TRIF adaptor signaling is important in abdominal aortic aneurysm formation

Emina Vorkapic, Anna M. Lundberg, Mikko I. Mayranpaa, Per Eriksson and Dick Wågsäter

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:
Emina Vorkapic, Anna M. Lundberg, Mikko I. Mayranpaa, Per Eriksson and Dick Wågsäter, TRIF adaptor signaling is important in abdominal aortic aneurysm formation, 2015, Atherosclerosis, (241), 2, 561-568. http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.014

TRIF adaptor signaling is important in abdominal aortic aneurysm formation

Emina Vorkapic a, b, *, Anna M. Lundberg c, Mikko I. Mäyränpää d, e, Per Eriksson b, Dick Wågsäter a, b

a Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
b Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
c Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden
d Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
e HUSLAB, Division of Pathology, Meilahti Laboratories of Pathology, Helsinki University Central Hospital, Helsinki Finland

ARTICLE INFO

Article history:
Received 10 September 2014
Received in revised form
28 April 2015
Accepted 9 June 2015
Available online 12 June 2015

Keywords:
Vascular disease
Inflammation
Toll-like receptor
Angiotensin II

ABSTRACT

Objective: Abdominal aortic aneurysm (AAA) is characterized by inflammation, loss of smooth muscle cells (SMCs), and degradation of the extracellular matrix in the vessel wall. Innate immune receptors such as Toll-like receptors (TLRs) were recently shown to regulate immunological processes leading to the formation and progression of atherosclerotic plaques as well as to other cardiovascular pathologies. Our aim was to investigate whether blockage of TLR signaling, under the control of TIR domain-containing adaptor protein including IFN-β (TRIF), could inhibit the inflammatory response and AAA development in mice.

Results: In human AAA, an increased TLR3 and TLR4 expression in association with macrophages and T lymphocytes was demonstrated with immunohistochemical analysis. Angiotensin (Ang) II-induced aneurysm formation was significantly reduced by 30% in ApoE−/−Trif−/− mice compared to ApoE−/− mice. Morphologically, AngII-infused ApoE−/−Trif−/− mice had a more intact cellular and extracellular matrix while ApoE−/− mice infused with AngII displayed an increased medial thickness associated with aortic dissection, thrombus formation, and a more disorganized vessel wall. Gene expression analysis of the abdominal aorta revealed a profound decrease of the inflammatory genes CD68 (P < 0.05), CD11b (P < 0.05), and TNF-α (P < 0.05) and the protease gene MMP-12 (P < 0.01) in ApoE−/− Trif−/− mice compared to ApoE−/− mice infused with AngII.

Conclusion: Our results suggest that signaling through TRIF is important for the inflammatory response of AngII-induced AAA and that blockage of the TRIF pathway reduces vascular inflammation and protects against AAA formation.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Abdominal aortic aneurysm (AAA) is a common cardiovascular disease. AAA is associated with atherosclerosis but there are clear molecular differences between both diseases. Important histological features of AAA involve infiltration of cells such as macrophages and T lymphocytes — representing both innate and adaptive immune responses, respectively — into the aortic wall. These cells favor AAA formation through production of various proinflammatory cytokines and matrix-degrading proteases resulting in increased smooth muscle cell (SMC) apoptosis, neovascularization, and degradation of the extracellular matrix [1−3].

Innate immune receptors such as Toll-like receptors (TLRs) were recently shown to regulate immunological processes leading to the formation and progression of atherosclerotic plaques as well as to other cardiovascular pathologies such as AAA [4−8]. TLRs are expressed on a number of cell types, including macrophages, mast cells, B lymphocytes, and dendritic cells, but are also found on endothelial cells and SMCs, and all of these cell types are present in AAA and contribute to the inflammatory response [6,9]. TLRs play an essential role in the activation of the innate immune response...
through detection of microbial structures such as lipopolysaccharides, flagellin, double-stranded RNA, and lipopeptides thereby providing the first line of defense against pathogens. In addition, TLRs also bind host-derived endogenous ligands released upon tissue damage and tissue remodeling [10], including fibronectin, hyaluronan fragments, heat shock protein, and heparin sulfate [11–13]. TLR signaling is controlled by cytoplasmic adaptor proteins, including myeloid differentiation factor-88 (MyD88), which is the universal adaptor for all TLRs (except for TLR3), and TIR domain-containing adaptor protein including IFN-β (TRIF), which is the adaptor for TLR3 and TLR4. Triggering of the MyD88-dependent signaling cascade activates nuclear factor (NF)-κB, and triggering of the TRIF-dependent pathway results in activation of both NF-κB and interferon regulating factor (IRF)-3. Both the MyD88- and TRIF-dependent pathways result in induction of proinflammatory mediators such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and interferon (IFN) γ [6,10–12,14].

Because aneurysms are characterized by both inflammation and tissue remodeling, the majority of the proposed endogenous TLR ligands could be present at various stages during disease progression.Recently, Owens and coworkers showed profound reduction of angiotensin (Ang) II-induced AAA and atherosclerosis in mice that were deficient in MyD88 [8]. Due to the ability of TRIF to regulate inflammatory-mediated activation of TNF-α and interleukins among other, inhibition of the TRIF signaling pathway would potentially inhibit these transcription factors and the subsequent production of a large cohort of inflammatory mediators. In the present study we sought to investigate the role of TRIF signaling in AngII-induced AAA formation.

2. Materials and methods

2.1. Human subjects

Patients undergoing elective surgery for infrarenal AAA (n = 12) after preoperative computed tomography showed an eccentric intraluminal thrombus were included in the study. Patients were included after informed, written and, signed consent from the Karolinska University Hospital, Stockholm, Sweden.

Control aortas were collected from organ donors without clinical or macroscopic signs of aortic atherosclerosis or aneurysm. Control ascending aorta samples for RNA studies and infrarenal control aorta samples for histology were collected from medicolegal autopsies performed in the Department of Forensic Medicine, University of Helsinki. The sections were immediately snap frozen in liquid nitrogen for RNA isolation or fixed in 4% formaldehyde for histology. The use of organ donor and autopsy tissues was approved by The National Authority for Medicolegal Affairs of Finland.

2.2. AngII-induced aneurysm model in mice

Trif−/− mice were generated in the Akira laboratory (Department of Host Defense, Osaka University, Japan) and bred into the ApoE−/− background (Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden). ApoE−/− mice were obtained from Taconic and served as control mice. To induce AAA, mini-osmotic pumps (Model 1004, Alzet, CA, USA) were implanted subcutaneously into the right flank of ApoE−/−Trif−/− (n = 11) and ApoE−/− (n = 12) mice to release AngII (1000 ng kg−1 min−1, cat.no.9525, Sigma Aldrich, St. Louis, USA) over the course of 28 days. A group of ApoE−/− mice were infused with saline (as controls) or Trif−/− (n = 8). Due to the ability of TRIF to regulate inflammatory-mediated activation of TNF-α and interleukins among other, inhibition of the TRIF signaling pathway would potentially inhibit these transcription factors and the subsequent production of a large cohort of inflammatory mediators. In the present study we sought to investigate the role of TRIF signaling in AngII-induced AAA formation.

2.3. Real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis

Suprarenal aortas were homogenized with Tissue Lyser using safe-lock tubes with metal beads and trizol-chloroform. Total RNA from the aorta was isolated with the RNasy Mini kit (Qagen, Hilden, Germany) and reversely transcribed with random primers and Superscript III as described by the manufacturer (Invitrogen, Carlsbad, CA, USA). cDNA (1.0 ng) was amplified by RT-PCR reactions with TaqMan Universal PCR Mastermix (Applied Biosystems, Foster City, CA, USA) in 96-well fast plates on a 7500 Fast Real-time PCR Sequence Detector (Applied Biosystems). Samples were run in duplicate and semi-quantified against a standard curve. All probes were obtained from Applied Biosystems (Supplementary table I) and results were normalized to values of human RPLP0 or murine TBP.

2.4. Immunohistology

Paraffin-embedded human abdominal aorta and mouse aortas were sectioned (5 μm) and rehydrated in several changes of ethanol and Tissue-Clear® (Sakura Finetek, Leiden, The Netherlands). After antigen retrieval treatment using Diva decloaker 20× (Biocare Medical, Concord, CA, USA), endogenous peroxidase activity was quenched by treatment with 3% hydrogen peroxide for 5 min followed by incubation in 5% blocking bovine serum albumin solution. Sections were then incubated with primary antibodies against human; α-actin (Sigma Aldrich, Stockholm, Sweden, cat. no. A5228), von Willebrand factor (Dako, cat. no. A0082), CD68 (Leica Microsystems, cat. no. NCL-CD68-KP1), CD3 (Santa Cruz Biotechnology, cat. no. sc-20047), HIF (Dako, cat. no. H190), and CD14 (Sigma Aldrich, cat. no. sc-68749) and primary antibodies against mouse; CD68 (AbD Serotec, cat. no. MCA1957) and CD3e (Bioworld Technology, cat. no. BS3476) overnight at 4 °C. Isotype-matched immunoglobulin at the same concentration served as the negative control (Santa Cruz Biotechs, cat. no. NB810–56910). Thereafter, the sections were incubated with a secondary biotinylated goat anti-rabbit IgG, goat anti-mouse IgG, goat anti-rat IgG or horse anti-IgG (Dako) antibody. Avidin-biotin peroxidase complexes (Dako) were added followed by visualization with 3,3′-diaminobenzidine tetrahydro-chloride (Dako). All sections were counterstained with Mayer’s hematoxylin (Histolab Products, Göteborg, Sweden). Semi-quantification of CD68 and CD3 positive cells on representative areas of mice aortas was performed blinded.

2.5. Elastin staining

Paraffin-embedded aortas (5 μm) were stained with Verhoeff’s hematoxylin for 1 h, differentiated in 2% ferric chloride for 2 min, and counterstained with Van Gieson’s stain for 5 min to identify elastin fibers in the aortic tissue. Quantification of elastin was performed blinded. A scoring system from 1 to 4 was used with 1 defined as intact elastin, 2 as low degradation of elastin, 3 as intermediate degradation of elastin, and 4 as high degradation of
elastin.

2.6. Masson Trichrome staining

Paraffin-embedded sections (5 µm) were incubated in Bouin’s solution (Sigma Aldrich) overnight, counterstained with Weigert’s hematoxylin (Histolab), and then stained with the Masson Trichrome kit (Sigma Aldrich) containing Biebrich’s Scarlet-acid fuchsin for 15 min, phosphomolybdic-phosphotungstic acid solution for 10 min, and aniline blue for 5 min. Sections were finally washed in 1% acetic acid for 3 min. Collagen displays a blue staining and cytoplasm and muscle fibers are stained red.

2.7. Statistical analysis

The statistical analysis was performed with IBM SPSS Statistics (Version 22). All measurements are represented as median and SD. P-values < 0.05 are considered statistically significant. Two-group comparisons of the quantitative data were performed using the non-parametric Mann–Whitney Rank Sum test.

3. Results

3.1. Expression of TLR3, TLR4 and TRIF in human AAA

Immunohistochemical analysis of human aortas with AAA (Fig. 1) demonstrated a high expression of TLR3 and TLR4 (Fig. 1B and C). The expression was to some extent associated in areas of SMCs and endothelial cells (data not shown) but more frequently expressed in the same areas as macrophages and T lymphocytes (Fig. 1D–E). Non-aneurysmal control aortas only expressed TLR3 and TLR4 weakly in media but not adventitia layer of the aorta (Fig. 1F–G). The gene—expression profile showed twice as high expression of TLR4 (P < 0.001), but there were no differences in TLR3 or Trif within the aneurysmal wall compared to non-aneurysmal control aortas (Fig. 2).

3.2. TRIF deficiency reduces AngII-induced AAA in mice

To determine whether disrupted TRIF signaling could influence AAA formation, ApoE^{−/−} mice deficient in TRIF were infused with AngII for 28 days. Histological features of the aneurysmal ApoE^{−/−} mice aortas infused with AngII revealed a markedly expanded aortic mass and disorganized adventitial tissue compared to saline-infused ApoE^{−/−} control aortas when stained with Masson Trichrome (Fig. 3A and B). The presence of a thrombus was also identified in the adventitial regions in some of the aneurysmal aortas (Fig. 3B). However, aortas from ApoE^{−/−} Trif^{−/−} mice infused with AngII (Fig. 3C) were similar to the saline-infused control aortas and displayed a more organized vessel wall and did not have any thrombotic material or aortic masses compared with aortas from aneurysmal ApoE^{−/−} mice.

An aorta was classified as an AAA when the adventitial aortic diameter was increased by at least 50% compared to saline-infused control mouse aortas (0.46 ± 0.05 mm). This corresponds to an enlargement by > 0.68 mm. The absence of TRIF resulted in a 30%
reduced adventitial diameter (0.57 ± 0.17 mm) compared with AngII-infused ApoE/−/− mice (0.78 ± 0.26 mm) (P < 0.05; Fig. 4A). After AngII infusion, 55% of the ApoE/−/− mice developed an aneurysm but only 9% of the ApoE/−/−Trif/−/− mice developed such lesions (Fig. 4B).

Histological staining and scoring of elastin in aorta media demonstrated a variation in the degree of elastin degradation in all ApoE/−/− and ApoE/−/−Trif/−/− mice infused with AngII compared to saline-infused control aortas when stained with Verhoeff’s van Gieson (Supplementary figure 1). There were no differences in elastin degradation between ApoE/−/− and ApoE/−/−Trif/−/− mice infused with AngII.

No difference in total serum cholesterol between AngII-infused ApoE/−/− and ApoE/−/−Trif/−/− and saline-infused ApoE/−/− mice was detected (Supplementary table II).

3.3. Mice deficient in TRIF display an anti-inflammatory profile through regulation of the cellular content

To further assess the outcome of TRIF deficiency on the inflammatory response present during aneurysm formation, several genes involved in the process were examined in the aortas from all AngII-infused and saline-infused mice. Compared with saline-infused mice, mRNA expression in the cellular contents showed an increase in the leukocyte marker CD11b and the macrophage marker CD68 in both groups of AngII-infused mice. However, the expression of CD11b and CD68 were significantly lower by 41% (P < 0.05) and 40% (P < 0.05), respectively, in the aortas of ApoE/−/−Trif/−/− mice compared to ApoE/−/− mice infused with AngII (Fig. 5A and B). The T lymphocyte marker CD3e showed a tendency of a reduction (67%) in gene expression to levels equal to saline-infused control aortas in ApoE/−/−Trif/−/− mice compared with aortas from ApoE/−/− Angll-infused mice (P = 0.14; Fig. 5C). Gene expression analysis of chemokine (C–C motif) ligand 2 (CCL2) and CCL5 showed no significant difference in gene expression between...
AngII-infused ApoE⁻/⁻ mice and ApoE⁻/⁻ Trif⁻/⁻ mice (Supplementary Fig. 2A–B). Infiltration of CD68 positive macrophages and CD3 positive T lymphocytes was further validated with immunohistochemical staining where we found a higher infiltration of predominantly macrophages in AngII-infused ApoE⁻/⁻ mice as compared to ApoE⁻/⁻ Trif⁻/⁻ mice. Infiltration of macrophages was mainly localized to the adventitia of the AngII-infused ApoE⁻/⁻ mice while absent in AngII-infused ApoE⁻/⁻ Trif⁻/⁻ mice (Supplementary Fig. 3A–C). The expression of T lymphocytes was found in both saline-infused and AngII-infused mouse aortas. In ApoE⁻/⁻ Trif⁻/⁻ mice infused with AngII, T lymphocytes were localized to the media while in ApoE⁻/⁻ mice the expression was found both in media and adventitia (Supplementary Fig. 3D–F). Histological staining and semi-quantification of CD68 positive cells

Fig. 5. Gene expression of CD11b (A), CD68 (B), CD3e (C), TNF-α (D), adiponectin (E), MMP-12 (F), SM22α (G), collagen Iα1 (H), lysyl oxidase (LOX) (I), TLR3 (J), TLR4 (K) and Trif (L) in saline-infused ApoE⁻/⁻ mice and AngII-infused ApoE⁻/⁻ and ApoE⁻/⁻ Trif⁻/⁻ mice. *P < 0.05, **P < 0.01. ○ Outlier greater than 1.5 times the interquartile range. ● Outlier greater than 3 times the interquartile range.
and CD3 positive cells confirmed a higher infiltration of cells (P < 0.01 and P < 0.05) in aortas of AngII-infused ApoE−/− mice as compared with ApoE−/−Trif−/− mice infused with AngII (Supplementary Fig. 3 G–H).

We further observed increased mRNA expression of the pro-inflammatory marker TNF-α in AngII-infused ApoE−/− mice. The levels of TNF-α were 130% higher compared to ApoE−/−Trif−/− mice (P < 0.05; Fig. 5D). We also examined the expression of the anti-inflammatory adipokine, adiponectin, and found a significant down regulation by 33% (P < 0.01) in the aortas from ApoE−/− mice infused with AngII as compared with ApoE−/−Trif−/− mice, which were similar to the saline-infused control aortas (Fig. 5E). We also performed analysis of the anti-inflammatory factors TGF-β and IL-10. TGF-β was expressed low in control aortas and significantly higher in AngII-infused ApoE−/− mice and ApoE−/−Trif−/− mice. However, TGF-β was significantly higher (P < 0.05; Supplementary figure 2C) in aortas from AngII-infused ApoE−/− mice compared to aortas from ApoE−/−Trif−/− mice, which resembled an expression more towards the control. A difference in gene expression of IL-10 was not found between AngII-infused ApoE−/− mice and ApoE−/−Trif−/− mice (Supplementary figure 2D). Another gene of interest was IFN-γ. Gene expression analysis demonstrated no differences between saline-infused ApoE−/− mice or AngII-infused ApoE−/− mice and ApoE−/−Trif−/− mice (Supplementary figure 2D).

To determine the contribution of TRIF deficiency on matrix-degrading proteases, gene expression analysis were performed on relevant matrix degrading proteases in AAA formation (Supplementary table 1). Interestingly macrophage elastase MMP-12 in the aortas from ApoE−/−Trif−/− versus ApoE−/− mice infused with AngII was the only protease that showed a significant reduced expression by 72% (P < 0.01, Fig. 5F).

In ApoE−/− mice infused with AngII a 38% (P = 0.07) decreased expression of the SMC marker SM22α was observed compared to aortas from ApoE−/−Trif−/− mice (Fig. 5G). Further, as compared with ApoE−/−Trif−/− mice, aortas from ApoE−/− mice infused with AngII exhibited a significant increase in the synthesis of procollagen I by 74% (P < 0.05) as well as lysyl oxidase (LOX) by 37% (P < 0.05), a key enzyme involved in post translational modification and maturation of collagens (Fig. 5H–I).

TRIF mediates signaling from TLR3 and TLR4, therefore gene expression analysis was performed on these receptors. In the aortas from ApoE−/− mice infused with AngII, the mRNA levels of TLR3 and TLR4 were increased by 22% (P = 0.14) and 23% (P < 0.05), respectively, compared to ApoE−/−Trif−/− mice (Fig. 5J–K). Gene expression was also performed on Trif in order to assess the absence of the gene in ApoE−/−Trif−/− mice. ApoE−/− mice infused with AngII expressed the Trif gene to a similar extent as saline-infused control mice. Mice deficient in TRIF completely lacked Trif gene expression (Fig. 5L).

4. Discussion

TLRs play a key role as initiators of both the innate and adaptive immune systems and are important in many inflammatory diseases. Here we demonstrate that genetic deficiency of TRIF in mice with an ApoE−/− background has an anti-inflammatory effect and inhibits AngII-induced AAA formation. TRIF deficiency was associated with a more stable aorta together with reduced macrophage and leukocyte content and markedly decreased expression of the TNF-α cytokine and the MMP-12 protease. MyD88 is thought to transduce signaling of all TLRs (except TLR3), and it is a well-described adaptor protein in cardiovascular research that has been shown to be important in the development of cardiovascular disease [15]. It has previously been shown that atherosclerosis-prone hypercholesterolemic ApoE−/− mice with a genetic deficiency of either TLR4 or MyD88 had reduced aortic atherosclerosis [8]. These mice had reduced lipid and macrophage accumulation and markedly decreased expression of the pro-inflammatory cytokine monocyte chemoattractant protein 1 (MCP-1). In ApoE−/−MyD88−/− double knockout mice, decreased levels of the proinflammatory enzyme cyclooxygenase-2 (COX-2) and cytokine IL-12p40 were observed compared to ApoE−/−Trif−/− mice. This indicates an important role for TLR4 and MyD88 signaling in atherosclerosis-prone hypercholesterolemic mouse models [16]. A recent study performed by Owens and co-workers reported that whole-body deficiency of MyD88 had a profound effect on the reduction of AngII-induced AAA and atherosclerosis. Deficiency of MyD88 in bone marrow-derived cells also resulted in reduced AAA and atherosclerosis implying that the effects of MyD88 on AAA and atherosclerosis are mediated by hematopoietic cells.

In the past years, attention has been brought to TRIF, which is also a cytoplasmic adaptor protein and is important for transduction of TLR3 and TLR4 signaling. TRIF and its association to TLR3 and TLR4 have been studied in atherosclerosis [17]. Recently Lundberg et al. demonstrated that hematopoietic deficiency of TRIF in LDR−/− mice led to a 40% reduction in lesion size compared to control mice. These effects were accompanied by reduced infiltration of macrophages and T lymphocytes together with lower expression of pro-inflammatory TNF-α, IFN-γ, and IL-6 as well as CCL2, CCL5, and chemokine (C-X-C motif) ligand 10 (CXCL10) all of which are important for the recruitment of macrophages and T lymphocytes in atherosclerosis [17]. However, the role of TRIF in AAA formation is currently unknown.

Although many risk factors are known for AAA, including smoking, atherosclerosis, inflammation, male gender, and age, the etiology of human AAA is still not well understood. To gain an insight into the mechanism of AAA, several animal models have been developed [18]. One of the more widely used animal models is infusion of AngII that results in many features similar to the human disease, including luminal dilatation, leukocyte infiltration, extracellular matrix deformation, and thrombus formation [19]. In the present study we demonstrated that ApoE−/− mice infused with AngII displayed a large aneurysm with a disorganized vessel wall, lacked thrombotic material, and had an aortic mass similar to the saline-infused control aortas compared to ApoE−/− mice infused with AngII. Expression of the SMC markers SM22α indicated a tendency towards a significant increase in ApoE−/−Trif−/− mice compared with ApoE−/− mice infused with AngII, suggesting that TRIF might play an important role in reducing SMC apoptosis or increasing proliferation. SMCs are one of the major producers of matrix collagen. In aneurysm, increased collagen synthesis occurs as a response to matrix degradation and expansion of the vessel wall in the initial/early phase of aneurysm disease. We demonstrated that ApoE−/− mice infused with AngII had a high synthesis of pro-collagen I as well as LOX, a key enzyme involved in post translational modification and maturation of collagens, as a response to aneurysmal formation. ApoE−/−Trif−/− mice however, lacking aneurysm formation, displayed synthesis of pro-collagen I to similar expression as saline-
infused ApoE−/− mice.

One of the early key events in the progression of AngII-induced AAA is infiltration of macrophages predominantly localized to the adventitia whereas in later stages infiltration of other leukocytes such as T and B lymphocytes can be detected [21,22]. We found reduced levels of leukocytes, including macrophages and T lymphocytes, in the aortic wall in ApoE−/−Trif−/− mice together with decreased levels of the pro-inflammatory cytokine TNF-α – important for the initiation of inflammation – as well as the macrophage protease MMP-12. These mice also show increased levels of adiponectin, a protein known to exert anti-inflammatory effects in the aorta and to attenuate aneurysm formation [23,24]. The effects observed within the vessel wall of ApoE−/−Trif−/− mice were both haematopoietic effects and influence of the vascular cells. These results suggest that TRIF signaling increases aneurysm formation by promoting the infiltration of immune cells such as macrophages and T lymphocytes into the aortic wall. Of all AngII-infused ApoE−/− mice, 55% displayed an aneurysm formation according to the definition provided above. However, all AngII-infused ApoE−/− mice had similar increases in inflammatory responses in their aortas. Of all ApoE−/−Trif−/− mice infused with AngII only one mouse developed an aneurysm. This aorta displayed decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms, Am. J. Pathol. 150 (3) (1997) 993–1007.

The effects observed within the vessel wall of ApoE−/−Trif−/− mice and ApoE−/− mice infused with AngII.

TLRs play a key role in the innate immune response and are involved in many inflammatory diseases, including atherosclerosis [10]. During atherosclerotic progression, fragments from the extracellular matrix such as fibronectin and hyaluronan, among others, are released due to tissue damage and matrix remodeling. These components are known to trigger the TLRs and thereby lead to NF-kB activation. In the present study, we identified increased TLR3 and TLR4 expression in human AAA in association with macrophages and T lymphocytes and to some extent with endothelial cells and SMCs. Similar to mice lacking TRIF, Lundberg et al. also demonstrated that TLR3 deficiency in hematopoietic cells in LDLR−/− mice resulted in reduced atherosclerotic plaques with markedly decreased levels of macrophages and T lymphocytes suggesting that TRIF mediates its proatherogenic role downstream of TLR3 [17]. In line with these data, Zimmer et al. demonstrated that TLR3 enhanced atherosclerotic plaque formation in ApoE−/− mice [25]. We further investigated the presence of TLR3 and TLR4 in aortas from experimentally induced AAA in mice and found an up regulation of TLR4 in the ApoE−/− mice infused with AngII. However, deficiency of the adaptor protein TRIF reduced the expression of TLR4, and this might be explained by impaired recruitment of inflammatory cells to the aortic tissue. These data suggest that signaling through TRIF promotes atherosclerotic progression and formation in ApoE−/− mice infused with AngII and that reduced inflammatory formation in ApoE−/− mice deficient in TRIF is associated with reduced vascular inflammation.

5. Conclusion

TRIF is an essential adaptor protein in the TLR signaling pathway that triggers the inflammatory response in the aortic wall and is important in the initiation and progression of AAA. In this study we show that mice deficient in TRIF have reduced inflammation; reduced levels of macrophages, T lymphocytes, and pro-inflammatory TNF-α and proteases; and a more organized aortic morphology. Taken together, our results suggest that TRIF affects the inflammatory response of AngII-induced AAA and that blockage of the TRIF pathway reduces vascular inflammation and protects against AAA formation.

Disclosures

No disclosures.

Acknowledgments

We thank M.D, PhD Shizuo Akira (Department of Host Defense, Osaka University, Japan) for kindly providing TRIF-deficient mice. This work is supported by the Swedish Research Council (K2013-99X-22231-01-5).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.014.

References

