Avkastning som mål, diversifiering som verktyg för en lönsam styrelse

Firm Performance and Board Diversity – a Profitable Board Composition

Författare:
Joel Strand
Alen Voljevica

Handledare:
Anne Boschini

aFristående kurser
bFristående kurser

Institutionen för ekonomisk och industriell utveckling

Våren 2015
Sammanfattning

Forskning hävdar att endast ett fåtal av styrelseledamöterna förstår vilka beslut som är värdeskapande för företaget. En av orsakerna är oförmågan att rekrytera rätt personer och flera röster har höjts för att en diversifierad rekrytering till bolagsstyrelser är en möjlig lösning på problemet. Diversifieringen kan ske utifrån olika demografiska faktorer som på en aggregerad nivå ska medföra att processen från beslut till genomförande blir effektiv. Vi finner stöd för en ökad diversifiering hos styrelsen i en rad teorier som alla är en del av tankegodset inom bolagsstyrning.

Med stöd av vår modell visar vår analys att styrelsens storlek uppvisar en positiv korrelation med företagets förmåga att generera avkastning på eget kapital. Den underliggande orsaken till detta kan vara att stora företag genrellt leds av en större styrelse och att dessa stora företag skapar värde för sina aktieägare på vis som gynnar nyckeltalet avkastning på eget kapital. Det är generellt sett problematiskt att slå fast vilka demografiska variabler som inverkar på företagets lönsamhet utifrån en ekonometrisk ansats, i och med att datamaterialet lider av dålig spridning. I den reviderade modellen menar vi att styrelsens storlek, gemensam erfarenhet samt oberoende ledamöter med olika kön och etnicitet är viktiga för att studera hur styrelsens demografi korrelerar med företagets avkastning på eget kapital.
INNEHÅLL

1 Inledning 1
 1.1 Problemdiskussion ... 1
 1.2 Problemformulering .. 2
 1.3 Syfte ... 2
 1.4 Avgränsningar .. 2

2 Teoretisk referensram 3
 2.1 Allmän teori om bolagsstyrning ... 3
 2.2 Indelning av demografiska variabler .. 4
 2.3 Styrelsensammansättningens effektivitet och dess påverkan på lönsamhet 4
 2.3.1 Modell för effektivitet och lönsamhet 4
 2.4 Kontextuella parametrar vid undersökning av styrelsensammansättningar 5
 2.5 Kostnad att separeras från ägande, agentkostnad 6
 2.5.1 Diversifiering i styrelsen med avseende på agentproblemet 6
 2.6 Socialt kapital .. 7
 2.7 Resource dependence theory .. 7
 2.8 Beroende variabel ... 8
 2.8.1 Mått på lönsamhet .. 8
 2.9 Preciserings av regressorer – faktoruppdeland av tidigare teori 8
 2.9.1 Andel externa ledamöter .. 9
 2.9.2 Styrelsens storlek .. 10
 2.9.3 Utbildning ... 10
 2.9.4 Erfarenhet ... 10
 2.9.5 Antal engagemang ... 10
 2.9.6 Etnicitet ... 11
 2.9.7 Kön .. 11
 2.10 Från teori till analysmodell ... 11

3 Metod 13
 3.1 Uppsatsstruktur .. 13
 3.2 Val av ansats ... 13
 3.3 Val av inriktning ... 13
 3.4 Val av litteratur och informationsinsamling 13
 3.5 Datansamling ... 14
 3.6 Bearbetande av data ... 14
 3.6.1 Paneldata .. 14
 3.6.2 Statistiska test .. 15
3.7 Variabeldefinition .. 16
3.8 Vår empiriska modell .. 16
3.9 Metodkritik – undersökningens tillförlitlighet och giltighet 17
3.10 Preciserad uppgift och hypoteser 18

4 Empiri ... 19
4.1 Disposition av empiri .. 19
4.2 Årsredovisningar .. 19
4.3 Thomson Reuters ... 20
 4.3.1 Deskriptiv statistik ... 20
 4.3.2 Regression ... 24

5 Analys ... 30
5.1 Externa ledamöter ... 30
5.2 Externa ledamöter – kön ... 31
5.3 Externa ledamöter – etnicitet 31
5.4 Styrelsens storlek .. 32
5.5 Gemensam erfarenhet .. 33
5.6 Residuala faktorer ... 34

6 Slutsats och vidare forskning 35
6.1 Slutsats ... 35
6.2 Vidare forskning .. 37

Bilagor ... 42
Bilaga A Material för empiri ... 42
Bilaga B R-kod för empiri ... 43
Bilaga C Skärningspunkt med Y-axeln 44
Bilaga D Residualer .. 45
FIGURER

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beskrivning</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Modell av Forbes och Milliken (1999) som visar kopplingen mellan styrelsens demografiska sammansättning och olika processers inverkan på ett företags lönsamhet</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Vår nedbrytning av teorin i faktorer</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Vår analysmodell; den redogör för vilka faktorer vi finner teoretiskt intressanta att studera</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>Histogram över variablerna med störst spridning enligt vår faktornedbrytning</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Histogram över de kontextuella variablerna i vår modell</td>
<td>23</td>
</tr>
<tr>
<td>4.3</td>
<td>Histogram över de beroende variablerna</td>
<td>23</td>
</tr>
<tr>
<td>6.1</td>
<td>Vår reviderade analysmodell</td>
<td>36</td>
</tr>
<tr>
<td>D.1</td>
<td>Visualisering av residualer</td>
<td>45</td>
</tr>
<tr>
<td>D.2</td>
<td>Residualplot över variablerna med störst spridning enligt vår faktornedbrytning</td>
<td>46</td>
</tr>
<tr>
<td>D.3</td>
<td>Residualplot över de kontextuella variablerna i vår modell</td>
<td>47</td>
</tr>
<tr>
<td>Tabellnummer</td>
<td>Beskrivning</td>
<td>Sidan</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>3.1</td>
<td>Definition av den empiriska modellens variabler</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Deskriptiv statistik</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Korrelation mellan olika variabler</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>Regression med diversifierande variabler, inget lag.</td>
<td>24</td>
</tr>
<tr>
<td>4.4</td>
<td>Regression med diversifierande variabler, inklusive lag.</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>Regression med alla variabler, inklusive lag.</td>
<td>26</td>
</tr>
<tr>
<td>4.6</td>
<td>Test av modeller från Tabell 4.5</td>
<td>27</td>
</tr>
<tr>
<td>4.7</td>
<td>Regression med alla variabler och tidsberoende, inklusive lag.</td>
<td>28</td>
</tr>
<tr>
<td>4.8</td>
<td>Test av modeller från Tabell 4.7</td>
<td>29</td>
</tr>
<tr>
<td>C.1</td>
<td>Skärningspunkterna med Y-axeln för respektive företag, fixed effects, se Tabell 4.5</td>
<td>44</td>
</tr>
</tbody>
</table>
1.1 Problemdiskussion

Problematiken kring styrelsesammansättningar bottnar i den klassiska agentteorin där teorin används för att förklara sambandet mellan styrelsesammansättningen och företagets värde. I detta fall säger teorin i fråga att styrelsen ska skydda aktieägarnas intressen från ledningens egna intressen. (Fama och Jensen, 1983)

1.2 Problemformulering

Med utgångspunkt i teorier kring bolagsstyrning och socioekonomiska teorier fokuserar denna uppsats på att analysera vilka faktorer hos styrelsens medlemmar som är av betydelse för ett företags lönsamhet. Diskussionen kring olika grader av diversifiering tar avstamp i agentproblemet på en "imperfekt marknad" vilket betyder att även socioekonomiska teorier blir relevanta att ta med.

1.3 Syfte

Att konstruera en teoretisk modell för en lönsam styrelsesammansättning utifrån existerande forskning. Modellen appliceras på svenska aktiebolag; detta för att komparativt analysera de olika faktorernas inverkan på lönsamheten i en svensk kontext.

1.4 Avgränsningar

3OMXS30 utgörs av de 30 mest omsatta aktierna på Stockholmsbörsen, Atlas Copco förekommer med både A- och B-aktien och Nokia är ett bolag med säte i Finland. Därrav formulering "unika bolag".
KAPITEL 2

TEORETISK REFERENSRAM

2.1 Allmän teori om bolagsstyrning

Ämnet bolagsstyrning (eng. corporate governance) behandlar hur kapitalägare som investerar sitt kapital i olika bolag säkerställer att deras investering genererar en positiv avkastning. Styrelsemöterna i bolagen fungerar som en kontrollmekanism som ska (i) representera investerarnas intressen, (ii) övervaka den operativa ledningen samt (iii) tillsätta och avskeda individer i den operativa ledningen. (Shleifer och Vishny, 1997)

2.2 Indelning av demografiska variabler

Demografiska variabler bör indelas i två olika kategorier;

2.3 Styrelsesammansättningens effektivitet och dess påverkan på lönsamhet

De flesta akademiker är ense om att en styrelse består av olika demografiska variabler som ska operera genom en mängd intervenerande processer. Effectiviteten hos en styrelsesammansättning kan kopplas till och utvärderas genom att undersöka processen från beslut till genomförande (Forbes och Milliken, 1999; Zahra och Pearce II, 1989; Maassen, 1999). Styrelsesammansättningens effektivitet definieras av två delmängder bestående av:

1. Styrelsens förmåga att utföra sina kontrolluppgifter.
2. Graden av integration i styrelsen, det vill säga hur väl samarbetet mellan ledamöterna fungerar. I detta fall har graden av integration en indirekt påverkan på företagets lönsamhet genom att påverka den första delmängden i nuläget och i framtiden. (Forbes och Milliken, 1999)

För att mäta effektiviteten hos en demografiskt diversifierad styrelse presenteras faktorerna (i) arbetslivserfarenhet och utbildning, (ii) andel externa ledamöter och (iii) styrelsens storlek (Forbes och Milliken, 1999; Goodstein, Gautam och Boeker, 1994). Effectiviteten hos en styrelsesammansättning påverkar i sin tur företagets finansiella resultat (Forbes och Milliken, 1999; Korac-Kakabadse, Kakabadse och Kouzmin, 2001). Zahra och Pearce II, 1989. Styrelsesammansättningens effektivitet definieras av två delmängder bestående av:

1. Styrelsens förmåga att utföra sina kontrolluppgifter.
2. Graden av integration i styrelsen, det vill säga hur väl samarbetet mellan ledamöterna fungerar. I detta fall har graden av integration en indirekt påverkan på företagets lönsamhet genom att påverka den första delmängden i nuläget och i framtiden. (Forbes och Milliken, 1999)

2.3.1 Modell för effektivitet och lönsamhet

1 En intervenerande process är i detta sammanhang de olika friktionsytor som ledamöterna upplever mellan varandra i en styrelse (Pelled, 1996).
inom företagets traditionella områden såsom finans, redovisning, marknadsföring och logistik. Den andra dimensionen innefattar detaljerad information om företaget på operativ och strategisk nivå. Under styrelseprocesser (eng. board processes) finns komponenterna (i) effect norms, (ii) cognitive conflict och (iii) use of knowledge & skills. Komponent (i) är en överenskommelse på gruppnivå där gruppen delar åsikt kring vilken prestationsnivå som förväntas av varje enskild ledamot (Wageman, 1995). Den andra komponenten (ii) relaterar till handlingsorienterade skillnader i omdöme bland styrelsens medlemmar (Forbes och Milliken, 1999).

2.4 Kontextuella parametrar vid undersökning av styrelsesammansättningar

Företagets omgivning, det vill säga marknadsstruktur och den teknologiska utvecklingen, kräver förändringar i strategier vilket i sin tur ofta innebär förändringar av styrelsesammansättningen (Hillman, Cannella och Paetzold, 2000).

2.5 Kostnad att separeras från ägande, agentkostnad

I samband med att kapitalägarna investerar sitt kapital innebär det att de lämnar ifrån sig en del av kontrollen till någon annan (agent) för förvaltning. Denna separation kontrolleras genom ett kontrakt mellan kapitalägaren och agenten (Jensen och Meckling, 1976). För att kontraktet ska uppfattas som trovärdigt krävs övervakning och signaleringskostnader, Jensen och Meckling definierar kostnader i form av:

1. Övervakning (och kontroll)
2. Försäkran om gott uppträdande hos ledningen
3. Residualkostnader som uppstår när agenten agerar i sitt eget intresse istället för i ägarens intresse trots övervakning och försäkran om annat agerande.

2.5.1 Diversifiering i styrelsen med avseende på agentproblemet

På grund av organisationens komplexitet ingår ofta företagets högsta ledning, även kallade ”beslutsspecialister”, i styrelsen (Fama och Jensen, 1983). Dessa sitter på mycket information som behövs för kontroll och långsiktiga beslut. Majoriteten av styrelseledamöterna är externa agenter (Herman m.fl., 1981) och dessa rekryteras utifrån sin förmåga att bredda styrelsens kompetens (Fama och Jensen, 1983). De extern rekryterade ledamöterna kan dessutom ges huvudsakligt ansvar för frågor med underliggande agentproblem, det kan vara rekrytering till ledande chefspositioner eller beslut om kompensation till företagsledningen. De externt ledamöterna kan också med och

2 Relevant information är koncentrerad till en eller några få agenter, i komplexa organisationer medför däremot informationsöverföring höga transaktionskostnader (Williamson, 1975).
3 Styrelse innehåller en liten andel extern rekryterade ledamöter till att innehålla en större andel av extern rekryterade ledamöter.
4 Självständig betyder i det här sammanhanget att styrelsen innehåller externt rekryterade ledamöterna.

2.6 Socialt kapital

2.7 Resource dependence theory

Reciprocitetsprincipen är ett sociologiskt begrepp för att beskriva hur positiva handlingar besvaras med positiva handlingar. Negativa handlingar besvaras med negativa handlingar. Begreppet är inte samma sak som altruism som bygger på att en positiv handling utförs utan förväntan om framtida återgäldande (Fehr och Gächter, 2000).
2.8 Beroende variabel

2.8.1 Mått på lönsamhet

Avkastning på eget kapital, förkortat ROE, utgör ett lönsamhetsmått.

\[
\text{ROE} = \frac{\text{Nettoresultat}}{(\text{Justerat}) \text{ Eget kapital}} \quad (2.1)
\]

Eget kapital = Tillgångar – Skulder \quad (2.2)

Genom att dividera ROE för det enskilda företaget med genomsnittligt ROE för hela industrin (inklusive observationer out-of-sample) skapar Baysinger och Butler [1985] något de kallar för relative financial performance (RFP). Lönsamhetsmåttet RFP tar hänsyn till falska (eng. spurious) industrieffekter såväl som cykliska trender för olika industrier (Baysinger och Butler, [1985]).

\[
RFP_{t,i} = \frac{ROE_{t,i}}{\frac{1}{n} \sum_{i}^{T} \sum_{n}^{T} ROE_{t,i}} \quad (2.3)
\]

Där \(t \) är tiden och \(i \) är företaget.

2.9 Precisering av regressorer – faktoruppdelning av tidigare teori

Den forskning som hittills har presenterats pekar på en rad olika faktorer med relevans för styrelsesammansättningen. Enligt teorin är potentialen av diversifiering stor bland de externa ledamöterna då dessa ska bredda styrelsens kompetens. En modell för detta presentera i Figur 2.2 på nästa sida. Följande avsnitt är avsett att på ett fördjupat vis förklara respektive faktor.
2.9.1 Andel externa ledamöter

2.9.2 Styrelsens storlek

2.9.3 Utbildning

2.9.4 Erfarenhet

2.9.5 Antal engagemang

Det är vanligt att personer med flera styrelseengagemang är äldre, att de verkar inom bank- eller konsultverksamhet och att de sitter med i styrelser som externa ledamöter (Ferris m.fl., 2003). Ferris m.fl. menar också att det finns en positiv korrelation mellan företagets prestation idag och antalet styrelseengagemang för det berörda företagets ledamöter i framtida perioder.

2.9.6 Etnicitet

- Interna drivare - en ökning av humankapital och socialt kapital.
- Externa drivare - tryck från omgivning med avseende på "corporate social responsibility", kunskaper om framtida regleringar, globalisering, kunskap om andra kulturer, att bedriva affärsverksamhet i postkoloniala länder samt "connectedness".

2.9.7 Kön

2.10 Från teori till analysmodell

Vi har nu presenterat en rad teorier och hur dessa legitimerar en uppdelning i faktorer för hur en styrelse kan och bör sättas samman. I och med att vi avgränsar oss till de mest omsatta svenska bolagen är det rimligt att anta att huvudägaren har en stark koppling till Sverige, i annat fall borde bolaget vara noterat i huvudägarens hemland. Enligt tidigare teori representerar de beroende ledamöternas bolaget och (eller) bolagets ägare, att utifrån dessa förutsättningar undersöka diversifiering med avseende på kön och etnicitet hos de beroende ledamöterna riskerar att ge ett

fruktlöst resultat, i och med att de beroende ledamöterna enligt insamlad data till övervägande del är män. Det är däremot de oberoende ledamöterna som ska bidra med nya perspektiv och bredda kompetensen, en naturligt följd av det är att spridningen i demografi borde vara större hos de oberoende ledamöterna.

I enlighet med den presenterade forskningen i avsnitt 2.4 på sidan 5 som menar att empiriska studier bör ta hänsyn till externa kontextuella variabler, placerar vi vår analysmodell i en kontext som beskrivs av Figur 2.2 på sidan 9. I och med att det kausala sambandet i tidigare forskning inte har kunnat fastställas förhåller vi oss ödmjuka inför det faktum att inte heller vi har förmågan eller resurserna att fastställa i vilken riktning krafterna verkar inom ramen för denna uppsats. Däremot dubbelpilarerna i vår analysmodell, Figur 2.3, men vår ansats är som tidigare nämnts – att undersöka fenomenet från vänster till höger.

Figur 2.3: Vår analysmodell; den redogör för vilka faktorer vi finner teoretiskt intressanta att studera.

![Figur 2.3](image-url)
KAPITEL 3

METOD

3.1 Uppsatsstruktur

3.2 Val av ansats

3.3 Val av inriktning

3.4 Val av litteratur och informationsinsamling

För att lyckas förklara vårt syfte har vi använt oss av litteratur inom området ”corporate governance” tillsammans med socioekonomiska teorier. De senare har varit nödvändiga för att förklara de exogena variablerna i teorin för ”corporate governance”.

13

3.5 Datainsamling

3.6 Bearbetande av data

3.6.1 Paneldata

Den data som vi använder i den empiriska analysen är paneldata. Litteraturen gör skillnad på balanserad och obalanserad panel beroende på om objekten har lika många observationer (Gujarati och Porter, 2009). Vi kommer i vår undersökning arbeta med en balanserad panel eftersom antalet observationer av objekten, i vårt fall företagen, är lika.

"Pooled regression model" (OLS)

"Pooled regression model" innebär att modellen skattas som en vanlig OLS-modell (Gujarati och Porter, 2009). Modellen antar dessutom att samtliga variabler är strikt exogena och att den inte beror på nuvarande, tidigare eller framtidiga värden av feltermen u_{it}. Problemet som uppstår med denna regressionsmodell är att den inte tar hänsyn till paneldatans tvärsnittliga egenskaper med avseende på objekt och tidsperspektiv (Gujarati och Porter, 2009). Detta kan medföra att heterogeniteten (de individuella skillnaderna) hos företagen inte blir påtaglig.

Modell med antagande om "fixed effects" (FE)

Modell med antagande om "random effects" (RE)

The random effects modellantar att det inte finns några fixed effectsmen gen utrymme för individuella effekter. Ytterligare antaganden som RE antar är att de individuella effekterna av de olika objekten (företagen) har ett inflytande på den beroende variabeln. RE samlar samtliga intercepttermor i ett gemensamt intercept plus en stokastisk felterm för samtliga oberoende variabler. (Gujarati och Porter, 2009)
3.6.2 Statistiska test

Vi undersöker korrelationen mellan mätvariablerna för att studera eventuell multikollineratitet. När det gäller heteroskedasticitet plottar vi residualerna mot respektive faktor för att på så vis grafiskt identifiera tidsberoende variationer.

Vi använder ett Hausman-test som avgör vilken av modellerna FE och RE som är konsistent. Användningen av dummy-variabler i FE innebär att frihetsgrader går förlorade men RE kantas av problematiken att de individuella effekterna anses vara okorrelerade med övriga regressorer. Hausman-testet testar om de unika felkoefficienterna i RE är korrelerade med regressorerna.

Breusch-Pagan Lagrange Multiplier Test används för att testa de olika nollhypoteserna:

- OLS är effektivare än FE
- OLS är effektivare än RE
- FE är effektivare än FE, inklusive tidseffekt
3.7 Variabeldefinition

I Tabell 3.1 definieras alla variabler som ligger till grund för empiriinsamlingen. Uppsatsen gör en distinkt skillnad på faktor och variabel. Faktor är tättnuten till teorin och utgör viktiga fenomen för sammansättningen av en styrelse. En variabel är mer konkret och är det verktyg vi använder oss av för att fånga faktorns samverkan med företagets lönsamhet.

<table>
<thead>
<tr>
<th>Faktor</th>
<th>(Mät)Variabel</th>
<th>Mätdefinition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfarenhet</td>
<td>NoOfYears</td>
<td>Summan av styrelseledamöternas tjänstgöringstid i undersökt styrelse.</td>
</tr>
<tr>
<td>Styrelsens storlek</td>
<td>Size</td>
<td>Antalet styrelseledamöter valda av årsstämman.</td>
</tr>
<tr>
<td>Andel externa ledamöter</td>
<td>Indep</td>
<td>Hur många av årsstämmans valda ledamöter som är oberoende i förhållande till bolaget och ägaren.</td>
</tr>
<tr>
<td>Andel externa kvinnliga ledamöter</td>
<td>IndepFem</td>
<td>Hur många av årsstämmans valda ledamöter som är oberoende kvinnor i förhållande till bolaget och ägaren.</td>
</tr>
<tr>
<td>Andel externa icke-nordiska ledamöter</td>
<td>IndepNonNordic</td>
<td>Hur många av årsstämmans valda ledamöter, med nordiskt medborgarskap, som är oberoende i förhållande till bolaget och ägaren.</td>
</tr>
<tr>
<td>Andel externa icke-nordiska kvinnliga ledamöter</td>
<td>IndepFemNonNordic</td>
<td>Hur många av årsstämmans valda kvinnliga ledamöter, med nordiskt medborgarskap, som är oberoende i förhållande till bolaget och ägaren.</td>
</tr>
<tr>
<td>År</td>
<td>Year</td>
<td>En variabel mellan 2003 och 2014 för att indikera vilket år det handlar om.</td>
</tr>
<tr>
<td>Bolag</td>
<td>Id</td>
<td>En siffra mellan 1..n för datamaterialets samtliga företag.</td>
</tr>
</tbody>
</table>

Beroende variabel

| Avkastning på eget kapital | ROE | Avkastning på eget kapital för ett specifikt företag i datamaterialet. |
| Avkastning på eget kapital, skalad | RFP | Avkastning på eget kapital för ett specifikt företag dividerat med genomsnittlig avkastning på eget kapital för datamaterialet. Se Avsnitt 2.8.1 på sidan 8 |

3.8 Vår empiriska modell

\[
ROE_{i,t+1} = \beta_0 + \beta_1 \text{NoOfYears}_t + \beta_2 \text{Size}_t + \beta_3 \text{Indep}_t + \beta_4 \text{IndepFem}_t + \beta_5 \text{IndepNonNordic}_t + \beta_6 \text{IndepFemNonNordic}_t
\]

(3.1)
3.9 Metodkritik – undersökningens tillförlitlighet och giltighet

Holme m. fl. (1997) menar på att det finns en konflikt mellan informationens validitet och reliabilitet och att forskaren i många fall måste göra en avvägning mellan dessa två. Det är i praktiken svårt att generera faktorer och mätvariablar som uppnår både mätbarhet och heltäckning. I vårt fall ligger faktorn erfarenhet närmare den teoretiska frågeställningen och är problematisk att mäta i verkligheten.

3.10 Preciserad uppgift och hypoteser

H_1: **Antal externa ledamöter** hypotesen är att faktorn inverkar positivt på företagets förmåga att generera avkastning på aktieägarnas kapital.

H_2: **Antal externa ledamöter - kön** hypotesen är att faktorn inverkar positivt på företagets förmåga att generera avkastning på aktieägarnas kapital.

H_3: **Antal externa ledamöter - etnicitet** hypotesen är att faktorn inverkar positivt på företagets förmåga att generera avkastning på aktieägarnas kapital.

H_4: **Antal externa ledamöter - kön & etnicitet** hypotesen är att faktorn inverkar positivt på företagets förmåga att generera avkastning på aktieägarnas kapital.

H_5: **Styrelsens storlek** hypotesen är att faktorn inverkar negativt på företagets förmåga att generera avkastning på aktieägarnas kapital.

H_6: **Gemensam erfarenhet** hypotesen är att faktorn inverkar positivt på företagets förmåga att generera avkastning på aktieägarnas kapital.
4.1 Disposition av empiri

Kapitel 4 inleds med fakta kring varifran empirin har inhämtats, därefter följer i avsnitt 4.3.1 en deskriptiv översikt av datamaterialet. Materialet presenteras med bland annat minimum och maximum för respektive variabel (Tabell 4.1), vidare förkommer en tabell (4.2) med den, mellan variablerna, inbördes korrelation. Den deskriptiva statistiken avslutas med histogram för samtliga variabler.

4.2 Årsredovisningar

4.3 Thomson Reuters

Avkastning på eget kapital har vi hämtat från Thomson Reuters databas. Pågrund av databasens oförmåga att visa ROE efter skatt för samtliga företag (banker och försäkringsbolag exkluderas) har vi använt oss av ROE innan skatt.

4.3.1 Deskriptiv statistik

Tabell 4.1: Deskriptiv statistik.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROE</td>
<td>324</td>
<td>23.559</td>
<td>18.539</td>
<td>-83.625</td>
<td>14.470</td>
<td>32.603</td>
<td>75.955</td>
</tr>
<tr>
<td>ROE, lag</td>
<td>297</td>
<td>24.119</td>
<td>18.583</td>
<td>-83.625</td>
<td>15.082</td>
<td>33.044</td>
<td>75.955</td>
</tr>
<tr>
<td>RFP</td>
<td>324</td>
<td>1.000</td>
<td>0.787</td>
<td>-3.550</td>
<td>0.614</td>
<td>1.384</td>
<td>3.224</td>
</tr>
<tr>
<td>RFP, lag</td>
<td>297</td>
<td>1.024</td>
<td>0.789</td>
<td>-3.550</td>
<td>0.640</td>
<td>1.403</td>
<td>3.224</td>
</tr>
<tr>
<td>Oberoende</td>
<td>324</td>
<td>5.756</td>
<td>1.898</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Oberoende, kvinna</td>
<td>324</td>
<td>1.880</td>
<td>1.146</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Oberoende, icke-nordisk kvinna</td>
<td>324</td>
<td>0.506</td>
<td>0.808</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Oberoende, icke-nordisk</td>
<td>324</td>
<td>1.701</td>
<td>2.009</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Antal år</td>
<td>324</td>
<td>49.031</td>
<td>22.463</td>
<td>4</td>
<td>31</td>
<td>63</td>
<td>114</td>
</tr>
<tr>
<td>Styrelsestorlek</td>
<td>324</td>
<td>8.821</td>
<td>1.626</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

I Tabell 4.2 presenteras korrelationen mellan de olika variablerna, de beroende variablerna utgör linjärkombinationer av varandra. De oberoende variablerna uppvisar obefintlig till medelstark korrelation mellan varandra enligt kategoriseringen från Dancey och Reidy (2004). Deras kategorisering av correlationskoefficienternas styrkor är angivna i absolutbelopp nedan. Följande uppdelning kommer att tillämpas vid i den senare analysen:

- 1 är perfekt korrelation mellan två variabler.
- 0.7 – 0.9 är stark korrelation mellan två variabler.
- 0.4 – 0.6 är medelstark korrelation mellan två variabler.
- 0.1 – 0.3 är svag korrelation mellan två variabler.
- 0 är obefintlig korrelation mellan två variabler.
Tabell 4.2: Korrelation mellan olika variabler.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROE</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.082</td>
<td>0.043</td>
<td>0.081</td>
<td>0.077</td>
<td>0.013</td>
</tr>
<tr>
<td>RFP</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.082</td>
<td>0.043</td>
<td>0.081</td>
<td>0.077</td>
<td>0.013</td>
</tr>
<tr>
<td>Ober.</td>
<td>0.005</td>
<td>0.005</td>
<td>1</td>
<td>0.510</td>
<td>0.289</td>
<td>0.347</td>
<td>-0.114</td>
<td>0.458</td>
</tr>
<tr>
<td>Ober. K</td>
<td>0.082</td>
<td>0.082</td>
<td>0.510</td>
<td>1</td>
<td>0.280</td>
<td>-0.064</td>
<td>0.121</td>
<td>0.557</td>
</tr>
<tr>
<td>Ober. K, ej nord.</td>
<td>0.043</td>
<td>0.043</td>
<td>0.289</td>
<td>0.280</td>
<td>1</td>
<td>0.679</td>
<td>-0.022</td>
<td>0.397</td>
</tr>
<tr>
<td>Ober., ej nord.</td>
<td>0.081</td>
<td>0.081</td>
<td>0.347</td>
<td>-0.064</td>
<td>0.679</td>
<td>1</td>
<td>-0.104</td>
<td>0.308</td>
</tr>
<tr>
<td>Antal år</td>
<td>0.077</td>
<td>0.077</td>
<td>-0.114</td>
<td>0.121</td>
<td>-0.022</td>
<td>-0.104</td>
<td>1</td>
<td>0.348</td>
</tr>
<tr>
<td>Storlek</td>
<td>0.013</td>
<td>0.013</td>
<td>0.458</td>
<td>0.557</td>
<td>0.397</td>
<td>0.308</td>
<td>0.348</td>
<td>1</td>
</tr>
</tbody>
</table>

För att ytterligare visualisera spridningen i datamängden används histogram. Enligt faktornedbrytningen (Figur 2.2) bör vissa faktorer ha en större potential att visa på effekten av diversifiering. Fördelningen hos dessa variabler visas med hjälp av histogram, Figur 4.1. Figur 4.1a uppvisar en god spridning samtidigt som övriga variabler, av de diversifierande, har en sämre spridning. Det är i linje med vad Tabell 4.1 berättar.

De kontextuella faktorerna som presenterades i faktornedbrytningen (Figur 2.2) och fortsatt kvalificerar sig för en plats i analysmodellen (Figur 2.3) presenteras som variabler med tillhörande födelning i Figur 4.2. Båda variablerna uppvisar en god spridning.

Avslutningsvis presenteras de beroende variablerna i Figur 4.3. Det relativa måttet RFP har jämnat ut datamaterialet. I båda fallen återfinns några negativa utstickare, det finns dessutom en positiv skelhov i och med att medelvärdet är större än noll.
Figur 4.1: Histogram över variablerna med störst spridning enligt vår faktornedbrytning.

(a) Oberoende ledamöter.

(b) Oberoende icke-nordisk ledamöter.

(c) Oberoende kvinnor.

(d) Oberoende icke-nordiska kvinnor.
Figur 4.2: Histogram över de kontextuella variablerna i vår modell.

Antal år

![Antal år histogram](image)

Styrelsens storlek

![Styrelsens storlek histogram](image)

(a) Styrelsens totala erfarenhet. (b) Styrelsens storlek.

Figur 4.3: Histogram över de beroende variablerna.

ROE

![ROE histogram](image)

ROE, normerad

![ROE, normerad histogram](image)

(a) Avkastning på eget kapital. (b) Avkastning på eget kapital, normerat.
4.3.2 Regression

I den första regressionen testar vi med enbart oberoende diversifierande faktorer och inget lag. Varje kolumn benämns hädanefter med en siffra där 1 är en vanlig OLS, 2 är ”fixed effects”-modellen och slutligen 3 ”random effects”-modellen. Regressionen som baseras på OLS uppsvarar statistisk signifikans för mätvariablerna; Oberoende, Oberoende kvinna och Oberoende icke-nordisk. Tyvärr är OLS ytterst sällan den bästa estimatort för paneldata, att många variabler är signifikanta i fallet med OLS behöver inte betyda särskilt mycket. OLS bortser nämligen från bolagsspecifika skillnader. Dessutom menar resultatet från OLS att variablen Oberoende har en signifikant negativ inverkan på ROE men att dess subkategorier har en positiv signifikant inverkan på ROE. Orsakssambanden är svåra att förklara utifrån ekonomisk teori. Problemet kan möjligtvis hänföras till multikollinearitet och heteroskedasticitet, det är inte utrett och kommer inte heller att undersökas för den regressionen.

Tabell 4.3: Regression med diversifierande variblvarer, inget lag.

<table>
<thead>
<tr>
<th></th>
<th>RFP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Oberoende</td>
<td>-0.059∗</td>
<td>-0.011</td>
<td>-0.030</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.045)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Oberoende kvinna</td>
<td>0.142∗∗∗</td>
<td>-0.027</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.083)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk kvinna</td>
<td>-0.128</td>
<td>0.065</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.120)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk</td>
<td>0.091∗∗</td>
<td>-0.055</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.067)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Konstant</td>
<td>0.985∗∗∗</td>
<td>1.066∗∗∗</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.196)</td>
<td></td>
</tr>
<tr>
<td>Obeservationer</td>
<td>324</td>
<td>324</td>
<td>324</td>
</tr>
<tr>
<td>R²</td>
<td>0.029</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>Justerat R²</td>
<td>0.029</td>
<td>0.004</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Notera: *p<0.1; **p<0.05; ***p<0.01

1. Pooled, 2. Fixed effects, 3. Random effects

Varken FE eller RE påvisar någon signifikant förändring för variablarnas koefficienter jämfört med föregående regression. Däremot steg den simultana förklaringsgraden för samtliga modeller något vilket indikerar att tidsförskjutningen är relevant. Resonemang kring konstanten är det samma som tidigare, av utrymmesskäl publicerar vi inte de 27 individuella skärningspunkterna. Den signifikanta skärningspunkten hos estimatorn RE talar fortfarande för att konstanten är av intresse och bör jämföras mer ingående mellan FE och RE.

Tabell 4.4: Regression med diversifierande variabler, inklusive lag.

<table>
<thead>
<tr>
<th>Beroende variabel:</th>
<th>RFP, med lag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Oberoende</td>
<td>-0.067**</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
</tr>
<tr>
<td>Oberoende kvinna</td>
<td>0.154***</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk kvinna</td>
<td>-0.165*</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk</td>
<td>0.112***</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
</tr>
<tr>
<td>Konstant</td>
<td>1.015***</td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
</tr>
<tr>
<td>Observationer</td>
<td>297</td>
</tr>
<tr>
<td>R²</td>
<td>0.039</td>
</tr>
<tr>
<td>Justerat R²</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Notera: *p<0.1; **p<0.05; ***p<0.01

1. Pooled, 2. Fixed effects, 3. Random effects

I den tredje regressionen har vi adderat kontextuella variabler, vi tror att exempelvis styrelsens storlek kan ha en inverkan på resultatet då faktorn har en koppling till alla övriga faktorer. De kontextuella variablerna uppvisar ingen statistisk signifikans för regressionen som baseras på OLS. Däremot är kontextuella variablerna Antal år och Storlek statistiskt signifikanta för FE, dessutom har introduktionen av de kontextuella variablerna gjort variabeln Oberoende (ledamöter) signifikant för både FE och RE. Det negativa tecknet för variabeln Oberoende har den ekonomiska tolkningen att ytterligare en oberoende ledamot korrelerar negativt med avkastning på eget kapital. Det signifikant negativa tecknet för Antal år i modell (2) har den ekonomiska tolkningen; att låta befintligt styrelse sitta kvar i ett år till utan förändring har en negativ korrelation med avkastning på eget kapital. Det signifikant positiva tecknet för styrelsens storlek i modell (2) betyder, vid en första anblick, i en ekonomisk kontext att; om styrelsen utökas med ytterligare en ledamot korrelerar denna ökning positivt med avkastningen på eget kapital. De kontextuella variablerna förefaller verka förstärkande på de diversifierande variablerna i och med att det enda som förändrats från föregående regression är att Storlek och Antal år har introducerats, samtidigt som ett flertal variabler blivit signifikanta.
Skärningspunkten med Y-axeln är fortfarande signifikant (positiv) och antas följa samma resonemang som för tidigare regressioner. I och med att modellen nu är fullt utvecklad enligt vår analysmodell blir nästa steg att utvärdera den senaste regressionen. Att vi endast utvärderar den senaste regressionen med kvantitativa test beror på att det är den regression som hittills har uppvisat bäst resultat för de olika variablerna och den högsta simultana förklaringsgraden.

Tabell 4.5: Regression med alla variabler, inklusive lag.

<table>
<thead>
<tr>
<th>Beroende variabel:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP, med lag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberoende</td>
<td>−0.054*</td>
<td>−0.089*</td>
<td>−0.076*</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.049)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Oberoende kvinna</td>
<td>0.179***</td>
<td>−0.027</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.090)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk kvinna</td>
<td>−0.160*</td>
<td>0.006</td>
<td>−0.079</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.129)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Oberoende icke-nordisk</td>
<td>0.123***</td>
<td>−0.060</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.071)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>Antal år</td>
<td>0.003</td>
<td>−0.008**</td>
<td>−0.004</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Storlek</td>
<td>−0.052</td>
<td>0.142**</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.064)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Konstant</td>
<td>1.184***</td>
<td>0.938**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.285)</td>
<td>(0.366)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>297</td>
<td>297</td>
<td>297</td>
</tr>
<tr>
<td>R²</td>
<td>0.046</td>
<td>0.042</td>
<td>0.017</td>
</tr>
<tr>
<td>Justerat R²</td>
<td>0.045</td>
<td>0.038</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Notera: *p<0.1; **p<0.05; ***p<0.01
1. Pooled, 2. Fixed effects, 3. Random effects

Våra test som presenteras i Tabell 4.6 är baserade på den tredje regressionen (Tabell 4.5) Det första LM-testet visar att OLS bör förkastas till förmån för RE. Det andra LM-testet visar OLS bör förkastas till förmån för FE. Att testen uttrycks i olika fördelningar beror på de olika estimatornas underliggande egenskaper.

När det så visat sig att både FE och RE är att föredra framför OLS återstår att avgöra vilken av modellerna ”fixed effects” och ”random effects” som är effektivast. Genom att genomföra Hausmans test visar det sig att en av modellerna inte är konsistent. Det bakomliggande antagandet för RE är att de bolagsspecifika skillnaderna är okorrelade med regressorerna – samtidigt som FE anser att det finns en korrelation mellan de bolagsspecifika skillnaderna och regressorerna, därav de 27 unika skärningspunkterna istället för 1. Om antagandet om avsaknad av korrelation mellan bolagsspecifika effekter och regressorerna håller är RE den effektivaste modellen, men om antagendet inte håller är modellen inkonsistent. Hausmans test visade som bekant att en modell inkonsistent, dvs. variansen går inte mot noll då stickprovets storlek går mot oändligheten. Således förkastar vi RE till förmån för FE. Förutom det statistiskt riktiga i att förkasta RE finns det ekonomiskteoretiskt stöd för beslutet. På grund av analysmodellens avsaknad av sektorsvis uppdelning eller annan kontroll för de skillnader som finns mellan olika affärsverksamheter tjänar de unika skärningspunkterna som ett bättre förklaringsmätt än en gemensam skärningspunkt.

Nu återstår en fördjupad analys av modellen med ”fixed effects” för att identifiera eventuella tidsberoende förhållanden.
Tabell 4.6: Test av modeller från Tabell 4.5

<table>
<thead>
<tr>
<th>Lagrange multiplier-test för random effects och OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal = 7,523.2</td>
</tr>
<tr>
<td>alternativ hypotes: signifikant effekt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagrange multiplier-test för fixed effect och OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F = 5,015.6</td>
</tr>
<tr>
<td>alternativ hypotes: signifikant effekt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hausman-test för fixed och Random effects model</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ² = 20,226.5</td>
</tr>
<tr>
<td>alternativ hypotes: en modell är inkonsistent</td>
</tr>
</tbody>
</table>

Den fjärde regressionen presenteras i Tabell 4.7 där (2a) står för "fixed effects" utan tidsberoende variabler och (2b) motsvarar "fixed effects" med de tidsberoende dummyvariablerna. Förutom att år 2014 redan har konsumerats på grund av tidsförskjutningen har den statistiska mjukvaran utesluttit år 2003 ur materialet. Åtgärden utförs för att undvika "dummyvariabel-fällan" som uppstår, för att beräkna ROE för år 2003 ska därför samtliga tidsdummyvariabler ges värdet noll.

Resultatet för regression 2a i Tabell 4.7 är identiskt med resultatet markerat som (2) i Tabell 4.5. Vi presenterar samma resultat två gånger för ökad tydlighet. När tidseffekten adderas i 2b påverkas signifikansen för Oberoende och Antal år. Observera att tidsförskjutningen gör tolkningen av tidsdummyvariablerna något knäliger – föregående års styrelsesammansättning påverkar nästkommande års avkastning på eget kapital. En signifikant tidsdummyvariabel är t inverkar på ROE_{t+1}. År 2008 och dess negativt signifikanta koefficient inverkar därför på 2009 års avkastning på eget kapital.

I resultatet för FE med tidseffekter (2b) är inte faktorerna Oberoende samt Antal år statistiskt signifikanter för modell (2b). Faktorn Storlek är statistiskt signifikant i båda modeller och vidare är även dummyvariablerna för åren 2008 och 2013 signifikanta i modell (2b). I denna tabell går det även att utläsa att den simultana förklaringsgraden har ökat till 0.115 för modell (2b), där modell (2a) endast uppnådde en simultan förklaringsgrad på 0.038.

I slutet av empirikapitlet är det så lätt att presentera de unika skärningspunkterna för modell 2b. Detta görs i Bilaga C. Tabellen visar att det finns signifikanta skärningspunkter för de olika företagen. Vidare kan en förklaring till skillnaderna mellan (2a) och (2b) möjligtvis förklaras av Bilaga D som visar hur residualerna för (2b) indikerar ett tidsberoende förhållande, trots att tidseffekterna har adderats. Utan tidseffekterna (modell 2a) torde därför detta förhållande vara ännu mer patalogt. Närvaro av icke-konstant varians orsakar ett onödigt stor konfidensintervall för respektive variabel vilket påverkar dess förmåga att uppvisa statistisk signifikans.
<table>
<thead>
<tr>
<th></th>
<th>Beroende variabel:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFP, med lag</td>
<td>(2a)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Oberoende</td>
<td>−0.089*</td>
<td>−0.041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.050)</td>
<td></td>
</tr>
<tr>
<td>Oberoende kvinna</td>
<td>−0.027</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.092)</td>
<td></td>
</tr>
<tr>
<td>Oberoende icke-nordisk kvinna</td>
<td>0.006</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.127)</td>
<td></td>
</tr>
<tr>
<td>Oberoende icke-nordisk</td>
<td>−0.060</td>
<td>−0.066</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.069)</td>
<td></td>
</tr>
<tr>
<td>Antal år</td>
<td>−0.008**</td>
<td>−0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Storlek</td>
<td>0.142**</td>
<td>0.125**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>0.182</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.178)</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.180)</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.184)</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>−0.116</td>
<td></td>
<td>(0.184)</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>−0.364*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.186)</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.187)</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.194)</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>−0.062</td>
<td></td>
<td>(0.194)</td>
</tr>
<tr>
<td>2012</td>
<td>−0.218</td>
<td></td>
<td>(0.195)</td>
</tr>
<tr>
<td>2013</td>
<td>−0.352*</td>
<td></td>
<td>(0.203)</td>
</tr>
<tr>
<td>Obeservationer</td>
<td></td>
<td>297</td>
<td>297</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0.042</td>
<td>0.135</td>
</tr>
<tr>
<td>Justerat R²</td>
<td></td>
<td>0.038</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Notera: *p<0.1; **p<0.05; ***p<0.01

2a. Fixed effects utan tidseffekt, 2b. Fixed effects med tidseffekt
Avslutningsvis fastslår vi i Tabell 4.8 det vi tidigare kunnat misstänka. Två olika test förkastar modell 2a till förmån för modell 2b. Tidseffekten är av signifikant betydelse för det vi studerar.

Tabell 4.8: Test av modeller från Tabell 4.7

<table>
<thead>
<tr>
<th>Test för tidseffekt, nollhypotesen är att tidseffekten inte tillför något till modellen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F = 2,7084$</td>
</tr>
<tr>
<td>p-värde $< 0,003563$</td>
</tr>
<tr>
<td>alternativ hypotes: signifikant effekt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagrange multiplier-test för tidseffekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2 = 11,6698$</td>
</tr>
<tr>
<td>p-värde $< 0,0006352$</td>
</tr>
<tr>
<td>alternativ hypotes: signifikant effekt</td>
</tr>
</tbody>
</table>
Analysen finner sin struktur i vår analysmodell som beskrivs av Figur 2.3 på sidan 12. Samtliga delar av analysmodellens faktorer kommer att analyseras separat, det gör vi genom att ställa den presenterade teorin mot resultatet av vår variabelundersökning. De tidigare presenterade hypoteserna kommer implicit besvaras i analysen.

Enligt vår faktornedbrytning i Figur 2.2 på sidan 9 kan varje variabel härledas ur en faktor som i sin tur är sprungen ur tillgänglig forskning. Genom att jämföra den teoretiska synen på verkligheten med den obeserverade synen på verkligheten är vårt mål att i nästa kapitel kunna formulera en slutsats som svarar på uppsatsens syfte.

5.1 Externa ledamöter

I vår empiriska undersökning har vi inte mätt de interna ledamöternas sociala kapital kontra de externa ledamöternas kompetens och kopplingar till externa resurser vilket kan ha medfört att mätvariabeln inte blev signifikant.

Eftersom faktorn inte har statistiskt signifikant påverkan på företagets lönsamhet går det inte att dela upp en faktor i flera variabler. Detta beror på att datamaterialet inte tillåt en så pass detaljerad uppdelning.

5.4 Styrelsens storlek

När storleken på styrelsen adderades till regressionen steg signifikansen för andra variabler, det betyder att styrelsens storlek har en viktig kontextuell betydelse, när tidseffekten adderades blev styrelsens storlek ensamt signifikant av modellens variabler. Korrelationsmatrisen i Tabell (4.2) visar också hur styrelsens storlek har en positiv korrelation med samtliga variabler i modellen, vilket stärker dess funktion som kontextuell variabel. Tidigare forskning (Jensen, 1993; Yermack, 1996; Eisenberg m.fl., 1998; Mak och Kusnadi, 2005) har visat att det finns en negativ korrelation mellan styrelsens storlek och företagets prestation. Aktieutdelning påverkar, som bekant, avkastning på eget kapital och stora bolag har större styrelser samtidigt som stora bolag tenderar att vara mer mogn. Att vårt tecken är positivt kan tyda på att företagen i datamaterialet utgörs av mogn och stabila bolag som ser aktieutdelning som ett viktigt signalvärde till skillnad från bolag i en tillväxtfas. Mogn bolag skapar värde för sina aktieägare på ett annorlunda vis jämfört med mindre bolag i och med att stora bolag delar ut en del av vinsten varje år och mindre bolag återinvesterar en större del för att på sikt växa sig större.

5.5 Gemensam erfarenhet

Den teoretiska ståndpunkten är som vi tidigare nämnt, att den aggregerade kunskapspoolen ska inverka positivt på företagets lönsamhet. Att regressionen som inkluderar tidseffekten inte uppvisar ett signifikant resultat gällande faktorn gemensam erfarenhet kan bero på att vi inte använder oss av en korrekt variabel för att mäta faktorns inverkan på lönsamheten, även det är ett specifikationsfel men av en mer endogen natur där själva variabeln kan tänkas vara felaktigt specifiserad till skillnad från föregående resonemang där specifikationsfelet eventuellt kan härledas till att alltför omfattande effekter lämnats som exogena förklaringsvariabler.

Vad går det då att göra för analys om, först och främst – teorin framhärder erfarenhetens inflytande på styrelsens effektivitet. För det andra – tidseffekten mildrade exogena specifikationsfel, och för det tredje – det endogena specifikationsfel kvarstår. Förutsatt att den logiska kedjan för de tre argumenten håller är det rimligt att anta att specifikationsfelet ligger i att faktorn gemensam
erfarenhet inte har brutits ned tillräckligt, och att den statistiska signifikansen därmed uteblivit. Faktornedbrytningen av gemensam erfarenhet kan eventuellt resultera i ytterligare faktorer som: styrelseledamotens ålder, hur länge styrelseledamoten totalt suttit i olika styrelser, tjänstgöringstid för kvinnor och män separat, tjänstgöringstid för beroende och oberoende ledamöter samt den, i vår modell, residuala faktorn antal styrelseengagemang. Eftersom styrelseledamotens ålder inte hade någon nämnvärd teoretisk förankring uteblev den från analysmodellen. De senare faktorerna är möjliga att mäta men skulle kräva mer detaljerad information från de olika årsredovisningarna.

5.6 Residuala faktorer

6.1 Slutsats

Eftersom att vi ur olika perspektiv argumenterat för att tillgänglig data inte har kunnat fastslå att en enskild kombination av demografiska variabler leder till ökad lönsamhet torde förklaringen till den spridda lönsamheten således bättre förklaras av externaliteter än av antalet externa ledamöter.

Liksom tidigare forskning har vi inte kunnat fastslå statistisk signifikans för faktorn externa ledamöter – kön. Det kan bero på att antalet kvinnor i förhållande till män inte har nått den kritiska nivån som krävs för att ge statistiskt säkerlagda effekter på ROE. En annan möjlig förklaring vi finner möjlig, är att kvinnor kan ha anpassats sig enligt ”the old boys’ network” till den redan etablerade gruppdynamiken i styrelsen och näringslivets topp. Detta kan ha medfört att kvinnor eventuellt har förtryckt sina diversifierande egenskaper som enligt teorin ska bidra till nya perspektiv och förändrade beteendemönster hos styrelsen.

Vi har inte kunnat visa att etniciteten hos de externa ledamöterna har en statistisk signifikant påverkan på avkastningen till aktieägarna. Detta kan bero på att vi har en annorlunda formulering på vår mätvariabel, vilken vi använder oss av medborgarskap istället för hudfärg som är vanligt förekommande inom anglosaxisk forskning. Det kan också bero på att en differentierad etnisk bakgrund uppkommit att följa av externa drivare, exempelvis CSR, och att dessa effekter bättre påvisas med andra lönsamhetsmått såsom börsvärde, snarare än avkastning på eget kapital.

Vi har visat hur den kontextuella faktorn styrelsens storlek är positivt korrelerad med företagets förmåga att skapa avkastning åt ägarna. Det kan bero på att stora och mognas företag har ett annat sätt att skapa värde åt sina aktieägare. Vidare fungerar styrelsens storlek som en förstärkare av de diversifierande variablerna antal externa ledamöter - kön och etnicitet.

Att gemensam erfarenhet inte gav något signifikant resultat tror vi beror på att variabeln mäter effekten på en för aggregerad nivå och att den eventuellt kan kompletteras med den i vår uppsats empiriskt outforskade variabeln antal engagemang. Den sistnämnda variabeln menar vi skulle kunna ta hänsyn till bredare styrelseerfarenhet än enbart en enskild styrelse.

I en svensk kontext fungerar utbildning och relevant arbetslivserfarenhet som hygienfaktorer för att över huvudtaget kvalificera en individ för styrelsearbete. Hur det förhåller sig i andra länder kan vi bara spekulera om, men tidigare forskning har visat att utbildning är en viktig faktor i sammanhanget.

Vi presenterar nedan en reviderad modell som visar vår syn på korrelationen, se Figur 6.1 på följande sida. De pilar som är ifyllda tyder på att det finns en korrelation mellan de olika variablerna. I de fall där det kausala sambandet inte har kunnat kartläggas representeras korrelationen med hjälp av dubbelpilar. Den ”svarta låadan” har i den reviderade modellen fått ett tillägg i form av residualer. Vår motivering till detta är att det enligt vår analys finns fler variabler att inhämta från den ”svarta låadan” som eventuellt skulle kunna förklara kopplingen mellan styrelsens
demografi och avkastning på eget kapital. Residualerna behöver nödvändigtvis inte enbart bestå av fler mätvariabler, det faktum att styrelsen är en institution av många som kan användas för att förklara ett företags lönsamhet torde implicera att fler organisationenheter inom företagen bör studeras för att få mer signifikanta resultat och en högre förklaringsgrad.

De olika faktorerna är i den reviderade analysmodellen indelade efter huruvida de är kontextuella faktorer (Storlek och Gemensam erfarenhet) eller diversifierande faktorer. Vi har valt att göra denna nivåindelning och sätta de kontextuella faktorerna närmast styrelsens demografi eftersom vi anser att de diversifierande faktorerna måste operera genom dem, i vår uppsats, statistiskt signifikanta faktorn styrelsens storlek för att ge utslag på på ROE. Det finns ingen pil mellan faktorerna styrelsens storlek och gemensam erfarenhet av den anledningen att vi inte kunnat fastställa vilken av dessa som förstärker den andra. Företagen kan öka sin kunskapspool genom att rekrytera eller substituera en ledamot, samtidigt ökar den gemensamma erfarenheten om omsättningen av ledamöter håller en låg nivå.

Figur 6.1: Vår reviderade analysmodell.

Tidigare studier inom området har visat på svårigheter att med hjälp av ekonometri blottlägga korrelationen mellan den demografisk sammansättning av styrelsen och företagens lönsamhet. Det kan bero på att datamaterialet uppvisar låg spridning. Samtidigt borde det finnas en förklaring till att spridningen i datamaterialet ser ut som den gör, någon som den ekonometriska ansatsen hittills har haft svårt att förklara.

6.2 Vidare forskning

Carpenter, Mason A. och James D. Westphal (2001). ”The strategic context of external network ties: Examining the impact of director appointments on board involvement in strategic decision making”. I: *Academy of Management Journal* 44.4, s. 639–660. ISSN: 00014273.

Erhardt, Niclas L., James D. Werbel och Charles B. Shrader (2003). ”Board of Director Diversity and Firm Financial Performance”. I: *Corporate Governance* 11.2, s. 102–111. ISSN: 0964-8410. DOI: [10.1111/1467-8683.00011](http://dx.doi.org/10.1111/1467-8683.00011)

Portes, Alejandro (2014). "Downsides of social capital." *Proceedings of the National Academy of Sciences of the United States of America* 111.52, s. 18407–8. ISSN: 1091-6490. DOI: [10.1073/pnas.1421888112](https://doi.org/10.1073/pnas.1421888112)

Williams, Katherine Y och Charles A O'Reilly III (1998). "Demography and Diversity in Organizations: A Review of 40 Years of Research". I: Research in organizational behavior 20, s. 77. ISSN: 01913085.

Yermack, David (1996). "Higher market valuation of companies with a small board of directors". I: Journal of Financial Economics 40.2, s. 185–211. ISSN: 0304405X. DOI: 10.1016/0304-405X(95)00844-5

OMXS30 är en lista med de 30 mest omsatta aktierna på Stockholmsbörsen.

1. ABB
2. Alfa Laval
3. Assa Abloy
4. AstraZeneca
5. Atlas Copco A
6. Atlas Copco B
7. Boliden
8. Electrolux
9. Ericsson
10. Getinge
11. Hennes & Mauritz
12. Investor
13. Kinnevik
14. Lundin Petroleum
15. Modern Times Group
16. Nokia
17. Nordea
18. Sandvik
19. SCA
20. SEB
21. Securitas
22. Skanska
23. SKF
24. SSAB
25. Svenska Handelsbanken
26. Swedbank
27. Swedish Match
28. Tele2
29. TeliaSonera
30. Volvo

1 Atlas Copco förkommer två gång, i och med att det är samma företag utgår en obeservation från vårt material.
2 Nokia är inget svenskt företag, utan ett finskt. Vi har i vår uppsats valt att basera vår empiri på svenska företag, andra länder kan ha annan lagstiftning och företagen befinner sig i en annan kontext.
3 Studieobjektet saknar datapunkter för den beroende variabeln och utgör förutom det en så kallad outlier. Dess ROE är över 1000% när övriga företag ligger betydligt lägre.
BILAGA B

R-KOD FÖR EMPIRI

```r
attach(paneldata_no_swedish_match)
library(plm)

# PLM
Y <- cbind(ROE_scale_lag)
X <- cbind(Indep, Indep_fem, Indep_non_nordic_fem, Indep_non_nordic, Number_of_years, Size)
pdata <- plm.data(paneldata_no_swedish_match, index=c("Id","Year"))

# Pooled OLS estimator
pooling <- plm(Y ~ X, data = pdata, model = "pooling")
summary(pooling)

# Fixed effect of within estimator
fixed <- plm(Y ~ X, data = pdata, model = "within")
fixed.time <- plm(Y ~ X + factor(Year), data = pdata, model = "within")
summary(fixef(fixed))
summary(fixef(fixed.time))

# Random effects estimator
random <- plm(Y ~ X, data = pdata, model = "random")
summary(random)

#LM test for random effects versus OLS
plmtest(pooling)

#LM test for fixed effect versus OLS
pFtest(fixed, pooling)

# Hausman test for fixed versus Random effects model
phtest(random, fixed)

# Testing time-fixed effects. The null is that no time-fixed effects needed
pFtest(fixed.time, fixed)
plmtest(fixed, c("time"), type="bp")
```
Tabell C.1: Skärningspunkterna med Y-axeln för respektive företag, fixed effects, se Tabell 4.5.

| Företag | Estimate | Std. Error | t-value | Pr(>|t|) |
|-------------|----------|------------|---------|-----------|
| ABB | 1.283835 | 0.554774 | 2.3142 | 0.0206589 * |
| Alfa Laval | 0.900987 | 0.468060 | 1.9249 | 0.0542370 . |
| Assa Abloy | 0.361209 | 0.490978 | 0.7357 | 0.4619176 |
| AstraZeneca | 1.060323 | 0.751013 | 1.4115 | 0.1581062 |
| Atlas Copco | 1.189505 | 0.501156 | 2.3735 | 0.0176193 * |
| Boliden | 0.406023 | 0.485261 | 0.8367 | 0.4027559 |
| Electrolux | 0.027471 | 0.505640 | 0.0543 | 0.9566729 |
| Ericsson | 0.038889 | 0.600449 | 0.0648 | 0.9435989 |
| Getinge | 0.570097 | 0.427152 | 1.3346 | 0.1819923 |
| H&M | 1.957210 | 0.530890 | 3.6867 | 0.0002272 *** |
| Handelsbanken | -0.172267 | 0.698864 | -2.3645 | 0.052986 |
| Investor | -0.196619 | 0.591009 | -0.3327 | 0.739372 |
| Kinnevik | 0.148758 | 0.424539 | 0.5038 | 0.6143843 |
| Lundin Petroleum | 0.230026 | 0.56559 | 0.424539 | 0.6739372 |
| MTG | 0.903806 | 0.499284 | 1.8102 | 0.0702641 . |
| Nordea | 0.037776 | 0.574505 | 0.0658 | 0.9475741 |
| Sandvik | 0.633152 | 0.475501 | 1.3315 | 0.1830092 |
| SCA | -1.02243 | 0.501197 | -2.040 | 0.083556 |
| SEB | 0.018880 | 0.607047 | 0.0311 | 0.971885 |
| Securitas | 0.495241 | 0.568733 | 0.8708 | 0.3838746 |
| Skanska | 0.437472 | 0.504645 | 0.8669 | 0.3860016 |
| SKF | 0.781947 | 0.520493 | 1.5023 | 0.1330147 |
| SSAB | -0.032686 | 0.510389 | -0.0640 | 0.9489377 |
| Swedbank | 0.018669 | 0.507863 | 0.0368 | 0.9706765 |
| Tele2 | 0.069349 | 0.479057 | 0.1448 | 0.8849992 |
| TeliaSonera | 0.260939 | 0.480953 | 0.5425 | 0.5874427 |
| Volvo | 0.081547 | 0.527721 | 0.1545 | 0.8771945 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 1 ' '
Figur D.1 visar hur regressionens residualer förhåller sig till den beroende variabeln, RFP_{t+1}, residualerna visualiseras med två figurer, ett histogram och en QQ-plot (kvantil-kvantil-plot).

Figur D.1: Visualisering av residualer.

(a) Histogram över resudialer från fixed effects.

(b) QQ-plot över residualer för fixed effects.

Figur D.2: Residualplot över variablerna med störst spridning enligt vår faktornedbrytning.

Residualplot, Indep

(a) Oberoende ledamöter.

Residualplot, IndepNonNordic

(b) Oberoende icke-nordisk ledamöter.

Residualplot, IndepFem

(c) Oberoende kvinnor.

Residualplot, IndepNonNordicFem

(d) Oberoende icke-nordiska kvinnor.
Figuur D.3: Residualplot över de kontextuella variablerna i vår modell.

Residualplot, NoOfYears

Residualplot, Size

(a) Styrelsens totala erfarenhet.

(b) Styrelsens storlek.