ahead
in real-time using constrained optimization instead of pre-
computing a policy. This has several advantages in that no

1Please refer to digital online proceedings for color-coded fig-
ures.

high-dimensional policy needs to be computed or stored,
hard constraints that are common in robotics can easily be
included and the objective can be changed on-the-fly to al-
low for multiple or dynamic tasks. The benefit of working
directly in the continuous domain also allows us to forego
issues of discretization and state representation. By com-
bining sparse Gaussian process models with recent efficient
stage-wise solvers from approximate optimal control we
showed that it is feasible to solve challenging problems in
real-time. We demonstrated the performance, sample effi-
ciency and versatility on both an extended cart pole domain
and a high-dimensional quadcopter navigation task using
real data. To the best of our knowledge no other RL ap-
proach has solved such a high dimensional navigation prob-
lem without assuming fixed trajectories or known models.

Acknowledgments
This work is partially supported by grants from the Swedish
Research Council (VR) Linnaeus Center CADICS, the EL-
LIIT Excellence Center at Linköping-Lund for Information
Technology, the National Graduate School in Computer Sci-
ence, Sweden (CUGS), the Swedish Aeronautics Research
Council (NFFP6), the Swedish Foundation for Strategic Re-
search (SSF) project CUAS and the Center for Industrial In-
formation Technology CENIIT.

References
Abbeel, P.; Coates, A.; and Ng, A. Y. 2010. Autonomous
helicopter aerobatics through apprenticeship learning. The
International Journal of Robotics Research 29(13):1608–
1639.
Bagnell, J. A., and Schneider, J. G. 2001. Autonomous he-
licopter control using reinforcement learning policy search
methods. In Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 2,
1615–1620. IEEE.
Brafman, R. I., and Tennenholtz, M. 2003. R-max - a
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3:213–231.
Deisenroth, M., and Rasmussen, C. E. 2011. Pilco: A
model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11), 465–472.
Deisenroth, M. P.; Rasmussen, C. E.; and Peters, J. 2009.
Gaussian process dynamic programming. Neurocomputing
72(7):1508–1524.
Diehl, M.; Ferreau, H. J.; and Haverbeke, N. 2009. Efficient
numerical methods for nonlinear mpc and moving horizon
estimation. In Nonlinear model predictive control. Springer.
391–417.
Domahidi, A.; Zgraggen, A.; Zeilinger, M.; Morari, M.; and
Jones, C. 2012. Efficient interior point methods for multi-
stage problems arising in receding horizon control. In IEEE
Conference on Decision and Control (CDC), 668 – 674.

Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research 6:503–556.
Ferreau, H. J.; Kirches, C.; Potschka, A.; Bock, H. G.; and
Diehl, M. 2013. qpoases: A parametric active-set algo-
rithm for quadratic programming. Mathematical Program-
ming Computation 1–37.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes. Machine Learning 49(2-3):193–208.
Kober, J., and Peters, J. 2011. Policy search for motor prim-
itives in robotics. Machine Learning 84(1-2):171–203.
Kocijan, J.; Murray-Smith, R.; Rasmussen, C. E.; and Gi-
rard, A. 2004. Gaussian process model based predictive
control. In American Control Conference, 2004. Proceed-
ings of the 2004, volume 3, 2214–2219. IEEE.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4:1107–
1149.
Ng, A. Y.; Kim, H. J.; Jordan, M. I.; and Sastry, S. 2004.
Autonomous helicopter flight via reinforcement learning. In
Advances in Neural Information Processing Systems 16.
Peters, J., and Schaal, S. 2006. Policy gradient methods for
robotics. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, 2219–2225. IEEE.
Quinonero-Candela, J.; Rasmussen, C. E.; and Williams,
C. K. 2007. Approximation methods for gaussian process
regression. In Large-scale kernel machines. Cambridge,
MA, USA: MIT Press. 203–223.
Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian
Processes for Machine Learning. Cambridge, MA: MIT
Press.
Riedmiller, M. 2005. Neural fitted q iteration - first ex-
periences with a data efficient neural reinforcement learn-
ing method. In Proceedings of the Sixteenth European
Conference on Machine Learning (ECML 2005), volume
3720 of Lecture Notes in Computer Science, 317 – 328.
Berlin/Heidelberg, Germany: Springer.
Snelson, E., and Ghahramani, Z. 2006. Sparse gaussian
processes using pseudo-inputs. In Weiss, Y.; Schölkopf, B.;
and Platt, J., eds., Advances in Neural Information Process-
ing Systems 18. Cambridge, MA: MIT Press. 1257–1264.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrat-
ing sample-based planning and model-based reinforcement
learning. In Proceedings of the 24th Conference on Artificial
Intelligence (AAAI).
Wang, Y., and Boyd, S. 2010. Fast model predictive con-
trol using online optimization. Control Systems Technology,
IEEE Transactions on 18(2):267–278.
Wright, S., and Nocedal, J. 1999. Numerical optimization,
volume 2. New York: Springer.

