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Development of misfire detection algorithm using

quantitative FDI performance analysis ?

Daniel Jung ∗, Lars Eriksson, Erik Frisk, Mattias Krysander

Department of Electrical Engineering, Linköping University
SE-581 83 Linköping, Sweden. {daner,larer,frisk,matkr}@isy.liu.se.

Abstract

A model-based misfire detection algorithm is proposed. The algorithm is able to detect misfires and identify the failing cylinder
during different conditions, such as cylinder-to-cylinder variations, cold starts, and different engine behavior in different
operating points. Also, a method is proposed for automatic tuning of the algorithm based on training data. The misfire
detection algorithm is evaluated using data from several vehicles on the road and the results show that a low misclassification
rate is achieved even during difficult conditions.

Key words: Misfire detection, Fault diagnosis, Fault detection and isolation, Kullback-Leibler divergence, Pattern recognition.

1 Introduction

Engine misfire detection is an important part of the On-
Board Diagnostics II (OBD-II) legislations to reduce ex-
haust emissions and avoid damage to the catalytic con-
verter. Designing a misfire detection algorithm able to
detect misfires during different conditions such as differ-
ent operating points and cold starts requires tuning of
many algorithm parameters. Manual tuning of these pa-
rameters in order to achieve satisfactory performance is
often time-consuming.

The importance of having an accurate misfire detec-
tion algorithm requires a significant part of the avail-
able computational capacity. However, in order for the
algorithm to be implementable in a vehicle the compu-
tational complexity of the algorithm must also be kept
low. Thus, it is desirable to both reduce complexity of
the algorithm and maintain sufficient detectability per-
formance. In this work, the misfire detectability problem
is analyzed and an automatically tuned misfire detection
algorithm with low complexity is proposed.

An overview of misfire detection research can be found
in [17] and the most common used signal for misfire de-
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tection is the angular velocity measured at the flywheel.
Signal analysis approaches used in, e.g., [19] and [20],
utilize the oscillations in the angular velocity signal, re-
lated to the cylinder combustions, to detect when one
or several cylinders fail to fire. In [24], a Markov chain-
based algorithm is proposed to detect misfires. Com-
pared to previous works, the angular velocity signal is
used in this work to compute estimated torque which is
used to detect misfires.

Beside the angular velocity signal, there are other mea-
surements proposed for misfire detection, such as, engine
vibration [3,26,28] and ion current [1,10,16]. With re-
spect to previous works which might require additional
sensors, the angular velocity signal is used in this work
since it is already available in modern vehicles.

A common model-based approach for misfire detection is
to estimate the indicated torque to detect torque drops
related to misfire [4,14,30]. In [4], indicated torque is es-
timated in the frequency domain and a metric of torque
imbalance is used as a test quantity to detect misfires.
However, in [4] only detection is considered and not
identification of the misfiring cylinder. Other approaches
considers estimating the cylinder pressures [18] or the
relative changes in kinetic energy during compression
and expansion stroke [29]. A contribution here with re-
spect to previous works is a model-based misfire detec-
tion algorithm and an automatic off-line tuning strategy
using training data of the misfire detection algorithm in
order to handle different complicating conditions, such
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as cold starts.

The use of Kalman filters to estimate the indicated
torque for misfire detection is proposed in [12,14], and
sliding mode observers in [23,30,31]. The use of observer-
based solutions increases the computational complexity
and limits the applicability in an on-line OBD system.
Compared to these works, a contribution in this work
is a model-based test quantity for misfire detection
without the use of an observer to reduce computational
complexity. The algorithm can handle different compli-
cating conditions, such as cold starts. It is also able to
identify the misfiring cylinder and can be automatically
tuned off-line given training data.

The available maximum sampling resolution of the fly-
wheel angular velocity signal is commonly 6◦ which is
used in [14], but also lower resolutions are used (e.g.,
30◦ [20] and 90◦ [19]). High resolution data gives more
information about each combustion but requires more
computational power and is also more sensitive to mea-
surement errors caused by flywheel manufacturing er-
rors and signal sampling resolution [19]. In this work,
measurements with an angular resolution of 30◦ is used.

The misfire detection performance varies with different
operating points, such as load and speed, and is also
affected by disturbances such as: cycle-to-cycle and
cylinder-to-cylinder variations, driveline oscillations,
and flywheel manufacturing errors, see [19]. A contri-
bution in this work is an analysis of measurement data,
from different vehicles with the same type of engine, to
see how misfire detection performance varies for different
loads and speeds but also, in contrast to previous works,
other complicating circumstances such as cold starts.
The analysis is applied during the development process
of the misfire detection algorithm to evaluate achieved
performance for different designs of the algorithm.

The outline is as follows. First, the problem formulation
is presented in Section 2. A model of the crankshaft is de-
scribed in Section 3 and an analysis of misfire detectabil-
ity performance in Section 4. Then, the misfire detection
algorithm is presented in Section 5 which is evaluated
in Section 6. Finally, some conclusions are presented in
Section 7.

2 Problem formulation

Misfire detection is a difficult problem which is compli-
cated by that the vehicle is operated in different condi-
tions, such as different loads, speeds, cold starts, climate
variations etc. The purpose of this work is to perform
a quantitative analysis of the misfire detection perfor-
mance, by analyzing measurement data, in order to de-
velop a model-based misfire detection algorithm. The al-
gorithm should be automatically tunable using training
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Fig. 1. Flywheel angular velocity where the crank counts
associated to the combustion of each cylinder are shown.

data and should be able to handle variations in load and
speed but also other conditions such as cold starts.

In this analysis, data from four cars with six-cylinder
inline engines is used. The cylinders are numbered
1, 2, . . . , 6 such that cylinder 1 is closest to the flywheel
and driveline and cylinder 6 is located furthest away. A
list of signals from the vehicle control system used in
this work are shown in Table 1. The flywheel angular
velocity ω is converted to rpm from the original signal
which measures elapsed time between given angular
intervals [8]. The air mass induced per revolution ma

[g/rev] is used to represent the engine load [14].

The crank angle counter keeps track of the flywheel an-
gle which is used to identify the firing cylinders during
each revolution. With 30◦ resolution, each cycle contains
2 · 360◦/30◦ = 24 samples, i.e., 4 samples for each com-
bustion in a six cylinder engine. The value of the crank
angle counter identifies when during a cycle a sample is
measured using the indexes 1, 2, . . . , 24. The firing order
of the engine is 1-5-3-6-2-4 and an example of samples
related to each cylinder is shown in Fig. 1.

Table 1
A list of available signals.

Signal Variable Unit

Flywheel angular velocity ω rpm

Air mass induced per revolution ma g/rev

Crank angle counter - -

Catalyst warming flag - -

Misfire detection is considered based on the flywheel an-
gular velocity signal with an angular sample resolution
of 30◦. Measurement data is available with intermittent
misfires injected in all cylinders from four Volvo cars on
road with the same type of six cylinder engine.

Two examples of the angular velocity signal with angular
resolution of 30◦ for two different operating points are
shown in Fig. 2 and Fig. 3. In Fig. 2 data from low speed
and low load is shown and each oscillation in the signal is
related to a firing cylinder and a misfire is clearly visible
as a larger speed drop in the signal. The angular velocity
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Fig. 2. Flywheel angular velocity measurements around
speed 600 rpm and load 0.33 g/rev.
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Fig. 3. Flywheel angular velocity measurements around
speed 4500 rpm and load 2.87 g/rev.
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Fig. 4. Flywheel angular velocity measurements during cold
start around speed 1580 rpm and load 1.11 g/rev.

signal at high speed and load is shown in Fig. 3. A misfire
is still visible as a larger speed drop but compared to the
signal in Fig. 2, the oscillations in the signal are quite
different. The shape of the signal related to each firing
cylinder varies for different loads and speeds but also
between the different cylinders. These variations must be
taken into consideration in order to properly distinguish
between fault-free combustions and misfires.

The vehicle control system uses a catalyst warming flag
to indicate when there is a cold start. Detecting misfire
during cold starts is difficult and an example of angular
velocity measurements are shown in Fig. 4. Compared
to the measurements in Fig. 2 and Fig. 3 it is more diffi-
cult to identify a misfire in the signal. Thus, misfire de-
tectability performance during cold starts is important
when designing a misfire detection algorithm.

Even if the misfires are easily identified manually in the

flywheel signal in Fig. 2 and Fig. 3, implementing a mis-
fire detection algorithm is difficult without first process-
ing the signal. The trend of the flywheel signal follows
the engine speed, thus selecting a threshold which adapts
to varying speeds while distinguishing misfires from nor-
mal speed changes is difficult. Thus, the flywheel signal
must be processed to easily distinguish misfires from nor-
mal combustions. In this work, a model-based approach
is used to estimate the engine torque which will be dis-
cussed in the next section.

3 Engine crankshaft model

The previous section showed examples of when it was
easy or difficult to manually detect a misfire in the an-
gular velocity signal. A model-based approach to misfire
detection is to estimate the indicated torque from the
angular velocity signal. Models of varying complexity
have been used to model the crankshaft, see for example,
[8], [22], and [25]. However these models are computa-
tionally complex and are designed to captures other ef-
fects such as torsional vibrations of the crankshaft. Thus
they are not usable for on-line misfire detection where
the available computational power is limited. Reduction
of the crankshaft model complexity is discussed in, for
example, [21].

Simpler models describing the crankshaft are used in
[4] and [14]. If torsional effects are ignored and the
crankshaft is assumed to be stiff, the connection be-
tween the angular velocity and torques at the crankshaft
can be described using Newton’s second law as

J
dω

dt
=

ncyl∑
i=1

Tcyl,i − Tload − Tfr (1)

where J is the moment of inertia, ω is crankshaft angular
velocity, Tcyl,i is torque produced by cylinder i, Tload
is load torque, and Tfr is friction torque. The inertia
J usually depends on θ but is here assumed constant.
The torque due to load Tload is assumed to vary slowly
compared to cylinder torque and the slow variation of
friction Tfr is included in Tload [14].

The cylinder torque Tcyl,i represents the contributions
from both the gas pressure force in cylinder i and the
moving mass of the piston and connecting rod. The con-
tribution from the moving mass is a given function of the
crankshaft angle and proportional to ω2 and can easily
be compensated for, see equation (9) in [8]. In this work,
this component is included in Tcyl,i since the effects are
known and will be taken into consideration in the misfire
detection algorithm. By considering the resulting cylin-
der torque

Tcyl =

ncyl∑
i=1

Tcyl,i, (2)

3



(1) can be written as

J
dω

dt
= Tcyl − Tload. (3)

Data is sampled synchronously with the crank angle.
Therefore, (3) is expressed with crank angle as indepen-
dent variable instead of time. The left hand side of (3)
can then be expressed as

dω

dt
=
dω

dθ

dθ

dt
=
dω

dθ
ω =

1

2

d(ω2)

dθ
. (4)

The torque on the right hand side of (3) can be esti-
mated, for example, by using a Kalman filter [14]. In
[14], the Kalman filter is motivated since data is sam-
pled every 6◦, and thus negative effects from flywheel
manufacturing errors and quantification effects will re-
sult in a noisy signal. However, a Kalman filter estimator
is computationally expensive and since the angular res-
olution here is 30◦, the relative effects of the errors are
much smaller and therefore negligible. Here, the deriva-

tive d(ω2)
dθ is approximated using Euler forward as

J
dω[θ]

dt
= J

1

2

d(ω2[θ])

dθ
≈ J

2

(
ω2[θ + ∆θ]− ω2[θ]

∆θ

)
.

(5)
The right hand side of (3) can be estimated from the
angular velocity measurements by computing

J

2∆θ

(
ω2[θ + ∆θ]− ω2[θ]

)
= Tcyl − Tload = T. (6)

Here, the parameter J is unknown. Since it is the sep-
aration between data from misfires and fault-free com-
bustions that is important, it is not important to have
an accurate estimated torque T as long as the same pa-
rameter value J is used both during calibration and on-
line running the test. Thus, instead of plotting the es-
timated torque in the following sections, a scaled esti-
mated torque Ts = T

Tref
, where Tref is a selected reference

torque, is used which is proportional to the estimated
torque. The crank angle counts related to the estimated
torque of each firing cylinder are shown in Fig. 5 using
the same data as in Fig. 1.

3.1 Misfire detection using estimated torque

Two examples of estimated torque are shown in Fig. 6
and Fig. 7 where the torques are estimated given the fly-
wheel data in Fig. 2 and Fig. 3 respectively. In Fig. 6,
each firing cylinder is visible as a torque increase and
the load and friction decreases the torque giving the os-
cillatory behavior. In both figures, a misfire is identified
as a torque drop.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−0.2

−0.1

0

0.1

0.2

Crank count

Cyl 1 Cyl 5 Cyl 3 Cyl 6 Cyl 2 Cyl 4

T
s

Fig. 5. Scaled estimated torque Ts where the crank counts
associated to the combustion of each cylinder are shown.
Four samples are associated to each combustion.

In Fig. 6, each firing cylinder results in a torque increase
and due to friction and load the torque falls between the
firings. In Fig. 7, it is not as easy to distinguish the torque
contributions from the individual cylinders. In the two
examples, the estimated torque signals have a higher
mean value for fault-free combustions compared to mis-
fires. When comparing the estimated torque from sev-
eral combustions of the same cylinder at similar speeds
and loads, the trajectories are similar, even if they dif-
fer when comparing different cylinders. The trajectories
are also similar when comparing data from different ve-
hicles. This is important when calibrating a misfire de-
tection algorithm since then it is not necessary to make
separate calibrations for each individual vehicle.

To the eye it appears to be more difficult to detect mis-
fires in the estimated torque signal compared to the orig-
inal flywheel signal, but there are clear benefits of us-
ing the estimated torque. Estimated torques at similar
speeds and loads have almost the same values, making it
possible to compare measurements from different com-
bustions. Whereas the flywheel signal follows the engine
speed which makes comparisons between different com-
bustions sensitive to the speed difference, especially dur-
ing transients.

The variations in estimated torque between different
cylinders can not be explained by the moving piston
mass alone since then the estimated torque signal should
look the same for all firing cylinders. Variations between
different cylinders depending on their position was also
observed in [20]. However, since the shape of the signal is
always similar for each firing cylinder respectively, this
can be compensated for when designing the test quan-
tity by considering each cylinder separately.

It is assumed that Tload varies much slower than the
the variations of Tcyl. An example of computed mean
torque is shown in Fig. 8, and it is clearly visible that
the estimated mean torque varies from cycle-to-cycle.
For the purpose of misfire detection, a misfire causes
changes related to the fast oscillations and not the slowly
moving trends in the estimated torque. Therefore, the
mean torque for each cycle is subtracted from T .

4



0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

misfire

Sample

T
s

Fig. 6. Scaled estimated torque around speed 600 rpm and
load 0.33 g/rev.
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Fig. 7. Scaled estimated torque around speed 4500 rpm and
load 2.87 g/rev.
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Fig. 8. Scaled estimated torque around speed 2200 rpm and
load 1.3 g/rev. The mean torque for each cycle is shown in
the figure which is subtracted from the estimated torque.

4 Misfire detectability analysis

The shape of the estimated torque signal and misfire de-
tection performance varies with speed and load which
must be taken into consideration when designing a mis-
fire detection algorithm. In this section, the behavior of
the estimated torque signal during misfire is analyzed
to see how signal characteristics varies for different sam-
ples, speeds, loads, but also during cold starts.

4.1 Misfire visibility in data

The number of data samples required for misfire detec-
tion in each cylinder depends on when and how long the
effects of a misfire are visible in the flywheel angular ve-
locity signal. An analysis of misfire visibility in different
samples of the estimated torque signal, when the mean
torque is subtracted, for different speed intervals has
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Fig. 9. Comparing scaled estimated torque in cycles with
misfire in cylinder 5 (dashed line) with cycles without mis-
fires (solid line) between 750-1500 rpm. The lines represent
the mean torque and one standard deviation for each case.
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Fig. 10. Comparing scaled estimated torque in cycles with
misfire in cylinder 5 (dashed line) with cycles without mis-
fires (solid line) between 3000-3500 rpm.

been performed. Fig. 9 shows the estimated torque using
measurements from a vehicle on the road in the angular
velocity interval 750-1500 rpm and Fig. 10 in the inter-
val 3000-3500 rpm. The figures compare different cycles
with misfires in cylinder 5 with cycles with no misfires.
The mean value of all estimated torques for each crank
angle count and one standard deviation of the variations
are plotted, where data without misfires are represented
by the solid lines and misfires in cylinder 5 by dashed
lines.

The deviation between fault-free data and misfire data
is largest in the samples related to the combustion in
cylinder 5, i.e., crank angle counts 5-8, see Fig. 5. The
misfire data is in average, slightly above the data of the
fault-free cycles for the following combustions, i.e., crank
angle counts 9-16 in the figure. However, the difference
is relatively small for data during combustions after a
misfire and will not be considered for misfire detection.
The same results are present for different speeds, loads,
and during cold starts which will be discussed more later.

4.2 Stochastic representation of operating points

In order to quantify misfire detection performance, a
framework for representing the distributions of the es-
timated torque for different speeds and loads is useful.
Here a stochastic representation of T during misfires and
in the fault-free case is presented similar to [9].
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Fig. 22. Scaled estimated torque, normalized with respect to
air mass flow, from cylinder 5 where darker colors represent
higher loads.
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Fig. 23. Scaled estimated torque, normalized with respect to
air mass flow, from cylinder five where darker colors represent
higher speeds.

Data of normalized estimated torque is plotted in Fig. 22
and Fig. 23 where darker points represent increasing
load and speed respectively. Compared to Fig. 14 and
Fig. 15, the variations of the data points with respect to
different loads is reduced. The variation of the estimated
torque related to speed will be taken into consideration
by comparing data in different speed intervals.

Fig. 24 shows normalized torque from cold starts and
highlights that the separation between the fault-free
data and misfire data is still smaller than for normal
combustions but the distributions are fairly well sep-
arated. The computed Kullback-Leibler divergence for
cylinder 1 and 6 lies in the intervals 15.6 - 30.1 and 14.7
- 19.0 and are slightly better than without normalizing
the torque signal.

5.2 Detecting misfires

Commonly in model-based approaches to fault detec-
tion, redundancy of the system model and available sen-
sors is utilized to detect inconsistency between the ob-
servations and the model [6]. However, since the infor-
mation about the combustions here is only available via
the estimated torque signal, some type of pattern recog-
nition is necessary to distinguish a misfire from a fault-
free combustion, see [2] and [11].

Misfire

Fault-free

T
s
,9

Ts,8
Ts,7

Fig. 24. Scaled estimated torque, normalized with air mass
flow, from fault-free combustions and misfires during cold
starts where darker colors represents higher speeds.

The data in Fig. 22 and Fig. 23, and also in Fig. 24,
indicates that fault-free data and misfire data in general
are well separated. Thus, it is possible to use a linear
classification strategy to separate the fault-free data and
misfire data with few misclassifications.

A misfire is visible in the four samples of estimated
torque related to the misfiring cylinder. Here, the test
quantity r is designed by weighting all samples for each
combustion such that data from a misfire is maximally
separated from data of a fault-free combustion. Let

wk = (w1, w2, w3, w4)
T

be the weights for a given speed

and cylinder k and tk = (Tj , Tj+1, Tj+2, Tj+3)
T

is the
normalized estimated torque from cylinder k where the
crank angle counts j, j + 1, j + 2, and j + 3 for each
cylinder are given in Table 2. Then, the test quantity r
is given by

r = wT
k tk + β (11)

where β is a constant, depending on speed and cylinder,
such that r < 0 when there is a misfire and r > 0 in the
fault-free case.

Thus, the goal is to find the weights wk such that the pdf
of misfire data p(wT

k tk) are maximally separated from
fault-free data q(wT

k tk). Here, Support Vector Machines
(SVM) is used to find the weights w.

5.3 Support Vector Machines

Support Vector Machines (SVM) is a machine learning
approach that can be used for data classification [2,5].
The method utilizes samples from training data, called
support vectors, to find the maximum margin between
the different classes of data. A threshold for the classi-
fication is then selected within this margin. The advan-
tage of using SVM is that the problem of finding optimal
weights w that maximizes the margin is a convex opti-
mization problem and thus a global optimum can easily
be found.

Note that SVM uses no information about the rest of
the training data except the support vectors. Thus, it is
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Table 2
The crank counts of the samples to be weighted in (11)
for each cylinder used for misfire detection during normal
driving and cold starts.

Cylinder Normal Cold start/

catalyst warming

1 1, 2, 3, 4 2, 3, 4, 5

2 17, 18, 19, 20 18, 19, 20, 21

3 9, 10, 11, 12 10, 11, 12, 13

4 21, 22, 23, 24 22, 23, 24, 1

5 5, 6, 7, 8 6, 7, 8, 9

6 13, 14, 15, 16 14, 15, 16, 17

more important that the available data is representative
of the whole operating range of the vehicle rather than
having lots of training data. However, the method is
sensitive to outliers and faulty classified data. In cases
where the different classes of data in the training data
set are not separable from each other the misclassified
samples are penalized in the optimization.

5.4 Misfire detection algorithm design summary

From the analysis in Section 4 it was shown that mis-
fires during cold starts are visible at later crank angle
counts compared to normal driving. Therefore based on
the status of the catalyst warming flag, different samples
are used by the misfire detection algorithm. The samples
tk weighted together in (11) for each cylinder k during
normal driving and cold starts are shown in Table 2.

A summary of the off-line design procedure of the misfire
detection algorithm is presented here in the following
steps.

(1) Use training data, covering all speeds and loads in
the operating range, to compute estimated torque
T and subtract the mean estimated torque for each
cycle, then normalize it with ma.

(2) Select the crank angle counts of the estimated
torque for each cylinder which will be used to
separate misfires from fault-free combustions as
discussed in Section 3.

(3) Select speed intervals such that misfire data p is well
separated from fault-free data q, i.e., the Kullback-
Leibler divergence is sufficiently high for each inter-
val.

(4) For each speed interval, cylinder, and cold start,
estimate a vector wk such that misfire data and
fault-free data have a maximum margin using SVM.

(5) Select constants β for each interval balancing the
criteria for false-alarm rate and missed detection
rate. Increasing β will reduce the false alarm rate
while decreasing it will reduce the missed detection
rate.

Table 3
Training data during normal driving for automatic tuning of
misfire detection algorithm.

Vehicle Data set Fault-free Misfire

1 1 98923 2066

2 2 10680 224

2 3 20551 435

Table 4
Training data during cold starts for automatic tuning of
misfire detection algorithm.

Vehicle Data set Fault-free Misfire

3 9 6121 127

3 10 3971 82

4 11 2502 52

To find good parameters wk and β in (11) such that the
misclassification rate of r is minimized, it is necessary to
have measurements covering the whole operating range
of the vehicle. Also, collecting data from a couple of dif-
ferent vehicles is useful to capture the variations between
different vehicles.

6 Evaluation

In this evaluation, the misfire detection algorithm (11)
is automatically designed using the steps in Section 5.4
where weights and thresholds are optimized using train-
ing data. The misfire detection algorithm is then eval-
uated on other driving data sets which contains both
urban and highway driving. Intermittent misfires have
been injected in all cylinders and it is assumed that no
other misfires have occurred in the data sets. A list of
the training data for normal driving and cold starts are
shown in Tables 3 and 4. The tables show the number
of fault-free combustions and misfires in each data set.
The test quantity is evaluated on a number of driving
scenarios from four vehicles with the same type of six
cylinder engine. All cars have not been used to collect
the same types of measurements, for example, there is
not cold start data from all cars.

The parameters wk and β for different speeds and cylin-
ders are optimized using SVM in Matlab. The thresh-
olds are trade-offs between false alarms and missed
detections, i.e., the number of misclassifications. Here,
the thresholds are given by the SVM optimization algo-
rithm, svmtrain, in Matlab.

Data is associated to the closest operating point in
the algorithm which are here selected as the follow-
ing speeds: 500 rpm, 1000 rpm, 1500 rpm, 2000 rpm,
2500 rpm, 3000 rpm, 3500 rpm, 4000 rpm, and
4500 rpm. Thus, weights and thresholds are op-
timized for cylinders ∗ speed intervals = 54 oper-
ating points. Cold starts occurs here at a limited
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Fig. 25. In data set 7 where parameters are optimized using
SVM, the oscillations in the test quantity after some misfires
goes below the threshold and result in false alarms.

range of engine speeds and requires an additional
cylinders ∗ speed intervals = 6 · 2 = 12 operating points.

6.1 Misfire detection

First, the focus will be on data from normal driving and
later the focus will be on data from cold starts. The re-
sults from the evaluation when using SVM are shown in
Table 5. The data shows the number of fault-free com-
bustions and misfires for each data set. The result of
the misfire detection algorithm is presented in percent
of how many of the misfires that was not detected (MD)
and how many of the fault-free combustions that caused
false alarms (FA) for each data set. The evaluations show
good results where the number of false alarms and missed
detections are low except for data set 7 which have more
false alarms compared to the other data sets. The false
alarms for data set 7 are caused by torsional vibrations
in the crankshaft and driveline right after a real misfire
causing an oscillating test quantity to go below zero, see
Fig. 25. In this case, the lumped crankshaft assumption
has problem to handle the torsional vibrations. An ap-
proach could be to pre-filter the flywheel signal using
results from [21].

Histograms of r for data sets 6 and 7 in Table 5 are
shown in Fig. 26 and Fig. 27 respectively. Data from all
cylinders and speeds are included in the histograms and
the threshold is represented by the dashed line where
samples to the left are classified as misfires. Data set
6 had neither false alarms nor missed detections and
the histograms of r are shown in Fig. 26. Data set 7
had the most false alarms of the evaluation sets and
the distribution of r is shown in Fig. 27. In both cases,
the distributions of fault-free data and misfire data are
well separated from each other which indicates that the
misfire detection algorithm should be robust to small
variations of the distributions.

The results when evaluating the performance on data
from cold starts are shown in Table 6. Even if cold starts
are considered to be more difficult to detect misfires the

Table 5
Evaluation of misfire algorithm during normal driving.

Vehicle Set Fault-free Misfire FA MD

1 4 41444 863 0.0048% 0.23%

1 5 93251 1941 0% 0%

2 6 45496 949 0% 0%

2 7 48881 1013 0.090% 0%

3 8 49218 1020 0.012% 0%
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Fig. 26. Histograms of the test quantity r of fault-free data
and misfire data given data set 6 when parameters are opti-
mized using SVM.
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Fig. 27. Histograms of the test quantity r of fault-free data
and misfire data given data set 7 when parameters are opti-
mized using SVM.

Table 6
Evaluation of misfire algorithm during cold starts.

Vehicle Set Fault-free Misfire FA MD

3 12 3960 82 0.35% 0%

4 13 2502 52 0% 0%

4 14 2716 57 0.26% 3.5%

results show good detection performance. When analyz-
ing the histograms of r for data set 12 in Fig. 28 it is
shown that most of the fault-free samples are well sep-
arated from the misfires. The number of false alarms in
data sets 12 and 14 can be reduced by changing β at the
cost of increased missed detection rate.
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Fig. 28. Histograms of the test quantity r of fault-free data
and misfire data given data set 12 when parameters are op-
timized using SVM.
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Fig. 29. Histograms of the test quantity r of fault-free data
and misfire data from a vehicle with a four cylinder engine.

6.2 Evaluation using data from a four cylinder engine

To show that the proposed method can be used for differ-
ent engine types, data from a vehicle with a four cylinder
engine has been used. The measurements have the same
resolution as for the six cylinder engine, i.e., 30◦. How-
ever, the number of samples related to each combustion
is six instead of four as for the six cylinder case. The only
additional work that needs to be done before implemen-
tation is to identify the samples and crank angle counts
related to each of the four cylinders. The algorithm is
then calibrated using training data and then evaluated
using validation data where the result is shown in Fig. 29.
The results show that good performance of the misfire
detection algorithm is achieved also when implemented
for other engine types.

6.3 Performance analysis

The evaluation shows that the misfire detection algo-
rithm has an overall good performance with few misclas-
sifications. Here, the performance of the misfire detec-
tion algorithm when calibrated, using all available data,
will be compared with the results from the analysis per-
formed in Sections 4.4 and 5.1.

In Fig. 30 and Fig 31, histograms estimating the pdfs of
fault-free data and misfire data of the test quantity r are
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Fig. 30. Histograms of the test quantity r for data from
cylinder 1 at the different operating points and computed
Kullback-Leibler divergence.

compared for the different operating points for cylinder
1 and 6 respectively together with computed Kullback-
Leibler divergence. Each curve are histograms represent-
ing the pdfs of fault-free data and misfire data from each
speed operating point and the Kullback-Leibler diver-
gence is shown to the right. One of the main results from
the analysis was that detection performance increased
with increasing speed which is also visible when evalu-
ating the misfire detection algorithm. The performance
drop at the highest speed operating point can be ex-
plained by that all samples from speeds higher than 4250
rpm are all associated to the same operating point of
the algorithm. This performance drop can be dealt with
by adding more operating points for higher speeds. The
computed Kullback-Leibler divergences here are lower
compared to the analysis in Section 5, which is proba-
bly due to the dimension reduction of the analyzed data
from four dimensions to one.

The samples of r at each operating point and cylinder are
normalized such that fault-free data has variance one.
The figures show that a higher Kullback-Leibler diver-
gence corresponds to a larger separation between data
and thus simplifies misfire detection. By comparing the
two figures it is visible that misfire data from cylinder 6
is less separated from fault-free data compared to data
from cylinder 1 confirm that it is more difficult to detect
misfires of cylinder 6. This is consistent with the results
in Fig. 20 and Fig 21 which show that detection perfor-
mance is lower for cylinder 6 at high velocities compared
to cylinder 1. The variations in distributions between the
different cylinders which are collected from three differ-
ent vehicles confirm the choice of using different param-
eters, wk and β, for different cylinders.

Another observation is that when comparing at which
speeds and loads misclassifications occur. In Fig 32, it is
shown that most misclassifications occurs at low loads
and speeds and only a few at high speeds. Note also that
the false alarms at high speeds occurs at speeds that are
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Fig. 31. Histograms of the test quantity r for data from
cylinder 6 at the different operating points and computed
Kullback-Leibler divergence.

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

 

 

False alarms

Missed detections

Misclassifications

ω

m
a

Fig. 32. A plot showing at which speeds and loads misclas-
sifications have occurred during normal driving.

far above the highest speed operating point of the misfire
detection algorithm (4500 rpm). Also, there are several
misclassifications around speed 1000 rpm and load 0.5.
This is consistent with the results seen in Fig. 20 and
Fig 21 where the Kullback-Leibler divergence is lowest
around that value. Increasing the number of operating
points in the algorithm around 1000 rpm and at higher
speeds could probably reduce the number of misclassifi-
cations in these cases.

7 Conclusions

A computationally simple model-based misfire detection
algorithm is proposed and an automatic tuning method
that uses training data. The detection algorithm uses the
flywheel angular velocity signal with an angular sample
resolution of 30◦ to estimate the torque at the flywheel. A
diagnosis algorithm is generated by weighting estimated
torque related to the firing cylinder and normalized by
the load signal to detect misfires. The algorithm param-
eters are optimized using Support Vector Machines.

An analysis of misfire detection performance using the
Kullback-Leibler divergence shows how the performance

varies for different operating points and cylinders. The
late ignitions and increased variations in estimated
torque during cold starts are handled by considering
them separately from normal driving and using different
intervals of data in the misfire detection algorithm. The
performance analysis also verifies that detection per-
formance is improved when normalizing the estimated
torque signal with respect to load.

Evaluations show that the misfire detection algorithm
achieves good performance with few false alarms and
few missed detections even for difficult cases such as
cold starts. Further analysis of the misfire detection al-
gorithm shows that the ability to make a correct classi-
fication is consistent with the misfire detection analysis
based on the Kullback-Leibler divergence.
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