Oblique derivative problem
for non-divergence parabolic equations
with discontinuous in time coefficients

Vladimir Kozlov* and Alexander Nazarov†

Abstract
We consider an oblique derivative problem for non-divergence parabolic equations with discontinuous in t coefficients in a half-space. We obtain weighted coercive estimates of solutions in anisotropic Sobolev spaces. We also give an application of this result to linear parabolic equations in a bounded domain. In particular, if the boundary is of class $C^{1,\delta}$, $\delta \in (0, 1]$, then we present a coercive estimate of solutions in weighted anisotropic Sobolev spaces, where the weight is a power of the distance to the boundary.

1 Introduction
Consider the parabolic equation

\[(L_0 u)(x, t) \equiv \partial_t u(x, t) - a^{ij}(t)D_i D_j u(x, t) = f(x, t)\]

for $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Here and elsewhere D_i denotes the operator of differentiation with respect to x_i and $\partial_t u$ is the derivative of u with respect to t.

*Department of Mathematics, University of Linköping, SE-581 83 Linköping, Sweden
†St.-Petersburg Department of Steklov Mathematical Institute, Fontanka, 27, St.-Petersburg, 191023, Russia, and St.-Petersburg State University, Universitetskii pr. 28, St.-Petersburg, 198504, Russia
The only assumptions about the coefficients in (1) is that a^{ij} are measurable real valued functions of t satisfying $a^{ij} = a^{ji}$ and

$$\nu |\xi|^2 \leq a^{ij} \xi_i \xi_j \leq \nu^{-1} |\xi|^2, \quad \xi \in \mathbb{R}^n, \quad \nu = \text{const} > 0.$$ (2)

It was proved by Krylov [2, 3] that for $f \in L_{p,q}(\mathbb{R}^n \times \mathbb{R})$ with $1 < p, q < \infty$, equation (1) in $\mathbb{R}^n \times \mathbb{R}$ has a unique solution such that $\partial_t u$ and $D_i D_j u$ belong to $L_{p,q}(\mathbb{R}^n \times \mathbb{R})$ and

$$\|\partial_t u\|_{p,q} + \sum_{ij} \|D_i D_j u\|_{p,q} \leq C\|f\|_{p,q}. \quad (3)$$

Here $L_{p,q}(\Omega \times I) = L_q(I \to L_p(\Omega))$ is the space of functions on $\Omega \times I$ with finite norm

$$\|f\|_{p,q} = \left(\int_\Omega \left(\int_I |f(x,t)|^p dt \right)^{\frac{q}{p}} dx \right)^{\frac{1}{q}}$$

(with natural change in the case $p = \infty$ or $q = \infty$).

In the authors’ paper [4] estimate (3) was supplemented by a similar one in the space $\tilde{L}_{p,q}(\mathbb{R}^n \times \mathbb{R})$

$$\|\partial_t u\|_{p,q} + \sum_{ij} \|D_i D_j u\|_{p,q} \leq C\tilde{f}\|_{p,q}. \quad (3)$$

Here $\tilde{L}_{p,q}(\Omega \times I) = L_p(\Omega \to L_q(I))$ is the space of functions on $\Omega \times I$ with finite norm

$$\|	ilde{f}\|_{p,q} = \left(\int_\Omega \left(\int_I |f(x,t)|^q dt \right)^{\frac{p}{q}} dx \right)^{\frac{1}{p}}.$$

(with natural change in the case $p = \infty$ or $q = \infty$). This space arises naturally in the theory of quasilinear non-divergence parabolic equations (see [9]). Note that for $p = q$ we have

$$\tilde{L}_{p,p}(\Omega \times I) = L_{p,p}(\Omega \times I) = L_p(\Omega \times I); \quad \|	ilde{f}\|_{p,p} = \|f\|_{p,p} = \|f\|_p.$$

The homogeneous Dirichlet problem for (1) in $\mathbb{R}^n_+ \times \mathbb{R}$, where \mathbb{R}^n_+ the half-space $\{x = (x', x_n) \in \mathbb{R}^n : x_n > 0\}$, was considered in [2, 4]. It was proved that its solution satisfies the following weighted coercive estimate

$$\|x_n^\mu \partial_t u\|_{p,q} + \sum_{ij} \|x_n^\mu D_i D_j u\|_{p,q} \leq C\|x_n^\mu f\|_{p,q}, \quad (4)$$

2
where $1 < p, q < \infty$ and $\mu \in \left(-\frac{1}{p}, 2 - \frac{1}{p}\right)$ (in [2] this estimate was proved only for $\mu \in (1 - \frac{1}{p}, 2 - \frac{1}{p})$). An analog of estimate (4), where the norm $\| \cdot \|_{p,q}$ is replaced by $\| \cdot \|_{p,q}^*$, is also proved in [4].

In the paper [5] the homogeneous Dirichlet problem for (1) in cones and wedges was considered, and coercive estimates for solutions were obtained in the scales of weighted $L_{p,q}$ and $\tilde{L}_{p,q}$ spaces, where the weight is a power of the distance to the vertex (edge).

Let us turn to the oblique derivative problem in the half-space \mathbb{R}^n_+. Now equation (1) is satisfied for $x_n > 0$ and $\frac{\partial u}{\partial \gamma} = 0$ for $x_n = 0$. Here γ is a constant vector field with $\gamma_n > 0$.

By changing the spatial variables one can reduce the boundary condition to the case

$$D_n u = 0 \quad \text{for} \quad x_n = 0. \quad (5)$$

One of the main results of this paper is the proof of estimate (4) and its analog for the norm $\| \cdot \|_{p,q}$, for solutions of the oblique derivative problem (1), (5) with arbitrary $p, q \in (1, \infty)$ and for μ satisfying

$$-\frac{1}{p} < \mu < 1 - \frac{1}{p}. \quad (6)$$

In the case of time independent coefficients such estimates for the Neumann problem were proved in [9].

We use an approach based on the study of the Green functions. In Section 2 we collect (partially known) results on the estimate of the Green function and of solutions to the Dirichlet problem for equation (1). Section 3 is devoted to the estimates of the Green function of problem (1), (5).

In Section 4 we apply the obtained estimates to the oblique derivative problem for linear non-divergence parabolic equations with discontinuous in time coefficients in cylinders $\Omega \times (0, T)$, where Ω is a bounded domain in \mathbb{R}^n. We prove solvability results in weighted $L_{p,q}$ and $\tilde{L}_{p,q}$ spaces, where the weight is a power of the distance to the boundary of Ω. The smoothness of the boundary is characterized by smoothness of local isomorphisms in neighborhoods of boundary points, which flatten the boundary. In particular, if the boundary is of the class $C^{1, \delta}$ with $\delta \in (0, 1]$, then for solutions to the equation (1)\footnote{Here the coefficients a^{ij} may depend on x (namely, we assume $a^{ij} \in C(\Omega \to L_\infty(0, T))$.} in $\Omega \times (0, T)$ with zero initial and boundary conditions the
following coercive estimate is proved in Theorem 4 (see Remark 1):
\[
\| (\tilde{d}(x))^\mu \partial_t u \|_{p,q} + \sum_{ij} \| (\tilde{d}(x))^\mu D_i D_j u \|_{p,q} \leq C \| (\tilde{d}(x))^\mu f \|_{p,q},
\]
\[
\| (\tilde{d}(x))^\mu \partial_t u \|_{p,q} + \sum_{ij} \| (\tilde{d}(x))^\mu D_i D_j u \|_{p,q} \leq C \| (\tilde{d}(x))^\mu f \|_{p,q},
\]
where \(\mu, p, q \) and \(\delta \) satisfy \(1 < p, q < \infty, \ 1 - \delta - 1/p < \mu < 1 - 1/p \).

Let us recall some notation: \(x = (x_1, \ldots, x_n) = (x', x_n) \) is a point in \(\mathbb{R}^n \); \(Du = (D_1 u, \ldots, D_n u) \) is the gradient of \(u \).

We denote
\[
Q_R(x^0, t^0) = \{(x, t) : |x - x^0| < R, \ 0 < t^0 - t < R^2\};
\]
\[
Q^+_R(x^0, t^0) = \{(x, t) : |x - x^0| < R, \ x_n > 0, \ 0 < t^0 - t < R^2\}.
\]
The last notation will be used only for \(x^0 \in \mathbb{R}^n_+ \).

Set
\[
\mathcal{R}_x = \frac{x_n}{x_n + \sqrt{t - s}}, \quad \mathcal{R}_y = \frac{y_n}{y_n + \sqrt{t - s}}.
\]

In what follows we denote by the same letter the kernel and the corresponding integral operator, i.e.
\[
(Kh)(x, t) = \int_{-\infty}^{t} \int \mathcal{K}(x, y; t, s) h(y, s) \, dy \, ds.
\]
Here we expand functions \(\mathcal{K} \) and \(h \) by zero to whole space-time if necessary.

We adopt the convention regarding summation from 1 to \(n \) with respect to repeated indices. We use the letter \(C \) to denote various positive constants.

2 Preliminary results: estimates of strong and weak solutions

2.1 The case of whole space

Let us consider equation (1) in the whole space \(\mathbb{R}^n \). Using the Fourier transform with respect to \(x \) one can obtain the following representation of solution
through the right-hand side:

\[u(x, t) = \int_{-\infty}^{t} \int \Gamma(x, y; t, s)f(y, s) \, dy \, ds, \quad (6) \]

where \(\Gamma \) is the Green function of the operator \(L_0 \) given by

\[\Gamma(x, y; t, s) = \frac{\det \left(\int_s^t A(\tau) d\tau \right) - \frac{1}{2}}{(4\pi)^{\frac{n}{2}}} \exp \left(-\frac{\left(\int_s^t A(\tau) d\tau \right)^{-1} (x - y), (x - y)}{4} \right) \]

for \(t > s \) and 0 otherwise. Here \(A(t) \) is the matrix \(\{a^{ij}(t)\}_{i,j=1}^{n} \). The above representation implies, in particular, the following estimates.

Proposition 1. Let \(\alpha \) and \(\beta \) be two arbitrary multi-indices. Then

\[|D^\alpha_x D^\beta_y \Gamma(x, y; t, s)| \leq C (t - s)^{-\frac{n+|\alpha|+|\beta|}{2}} \exp \left(-\frac{\sigma |x - y|^2}{t - s} \right) \]

and

\[|\partial_s D^\alpha_x D^\beta_y \Gamma(x, y; t, s)| \leq C (t - s)^{-\frac{n+|\alpha|+|\beta|}{2}} \exp \left(-\frac{\sigma |x - y|^2}{t - s} \right) \]

for \(x, y \in \mathbb{R}^n \) and \(s < t \). Here \(\sigma \) depends only on the ellipticity constant \(\nu \) and \(C \) may depend on \(\nu, \alpha \) and \(\beta \).

In the next proposition we present solvability results for equation (1) in the whole space.

Proposition 2. Let \(p, q \in (1, \infty) \).

(i) If \(f \in L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \), then the solution of equation (1) given by (6) satisfies

\[\|\partial_t u\|_{p,q} + \sum_{ij} \|D_i D_j u\|_{p,q} \leq C \|f\|_{p,q}, \quad (7) \]

where \(C \) depends only on \(\nu, p, q \).

(ii) If \(f \in \tilde{L}_{p,q}(\mathbb{R}^n \times \mathbb{R}) \), then the solution of equation (1) given by (6) satisfies

\[\|\partial_t u\|_{p,q} + \sum_{ij} \|D_i D_j u\|_{p,q} \leq C \|f\|_{p,q}, \quad (8) \]

where \(C \) depends only on \(\nu, p, q \).
The first assertion is proved in [2] and the second one in [4].

Now we consider the equation

\[\mathcal{L}_0 u = \text{div } (f) \quad \text{in } \mathbb{R}^n \times \mathbb{R} \]

(9)

(here \(f = (f_1, \ldots, f_n) \)).

Lemma 1. Let \(1 < p, q < \infty \) and \(\mu \in (-\frac{1}{p}, 1 - \frac{1}{p}) \).

(i) Suppose that \(f \in L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \). Then the function

\[u(x, t) = -\int_t^t \int_{-\infty}^\infty \nabla_y \Gamma(x, y; t, s) \cdot f(y, s) \, dy \, ds \]

(10)

gives a weak solution of equation (9) and satisfies the estimate

\[\| Du \|_{p,q} \leq C \| f \|_{p,q}. \]

(11)

(ii) Suppose that \(f \in \tilde{L}_{p,q}(\mathbb{R}^n \times \mathbb{R}) \). Then the function (10) gives a weak solution of equation (9) and satisfies the estimate

\[\| Du \|_{p,q} \leq C \| x_n f \|_{p,q}. \]

(12)

Proof. The function (10) obviously solves (9) in the sense of distributions. Next, the symmetry of \(\Gamma \) with respect to \(x \) and \(y \) implies \(\nabla_x \nabla_y \Gamma(x, y; t, s) = -\nabla_x \nabla_x \Gamma(x, y; t, s) \), and estimates (11) and (12) follow from (7) and (8), respectively.

\[\square \]

2.2 The case of the half-space under Dirichlet boundary condition

We formulate two auxiliary results on estimates of integral operators. The first statement is a particular case \(m = 1 \) of [4, Lemmas A.1 and A.3 and Remark A.2], see also [9, Lemmas 2.1 and 2.2].

Proposition 3. Let \(1 \leq p \leq \infty, \sigma > 0, 0 < r \leq 2, \lambda_1 + \lambda_2 > -1 \), and let

\[-\frac{1}{p} - \lambda_1 < \mu < 1 - \frac{1}{p} + \lambda_2. \]

(13)
Suppose also that the kernel $T(x, y; t, s)$ satisfies the inequality

$$|T(x, y; t, s)| \leq C \frac{R_x^{\lambda_1 + r} R_y^{\lambda_2}}{(t-s)^{n+2r}} \frac{x_n^{\mu - r}}{y_n^\mu} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right),$$

for $t > s$. Then the integral operator T is bounded in $L_p(\mathbb{R}^n \times \mathbb{R})$ and in $\tilde{L}_p(\mathbb{R}^n \times \mathbb{R})$.

The next proposition is a particular case $m = 1$ of [4, Lemma A.4], see also [9, Lemma 3.2].

Proposition 4. Let $1 < p < \infty$, $\sigma > 0$, $\kappa > 0$, $0 \leq r \leq 2$, $\lambda_1 + \lambda_2 > -1$ and let μ be subject to (13). Also let the kernel $T(x, y; t, s)$ satisfy the inequality

$$\frac{R_x^{\lambda_1 + r} R_y^{\lambda_2}}{(t-s)^{n+2r}} \frac{x_n^\mu}{y_n^\mu} \left(\frac{\delta}{t-s} \right)^\kappa \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right),$$

for $t > s + \delta$. Then for any $s^0 > 0$ the norm of the operator

$$T : L_{p,1}(\mathbb{R}^n \times (s^0 - \delta, s^0 + \delta)) \to L_{p,1}(\mathbb{R}^n \times (s^0 + 2\delta, \infty))$$

do not exceed a constant C independent of δ and s^0.

We denote by $\Gamma_D(x, y; t, s)$ the Green function of the operator L_0 in the half-space \mathbb{R}^n_+ subject to the homogeneous Dirichlet boundary condition on the boundary $x_n = 0$.

The next statement is proved in [4, Theorem 3.6].

Proposition 5. For $x, y \in \mathbb{R}^n_+$ and $t > s$ the following estimate is valid:

$$|D_x^\alpha D_y^\beta \Gamma_D(x, y; t, s)| \leq C \frac{R_x^{2-\alpha_n-\varepsilon} R_y^{2-\beta_n-\varepsilon}}{(t-s)^{n+|\alpha|+|\beta|}} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right),$$

where σ is a positive number depending on ν and n, ε is an arbitrary small positive number and C may depend on ν, α, β and ε. If $\alpha_n \leq 1$ (or $\beta_n \leq 1$) then $2 - \alpha_n - \varepsilon$ (or $2 - \beta_n - \varepsilon$) must be replaced by $1 - \alpha_n$ ($1 - \beta_n$) respectively in the corresponding exponents.

Since $(\partial_s + a_{ij}(-s) D_y D_y) \Gamma_D(x, y; t, s) = 0$ for $s < t$, we obtain
Corollary 1. For \(x, y \in \mathbb{R}^n_+ \) and \(t > s \)
\[
|D_x^\alpha D_y^\beta \partial_s \Gamma^D(x, y; t, s)| \leq C \frac{R_x^{2-\alpha_n-\varepsilon} R_y^{-\beta_n-\varepsilon}}{(t-s)^{n+2+|\alpha|+|\beta|/2}} \exp \left(-\frac{\sigma|x-y|^2}{t-s} \right). \tag{15}
\]
If \(\alpha_n \leq 1 \) then \(2 - \alpha_n - \varepsilon \) must be replaced by \(1 - \alpha_n \).

Now we consider the problem
\[
L_0 u = f_0 + \text{div}(f) \quad \text{in} \quad \mathbb{R}^n_+ \times \mathbb{R}; \quad u\big|_{x_n=0} = 0. \tag{16}
\]

Theorem 1. Let \(1 < p, q < \infty \) and \(\mu \in \left(-\frac{1}{p}, 1 - \frac{1}{p} \right) \).
(i) Suppose that \(x_\mu^{\mu+1} f_0, x_\mu^\mu f \in \tilde{L}_{p,q}(\mathbb{R}^n_+ \times \mathbb{R}) \). Then the function
\[
u(x, t) = \int_{-\infty}^t \int_{\mathbb{R}^n_+} \left(\Gamma^D(x, y; t, s) f_0(y, s) - D_y \Gamma^D(x, y; t, s) \cdot f(y, s) \right) dy ds \quad \tag{17} \]
gives a weak solution of problem (16) and satisfies the estimate
\[
\|x_\mu^\mu Du\|_{p,q} + \|x_\mu^{\mu-1} u\|_{p,q} \leq C(\|x_\mu^{\mu+1} f_0\|_{p,q} + \|x_\mu^\mu f\|_{p,q}). \tag{18}
\]
(ii) Suppose that \(x_\mu^{\mu+1} f_0, x_\mu^\mu f \in L_{p,q}(\mathbb{R}^n_+ \times \mathbb{R}) \). Then the function (17) gives a weak solution of problem (16) and satisfies the estimate
\[
\|x_\mu^\mu Du\|_{p,q} + \|x_\mu^{\mu-1} u\|_{p,q} \leq C(\|x_\mu^{\mu+1} f_0\|_{p,q} + \|x_\mu^\mu f\|_{p,q}). \tag{19} \]

Proof. First, function (17) obviously solves problem (16) in the sense of distributions. Thus, it is sufficient to prove estimates (18), (19).

Put
\[
\mathcal{K}_0(x, y; t, s) = \frac{x_\mu^{-1}}{y_{n+1}} \Gamma^D(x, y; t, s); \quad \mathcal{K}_1(x, y; t, s) = \frac{x_\mu^{-1}}{y_n} D_y \Gamma^D(x, y; t, s); \\
\mathcal{K}_2(x, y; t, s) = \frac{x_\mu}{y_{n+1}} D_x \Gamma^D(x, y; t, s); \quad \mathcal{K}_3(x, y; t, s) = \frac{x_\mu}{y_n} D_x D_y \Gamma^D(x, y; t, s).
\]

(i) By Proposition 5 the kernels \(\mathcal{K}_0 \) and \(\mathcal{K}_1 \) satisfy the conditions of Proposition 3 with \(r = 1 \) and
with \(\lambda_1 = -1, \lambda_2 = 1 \) and \(\mu \) replaced by \(\mu + 1 \) for the kernel \(\mathcal{K}_0 \);
with \(\lambda_1 = \lambda_2 = 0 \) for the kernel \(K_1 \), respectively.

This implies that for \(\mu \in (-\frac{1}{p}, 1 - \frac{1}{p}) \)

\[
\|x_n^{-\mu-1}u\|_p \leq C(\|x_n^{\mu+1}f_0\|_p + \|x_n^\mu f\|_p) \tag{20}
\]

and

\[
\|x_n^{-\mu-1}u\|_{p,\infty} \leq C(\|x_n^{\mu+1}f_0\|_{p,\infty} + \|x_n^\mu f\|_{p,\infty}). \tag{21}
\]

Interpolating (20) and (21) we arrive at

\[
\|x_n^{-\mu-1}u\|_{p,q} \leq C(\|x_n^{\mu+1}f_0\|_{p,q} + \|x_n^\mu f\|_{p,q}), \tag{22}
\]

for \(1 < p \leq q < \infty \) and \(\mu \in (-\frac{1}{p}, 1 - \frac{1}{p}) \). Now duality argument gives (22) for all \(1 < p, q < \infty \) and for the same interval of \(\mu \).

To estimate the first term in the left-hand side of (18) we use local estimates. We put

\[
B_{\rho,\vartheta}(\xi) = \{ x \in \mathbb{R}^n : |x' - \xi'| < \rho, \rho \vartheta < x_n < \rho \}.
\]

Localization of estimates (8) and (12) using an appropriate cut-off function, which is equal to 1 on \(B_{\rho,2} \) and 0 outside \(B_{2\rho,8} \), gives

\[
\int_{B_{\rho,2}(\xi)} \left(\int_{\mathbb{R}} |Du|^q dt \right)^{\frac{p}{q}} dx \leq C \int_{B_{2\rho,8}(\xi)} \left(\int_{\mathbb{R}} (|u|^q \rho^{-q} + \rho^q |f_0|^q + |f|^q dt) \right)^{\frac{p}{q}} dx.
\]

This estimate together with a proper partition of unity in \(\mathbb{R}^n_+ \) leads to

\[
\int_{\mathbb{R}^n_+} \left(\int_{\mathbb{R}} |Du|^q dt \right)^{p/q} x_n^{\mu p} dx \leq C \left(\int_{\mathbb{R}^n_+} \left(\int_{\mathbb{R}} |u|^q dt \right)^{p/q} x_n^{\mu p-p} dx \right.
\]

\[
+ \int_{\mathbb{R}^n_+} \left(\int_{\mathbb{R}} |f|^q dt \right)^{p/q} x_n^{\mu p} dx + \int_{\mathbb{R}^n_+} \left(\int_{\mathbb{R}} |f_0|^q dt \right)^{p/q} x_n^{\mu p+p} dx.
\]

This immediately implies (18) with regard of (22).

(ii) To deal with the scale \(L_{p,q} \), we need the following lemma.
Lemma 2. Let a function h be supported in the layer $|s - s^0| \leq \delta$ and satisfy
\[\int h(y; s) \, ds \equiv 0. \]
Also let $p \in (1, \infty)$ and $\mu \in (-\frac{1}{p}, 1 - \frac{1}{p})$. Then the operators \mathcal{K}_j, $j = 0, 1, 2, 3$, satisfy
\[\int_{|t-s^0|>2\delta} \| (\mathcal{K}_j h)(\cdot; t) \|_p \, dt \leq C \| h \|_{p,1}, \]
where C does not depend on δ and s^0.

Proof. By $\int h(y; s) \, ds \equiv 0$, we have
\[(\mathcal{K}_j h)(x; t) = \int_{-\infty}^{t} \int_{\mathbb{R}^n} \left(\mathcal{K}_j(x, y; t, s) - \mathcal{K}_j(x, y; t, s^0) \right) h(y; s) \, dy \, ds \tag{23} \]
(we recall that all functions are assumed to be extended by zero).

We choose $\varepsilon > 0$ such that
\[-\frac{1}{p} < \mu < 1 - \frac{1}{p} - \varepsilon. \tag{24} \]

For $|s - s^0| < \delta$ and $t - s^0 > 2\delta$, estimate (15) implies
\[|\mathcal{K}_j(x, y; t, s) - \mathcal{K}_j(x, y; t, s^0)| \leq \int_{s^0}^{s} |\partial_s \mathcal{K}_j(x, y; t, \tau)| \, d\tau \]
\[\leq C \frac{R_x^{\ell_1} R_y^{\ell_2-\varepsilon} x_n^{\ell_3} y_n^{\ell_4}}{(t-s)^{\frac{n+2-x}{2}}} \frac{\delta}{t-s} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right), \]
with $r = 2$, $\ell_1 = 1$, $\ell_2 = 0$, $\ell_3 = \mu - 1$, $\ell_4 = \mu + 1$ for the kernel \mathcal{K}_0;
with $r = 1$, $\ell_1 = 1$, $\ell_2 = -1$, $\ell_3 = \mu - 1$, $\ell_4 = \mu$ for the kernel \mathcal{K}_1;
with $r = 1$, $\ell_1 = 0$, $\ell_2 = 0$, $\ell_3 = \mu$, $\ell_4 = \mu + 1$ for the kernel \mathcal{K}_2;
with $r = 0$, $\ell_1 = 0$, $\ell_2 = -1$, $\ell_3 = \mu$, $\ell_4 = \mu$ for the kernel \mathcal{K}_3.

On the other hand, estimate (14) implies
\[|\mathcal{K}_j(x, y; t, s) - \mathcal{K}_j(x, y; t, s^0)| \leq C \frac{R_x^{\ell_1} R_y^{\ell_2+1} x_n^{\ell_3} y_n^{\ell_4}}{(t-s)^{\frac{n+2-x}{2}}} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right). \]

Combination of these estimates gives
\[|\mathcal{K}_j(x, y; t, s) - \mathcal{K}_j(x, y; t, s^0)| \leq C \delta^x \frac{R_x^{\ell_1} R_y^{\ell_2+1-x} x_n^{\ell_3} y_n^{\ell_4}}{(t-s)^{\frac{n+2-x}{2}+x}} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right), \]
where \(\zeta = \frac{\varepsilon}{1 + \varepsilon} \). Thus, the kernels in (23) satisfy the assumptions of Proposition 4 with
\(\lambda_1 = -1, \lambda_2 = 1 - \varepsilon \) and \(\mu \) replaced by \(\mu + 1 \) for kernels \(K_0 \) and \(K_2 \);
with \(\lambda_1 = 0, \lambda_2 = -\varepsilon \) for kernels \(K_1 \) and \(K_3 \), respectively.
Inequality (24) becomes (13), and the Lemma follows.

We continue the proof of the second statement of Theorem 1. Estimate (18) for \(q = p \) provides boundedness of the operators \(K_j, j = 0, 1, 2, 3 \), in \(L_p(\mathbb{R}^n \times \mathbb{R}) \), which gives the first condition in [1, Theorem 3.8]. Lemma 2 is equivalent to the second condition in this theorem. Therefore, Theorem 3.8 [1] ensures that these operators are bounded in \(L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \) for any \(q \in (1,p) \). For \(q \in (p, \infty) \) this statement follows by duality arguments. This implies estimate (19).

\[\square \]

3 Oblique derivative problem

3.1 The Green function

Theorem 2. There exists a Green function \(\Gamma^N = \Gamma^N(x,y;t,s) \) of problem (1), (5) and for arbitrary \(x, y \in \mathbb{R}^n_+ \) and \(t > s \) it satisfies the estimate

\[|D_x^\alpha D_y^\beta \Gamma^N(x,y;t,s)| \leq C \frac{\mathcal{R}_x^{\hat{\alpha}_n} \mathcal{R}_y^{\hat{\beta}_n}}{(t-s)^{\frac{n+|a|+|b|}{2}}} \exp \left(-\frac{\sigma|x-y|^2}{t-s}\right), \tag{25} \]

\[|D_x^\alpha D_y^\beta \partial_t \Gamma^N(x,y;t,s)| \leq C \frac{\mathcal{R}_x^{\hat{\alpha}_n} \mathcal{R}_y^{1-\beta_n-\varepsilon}}{(t-s)^{\frac{n-2+|a|+|b|}{2}}} \exp \left(-\frac{\sigma|x-y|^2}{t-s}\right), \tag{26} \]

where

\[\hat{\alpha}_n = \begin{cases} 0, & \alpha_n = 0; \\ 2 - \alpha_n, & \alpha_n = 1, 2; \\ 3 - \alpha_n - \varepsilon, & \alpha_n \geq 3; \end{cases} \quad \hat{\beta}_n = \begin{cases} 0, & \beta_n = 0; \\ 1 - \beta_n - \varepsilon, & \beta_n \geq 1. \end{cases} \]

Here \(\sigma \) is a positive number depending on \(\nu \) and \(n, \varepsilon \) is an arbitrary small positive number and \(C \) may depend on \(\nu, \alpha, \beta \) and \(\varepsilon \).
Proof. Let \(u \) be a solution of problem (1), (5). Then the derivative \(D_n u \) obviously satisfies the Dirichlet problem (16) with \(f_0 = 0 \) and \(f = (0, \ldots, 0, f) \). Therefore,

\[
D_n u = - \int_{-\infty}^{t} \int_{\mathbb{R}^n_{+}} D_{y_n} \Gamma^D(x, y; t, s) f(y; s) \, dy \, ds,
\]

and we can write solution to problem (1), (5) as

\[
u(x; t) = \int_{-\infty}^{t} \int_{\mathbb{R}^n_{+}} \Gamma^N(x, y, t, s) f(y, s) \, dy \, ds,
\]

where

\[
\Gamma^N(x, y; t, s) = \int_{x_n}^{\infty} D_{y_n} \Gamma^D(x', z_n, y; t, s) \, dz_n.
\]

Since \(D_{x_n} \Gamma^N(x, y; t, s) = - D_{y_n} \Gamma^D(x, y; t, s) \), we derive from (14) that

\[
|D_x^\alpha D_y^\beta D_{x_n} \Gamma^N(x, y; t, s)| \leq C \frac{\mathcal{R}^{2-\alpha_n-\varepsilon} \mathcal{R}^{1-\beta_n-\varepsilon}}{(t-s)^{\frac{n+1+|\alpha|+|\beta|}{2}}} \exp \left(-\frac{\sigma |x-y|^2}{t-s}\right), \quad (28)
\]

where \(2 - \alpha_n - \varepsilon \) must be replaced by \(1 - \alpha_n \) if \(\alpha_n \leq 1 \) and \(1 - \beta_n - \varepsilon \) by 0 if \(\beta_n = 0 \). Estimate (25) with \(\alpha_n \geq 1 \) follows from (28).

In a similar way we derive from (15) that

\[
|D_x^\alpha D_y^\beta D_{x_n} \partial_s \Gamma^N(x, y; t, s)| \leq C \frac{\mathcal{R}^{2-\alpha_n-\varepsilon} \mathcal{R}^{1-\beta_n-\varepsilon}}{(t-s)^{\frac{n+1+|\alpha|+|\beta|}{2}}} \exp \left(-\frac{\sigma |x-y|^2}{t-s}\right), \quad (29)
\]

where \(2 - \alpha_n - \varepsilon \) must be replaced by \(1 - \alpha_n \) if \(\alpha_n \leq 1 \). Estimate (26) with \(\alpha_n \geq 1 \) follows from (29).

To estimate derivatives with respect to \(x' \) we consider two cases.
Case 1: \(|x_n - y_n| \leq \sqrt{t - s}\). Then (28) implies

\[
|D^\alpha' x D^\beta' y \Gamma^N(x, y; t, s)| \leq \int_{x_n}^{\infty} |D^\alpha' x D^\beta' y D_{z_n} \Gamma^N(x', z_n, y; t, s)| \, dz_n
\]

\[
\leq \frac{C R^{\beta_n}}{(t - s)^{n + |\alpha'| + |\beta'| + 1}} \exp \left(-\frac{\sigma |x' - y'|^2}{t - s} \right) \int_{\mathbb{R}} \exp \left(-\frac{\sigma |z_n - y_n|^2}{t - s} \right) \, \frac{dz_n}{\sqrt{t - s}}
\]

\[
\leq \frac{C R^{\beta_n}}{(t - s)^{n + |\alpha'| + |\beta'| + 1}} \exp \left(-\frac{\sigma |x - y|^2}{t - s} + \sigma \right)
\]

(the last inequality is due to \(|x_n - y_n| \leq 1\), which gives (25) with \(\alpha_n = 0\) in the case 1. In a similar way we derive estimate (26) with \(\alpha_n = 0\) from (29) in the case 1.

Case 2: \(|x_n - y_n| > \sqrt{t - s}\). Then we rewrite equation \(L_0 \Gamma^N = 0\) as

\[
L'_0 \Gamma^N \equiv \partial_t \Gamma^N - \sum_{i,j=1}^{n-1} a_{ij}(t) D_{x_i} D_{x_j} \Gamma^N
\]

\[
= \mathcal{F} \equiv \left(2 \sum_{j=1}^{n-1} a_{jn} D_{x_j} D_{x_n} \Gamma^N + a_{nn} D_{x_n}^2 \Gamma^N \right).
\]

From (28) and (30) it follows that

\[
|D^{\alpha'}_{x'} D^\beta' y \mathcal{F}(x, y; t, s)| \leq C \frac{R^{\beta_n}}{(t - s)^{n + 2 + |\alpha'| + |\beta'|}} \exp \left(-\frac{\sigma |x - y|^2}{t - s} \right).
\]
Using Proposition 1 for \(\Gamma' \) we get from (32) and (31)
\[
|D_x' D_y^\beta \Gamma^N(x, y; t, s)| \leq \int_s^t \int_{\mathbb{R}^{n-1}} \frac{C}{(t - \tau)^{n+1}} \exp \left(-\frac{\sigma |x' - z'|^2}{t - \tau} \right)
\times \frac{R_{\gamma}^{\beta_n}}{(\tau - s)^{\frac{n+2+|\alpha'|+|\beta|}{2}}} \exp \left(-\frac{\sigma (z', x_n) - y|^2}{\tau - s} \right) \, dz' d\tau.
\]
We observe that \(R_y \) here has non-standard time argument: \(\tau - s \) instead of \(t - s \). However, since \(\beta_n \leq 0 \), we can estimate “non-standard” \(R_{\gamma}^{\beta_n} \) by standard one.

Integrating with respect to \(z' \) and using Fourier transform, we get
\[
|D_x' D_y^\beta \Gamma^N(x, y; t, s)| \leq \frac{C R_{\gamma}^{\beta_n}}{(t - s)^{\frac{n+1}{2}}} \exp \left(-\frac{\sigma |x' - y'|^2}{t - s} \right)
\times \int_s^t \frac{1}{(\tau - s)^{\frac{n+|\alpha'|+|\beta|}{2}}} \exp \left(-\frac{\sigma (x_n - y_n)^2}{\tau - s} \right) \, d\tau.
\]
Substituting \(\theta = \frac{t - \tau}{\tau - s} \), we arrive at
\[
|D_x' D_y^\beta \Gamma^N(x, y; t, s)| \leq \frac{C R_{\gamma}^{\beta_n}}{(t - s)^{\frac{n+|\alpha'|+|\beta|}{2}}} \exp \left(-\frac{\sigma |x' - y'|^2}{t - s} \right)
\times \int_0^\infty (\theta + 1)^{\frac{|\alpha'|+|\beta|}{2} - 1} \exp \left(-\frac{\sigma (x_n - y_n)^2}{s} (\theta + 1) \right) \, d\theta.
\]
Since \(\frac{|x_n - y_n|^2}{t - s} > 1 \), this implies
\[
|D_x' D_y^\beta \Gamma^N(x, y; t, \tau)| \leq \frac{C R_{\gamma}^{\beta_n}}{(t - s)^{\frac{n+|\alpha'|+|\beta|}{2}}} \exp \left(-\frac{\sigma |x - y|^2}{t - s} \right)
\times \int_0^\infty (\theta + 1)^{\frac{|\alpha'|+|\beta|}{2} - 1} \exp (-\sigma \theta) \, d\theta,
\]
which gives (25) with \(\alpha_n = 0 \) in the case 2.

In a similar way we derive the estimate (26) with \(\alpha_n = 0 \) in the case 2, and the proof is complete. \(\square \)
3.2 Coercive estimates in $\tilde{L}_{p,q}$ and in $L_{p,q}$

Theorem 3. Let $1 < p, q < \infty$ and $\mu \in (-\frac{1}{p}, 1 - \frac{1}{p})$.

(i) If $f \in \tilde{L}_{p,q}(\mathbb{R}^n_+ \times \mathbb{R})$ then solution (27) to problem (1), (5) satisfies

$$\|x_\mu^n \partial_t u\|_{p,q} + \|x_\mu^n D(Du)\|_{p,q} \leq C \|x_\mu^n f\|_{p,q}. \quad (33)$$

(ii) If $f \in L_{p,q}(\mathbb{R}^n_+ \times \mathbb{R})$ then solution (27) to problem (1), (5) satisfies

$$\|x_\mu^n \partial_t u\|_{p,q} + \|x_\mu^n D(Du)\|_{p,q} \leq C \|x_\mu^n f\|_{p,q}. \quad (34)$$

The constant C depends only on ν, μ, p and q.

Proof. First, we recall that the function $D_n u$ satisfies the Dirichlet problem (16) with $f_0 = 0$ and $f = (0, \ldots, 0, f)$. Thus, Theorem 1 gives

$$\|x_\mu^n D(D_n u)\|_{p,q} \leq C \|x_\mu^n f\|_{p,q} \quad (35)$$

and

$$\|x_\mu^n D(D_n u)\|_{p,q} \leq C \|x_\mu^n f\|_{p,q}. \quad (36)$$

To estimate the derivatives $D'D'u$ in $\tilde{L}_{p,q}$-norm, we proceed similarly to Theorem 2. We rewrite equation (1) as in (30):

$$\mathcal{L}_0' u = \tilde{f} \equiv f + 2 \sum_{j=1}^{n-1} a_{jn} D_j D_n u + a_{nn} D_n D_n u. \quad (37)$$

Using Proposition 2 (ii) in \mathbb{R}^{n-1} we obtain

$$\|D'D'u(\cdot, x_n)\|_{p,q} \leq C \|\tilde{f}(\cdot, x_n)\|_{p,q} \quad (38)$$

almost for all $x_n > 0$. Multiplying both sides of (37) by x_μ^n and taking L_p norm with respect to x_n, we arrive at

$$\|x_\mu^n D'D'u\|_{p,q} \leq C \|x_\mu^n \tilde{f}\|_{p,q} \leq C \|x_\mu^n f\|_{p,q}. \quad (39)$$

where we have used estimate (35). The first term in (33) is estimated by using (35), (38) and equation (1), and the statement (i) follows.

For $L_{p,q}$-norm of $D'D'u$ this approach fails, so we proceed as in the part (ii) of Theorem 1. Let us introduce the kernels

$$K_4(x, y; t, s) = \frac{x_\mu^n}{y_\mu^n} D'_x D'_x \Gamma^N(x, y; t, s); \quad K^*_4(x, y; t, s) = K_4(y, x; t, s). \quad (40)$$
Estimate (38) with \(q = p \) means that the operator \(K_4 \) is bounded in \(L_p(\mathbb{R}^n \times \mathbb{R}) \). Choose \(\varepsilon > 0 \) such that relation (24) holds. Using estimates (25) and (26), it is easy to check that \(K_4 \) satisfies the same estimates as the kernel \(K_3 \) in Theorem 1. Verbatim repetition of arguments shows that this operator is bounded in \(L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \) for any \(q \in (1, p) \).

Further, by duality the operator \(K_4^* \) is bounded in \(L_{p'}(\mathbb{R}^n \times \mathbb{R}) \). Using (25) and relation (24), it is easy to check that \(K_4 \) satisfies the same estimates as the kernel \(K_3 \) in Theorem 1. Verbatim repetition of arguments shows that this operator is bounded in \(L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \) for any \(q \in (1, p) \).

Further, by duality the operator \(K_4^* \) is bounded in \(L_{p'}(\mathbb{R}^n \times \mathbb{R}) \). Using (25) and relation (24), we obtain

\[
|\partial_s K_4^*(x, y; t, s)| \leq \frac{C}{(s-t)^{n+2}} \frac{x_n^{-\mu}}{y_n^{\mu}} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right).
\]

For \(|s-s^0| < \delta \) and \(s^0 - t > 2\delta \) this implies

\[
|K_4^*(x, y; t, s) - K_4^*(x, y; t, s^0)| \leq \frac{C \delta}{(t-s)^{n+2+1}} \frac{x_n^{-\mu}}{y_n^{\mu}} \exp \left(-\frac{\sigma |x-y|^2}{t-s} \right).
\]

The last estimate allows us to apply Proposition 4 with \(\alpha = 1, r = 0, \lambda_1 = \lambda_2 = 0 \) and \(p \) replaced by \(p' \). Therefore, Theorem 3.8 [1] ensures that for any \(q \in (p, \infty) \) the operator \(K_4^* \) is bounded in \(L_{p',q'}(\mathbb{R}^n \times \mathbb{R}) \). By duality the operator \(K_4 \) is bounded in \(L_{p,q}(\mathbb{R}^n \times \mathbb{R}) \).

Thus, we have

\[
\|x_n^\mu D'D'u\|_{p,q} \leq C \|x_n^\mu f\|_{p,q}
\]

for all \(1 < q < \infty \). The first term in (34) is estimated by (36), (39) and equation (1), and the statement (ii) also follows.

4 Solvability of the oblique derivative problem in a bounded domain

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) with boundary \(\partial \Omega \). For a cylinder \(Q = \Omega \times (0, T) \), we denote by \(\partial^n Q = \partial \Omega \times (0, T) \) its lateral boundary.

We introduce two scales of functional spaces: \(L_{p,q,(\mu)}(Q) \) and \(\tilde{L}_{p,q,(\mu)}(Q) \), with norms

\[
\|f\|_{p,q,(\mu),Q} = \|(\tilde{d}(x))^\mu f\|_{p,q,Q} = \left(\int_0^T \left(\int_\Omega (\tilde{d}(x))^\mu |f(x,t)|^p dx \right)^{\frac{q}{p}} dt \right)^{\frac{1}{q}}
\]

\(16 \)
and
\[\|f\|_{p,q,(\mu),Q} = \|\hat{d}(x)^\mu f\|_{p,q,Q} = \left(\int_0^T \left(\int_\Omega (\hat{d}(x)^\mu |f(x,t)|^q dt \right)^{\frac{p}{q}} dx \right)^{\frac{1}{p}} \]
respectively, where \(\hat{d}(x) \) stands for the distance from \(x \in \Omega \) to \(\partial \Omega \). For \(p = q \) these spaces coincide, and we use the notation \(\|\cdot\|_{p,(\mu),Q} \).

We denote by \(W^{2,1}_{p,q,(\mu)}(Q) \) and \(\tilde{W}^{2,1}_{p,q,(\mu)}(Q) \) the set of functions with the finite seminorms
\[\|\partial_t u\|_{p,q,(\mu),Q} + \sum_{ij} \|D_i D_j u\|_{p,q,(\mu),Q} \]
and
\[\|\partial_t u\|_{p,q,(\mu),Q} + \sum_{ij} \|D_i D_j u\|_{p,q,(\mu),Q} \]
respectively. These seminorms become norms on the subspaces defined by \(u|_{t=0} = 0 \). For \(p = q \) we write \(W^{2,1}_{p,(\mu)}(Q) \).

We say \(\partial \Omega \in W^{2}_{p,(\mu)} \) if for any point \(x^0 \in \partial \Omega \) there exists a neighborhood \(\mathcal{U} \) and a diffeomorphism \(\Psi \) mapping \(\mathcal{U} \cap \Omega \) onto the half-ball \(B^+_1 \) and satisfying
\[(\hat{d}(x))^\mu D^2 \Psi \in L_p(\mathcal{U} \cap \Omega); \quad x^0_n D^2 \Psi^{-1} \in L_p(B^+_1), \]
where corresponding norms are uniformly bounded with respect to \(x^0 \).

We set \(\hat{\mu}(p,q) = 1 - \frac{n}{p} - \frac{2}{q} \).

We consider the initial-boundary value problem
\[
Lu \equiv \partial_t u - a^{ij}(x,t)D_i D_j u + b^i(x,t)D_i u = f(x,t) \quad \text{in} \quad Q; \quad \gamma^i(x,t)D_i u|_{\partial^\prime Q} = 0, \quad u|_{t=0} = 0.
\]
The matrix of leading coefficients \(a^{ij} \in C(\overline{\Omega} \rightarrow L_\infty(0,T)) \) is symmetric and satisfies the ellipticity condition (2). We assume that the vector field \(\gamma \) is non-tangent, i.e.
\[\gamma^i(x,t)\mathbf{n}_i(x) \geq \gamma_0, \quad (x,t) \in \partial^\prime Q, \quad \gamma_0 = \text{const} > 0 \]
(here \(\mathbf{n}(x) \) stands for the unit exterior normal vector to \(\partial \Omega \) at the point \(x \)).
Theorem 4. Let $1 < p, q < \infty$ and $\mu \in (-\frac{1}{p}, 1 - \frac{1}{p})$. Assume that the components γ^i belong to the anisotropic Hölder space $C^{0,1;\frac{1}{2}}(\partial^p Q)$.

1. Let $b^i \in L_{\overline{p},\overline{q},(\overline{p})}(Q) + L_{\infty,\overline{q}}(Q)$, where \overline{p} and \overline{q} are subject to

$$\overline{p} \geq p; \quad \begin{cases} \overline{q} = q; & \hat{\mu}(p, q) > 0 \\ q < \overline{q} < \infty; & \hat{\mu}(\overline{p}, \overline{q}) = 0 \end{cases},$$

while \overline{p} and $\overline{\mu}$ satisfy

$$\overline{\mu} = \min\{\mu, \max\{\hat{\mu}(p, q), 0\}\}; \quad \overline{\mu} < \mu + \frac{1}{p}. \tag{42}$$

Suppose also that either $\partial \Omega \in W^2_\infty(\overline{p})$ or $\partial \Omega \in W^2_p(\overline{p})$. Then, for any $f \in L_{p,q,(\mu)}(Q)$, the initial-boundary value problem (40) has a unique solution $u \in W^{2,1}_{p,q,(\mu)}(Q)$. Moreover, this solution satisfies

$$\|\partial_t u\|_{p,q,(\mu)} + \sum_{ij} \|D_i D_j u\|_{p,q,(\mu)} \leq C f\|f\|_{p,q,(\mu)},$$

where the positive constant C does not depend on f.

2. Let $b^i \in L_{\overline{p},\overline{q},(\overline{p})}(Q) + L_{\infty,\overline{q}}(Q)$, where \overline{p} and \overline{q} are subject to

$$\overline{q} \geq q; \quad \begin{cases} \overline{p} = p; & \hat{\mu}(p, q) > 0 \\ p < \overline{p} < \infty; & \hat{\mu}(\overline{p}, \overline{q}) = 0 \end{cases},$$

while \overline{p} and $\overline{\mu}$ satisfy (42). Suppose also that $\partial \Omega$ satisfies the same conditions as in the part 1. Then, for any $f \in L_{p,q,(\mu)}(Q)$, the problem (40) has a unique solution $u \in W^{2,1}_{p,q,(\mu)}(Q)$. Moreover, this solution satisfies

$$\|\partial_t u\|_{p,q,(\mu)} + \sum_{ij} \|D_i D_j u\|_{p,q,(\mu)} \leq C f\|f\|_{p,q,(\mu)},$$

where the positive constant C does not depend on f.

Remark 1. It is well known (see, e.g., [7]) that if $\partial \Omega \in C^{1,\delta}$ for some $\delta \in (0,1]$, then $\partial \Omega \in W^2_{\infty,(1-\delta)}$. In this case the second inequality in (42) implies solvability of the problem (40) for $1 - \delta - \frac{1}{p} < \mu < 1 - \frac{1}{p}$.

18
Proof. The standard scheme, see [6, Ch.IV, §9], including partition of unity, local flattening of $\partial \Omega$ and coefficients freezing, reduces the proof to the coercive estimates for the model problems to equation (1) in the whole space and in the half-space. These estimates are obtained in [3, Theorem 1.1] and our Theorem 3. By the Hölder inequality and the embedding theorems (see, e.g., [1, Theorems 10.1 and 10.4]), the assumptions on b^i guarantee that the lower-order terms in (40) belong to desired weighted spaces, $L_{p,q,(\mu)}(Q)$ and $\tilde{L}_{p,q,(\mu)}(Q)$, respectively. By the same reasons, the requirements on $\partial \Omega$ imply $\partial \Omega \in C^1$ and ensure the invariance of assumptions on b^i after flattening the boundary.

Next, after flattening of $\partial \Omega$ we can assume without loss of generality that $\gamma^i(0) = \delta^m_i$ and rewrite the boundary condition as follows:

$$D_n u |_{x_n=0} = \varphi \equiv (\delta^m_i - \gamma^i(x,t)) D_i u. \quad (43)$$

The inhomogeneity in boundary condition (43) will be removed if we subtract from u some function satisfying the same boundary condition. By assumption $\gamma^i \in C^{0,1/2}(\partial''Q)$, the function φ has the same differential properties as Du. Therefore, such a subtraction does not leave the space $L_{p,q,(\mu)}(Q)$ (respectively, $\tilde{L}_{p,q,(\mu)}(Q)$) of the right-hand side in (40). This completes the proof.

The assumption $\gamma^i \in C^{0,1/2}(\partial''Q)$ is not optimal. The sharp assumption here is that multiplication by the vector field γ should keep the space of traces of gradients of functions from $\mathcal{W}_{p,q,(\mu)}^{2,1}(Q)$ (respectively, from $\tilde{\mathcal{W}}_{p,q,(\mu)}^{2,1}(Q)$). In other words, γ should belong to space $\text{MTD}\mathcal{W}_{p,q,(\mu)}^{2,1}(Q)$ (respectively, $\text{MTD}\tilde{\mathcal{W}}_{p,q,(\mu)}^{2,1}(Q)$) of multipliers of traces of gradients of weighted Sobolev functions.

Unfortunately, to the best of our knowledge, these spaces are not described yet. In the isotropic case $p = q$ we can give rather sharp sufficient conditions in terms of the Besov spaces (the notation of the Besov spaces corresponds to [1, Ch.IV]). The following result can be extracted from the proofs of [1, Theorems 18.13 and 18.14], [10] and [8, 4.4.3].

Theorem 5. Let $1 < p < \infty$ and $\mu \in (-\frac{1}{p}, 1 - \frac{1}{p})$.

Suppose that \(b^i \in L^p(\partial' Q) + L^\infty(\partial' Q) \), where \(\bar{p}, \bar{\mu} \) and \(\bar{\bar{\mu}} \) are subject to

\[
\bar{p} = \max\{p, n + 2\}, \quad \text{if} \quad p \neq n + 2; \quad \bar{p} > n + 2, \quad \text{if} \quad p = n + 2;
\]

\[
\bar{\mu} = \min\{\mu, \max\{1 - \frac{n + 2}{p}, 0\}\}; \quad \bar{\bar{\mu}} < \mu + \frac{1}{p}.
\]

Suppose also that either \(\partial \Omega \in W^2_{\infty, \bar{p}} \) or \(\partial \Omega \in W^2_{p, \bar{\mu}} \).

Finally, we assume that the components \(\gamma^i \) belong to the Besov space \(B^\lambda_{\bar{p}, \theta}(\partial' Q) \) with parameters

\[
\lambda \equiv (\lambda_1^1, \ldots, \lambda_n^{n-1}, \lambda_t) = \left(1 - \frac{1}{p}, \ldots, 1 - \frac{1}{p}, \frac{1}{2} - \frac{1}{2p}\right); \quad \theta = p;
\]

\[
\bar{\bar{p}} = \max\left\{p, \frac{n + 1}{1 - \mu - \frac{1}{p}}\right\}, \quad \text{if} \quad p \neq \frac{n + 2}{1 - \mu}; \quad \bar{\bar{p}} > \frac{n + 2}{1 - \mu}, \quad \text{if} \quad p = \frac{n + 2}{1 - \mu}.
\]

Then, for any \(f \in L^p(\mu)(Q) \), the initial-boundary value problem (40) has a unique solution \(u \in W^2_{p, \mu}(Q) \). Moreover, this solution satisfies

\[
\|\partial_t u\|_{p, \mu} + \sum_{ij} \|D_i D_j u\|_{p, \mu} \leq C\|f\|_{p, \mu},
\]

where the positive constant \(C \) does not depend on \(f \).

V. K. was supported by the Swedish Research Council (VR). A. N. was supported by RFBR grant 12-01-00439 and by St. Petersburg University grant 6.38.670.2013. He also acknowledges the Linköping University for the financial support of his visit in February 2012.

References

