Secondary structure in *de novo* designed peptides induced by electrostatic interaction with particles and membranes.

Aim

We are interested in design principles which will enable us to design peptides that adopt a given secondary structure upon attachment to a surface. We want to use this to design peptides which...

- adopt a pre-determined secondary structure upon attachment to a surface
- are selective to certain membranes
- induce lipid domains upon attachment
- have surface-activated function

General design principles

A helical wheel representation of a 28 amino acid peptide, designed to form an α-helix on a negatively charged surface.

A catalytic example

A His15-Lys19 pair forms a catalytic site for ester hydrolysis which is active only when the peptide is helical.

Peptide-membrane interaction

Compared to particles, membranes provide...

- Wider range of pH-stability
- Dynamic interface
- Varied surface composition

Membrane-peptide interactions are of relevance also to...

- Cell-penetrating peptides
- Antibiotic peptides
- Lipid raft targeting

Anionic membranes

We use large unilamellar vesicles (*d* ≈ 100 nm), composed of Cholesterol / DOPG / DOPC where the (anionic) DOPG content is used to control surface charge.

The cationic peptides

The peptides R2L and R2V have similar structure, but differ in the hydrophobic position. Both are *unstructured* on silica particles.

Summary

- Both peptides are random-coil in solution
- R2L peptides form α-helices upon attachment to negatively charged membranes, while R2V peptides form β-sheets
- The structure is (largely) unaffected by pH
- The degree of secondary structure is proportional to vesicle surface charge