Cardiac function and long-term volume load
Physiological investigations in endurance athletes and in patients operated on for aortic regurgitation

Kristofer Hedman

L.L. U.
LINKÖPING UNIVERSITY
Division of Cardiovascular Medicine
Department of Medical and Health Sciences
Linköping University, Sweden

Linköping 2016
To my wife and children,
who load my heart
and make it grow.

"Science is much more than a body of knowledge.
It is a way of thinking.
This is central to its success.
Science invites us to let the facts in,
even when they don’t conform to our preconceptions."
- Carl Sagan
Table of Contents

ABSTRACT 1

POPULÄRVETENSKAPLIG SAMMANFATTNING 3

LIST OF ORIGINAL PAPERS 5

ABBREVIATIONS 6

INTRODUCTION 9

BACKGROUND 11

The heart and physiology of work 11

Cardiac functional anatomy 11

Physiology of work and cardiac function 14

Cardiac hypertrophy 17

Cardiac hypertrophy in long-term volume load 19

Methodological background 23

Echocardiography 23

Cardiopulmonary exercise testing 28

AIMS OF THE THESIS 29

METHODS 31

Subjects 31

Chronic aortic regurgitation patients 31

Healthy trained and untrained females 31

Echocardiographic measurements 33

Ventricular and atrial dimensions 33

Inferior vena cava dimensions 34

LV and RV systolic function 35

LV and RV diastolic function 37

Indexing 38

Cardiopulmonary exercise testing 38

Statistical methods 39

Inter- and intraobserver variability 40
Table of contents

RESULTS
- **Chronic aortic regurgitation patients** 41
 - Cardiopulmonary exercise testing 42
 - Echocardiographic measurements 44
- **Healthy trained and untrained females** 45
 - Cardiovascular dimensions 46
 - Inferior vena cava shape 48
 - Cardiac function at rest 49
 - Relation to maximal aerobic capacity 56

DISCUSSION
- **Cardiac hypertrophy in health and disease** 57
 - Inferior vena cava in volume load 59
- **Decline in peakVO$_2$ following AVR** 61
- **Cardiac function in physiological volume load** 63
 - Systolic function 63
 - Diastolic function 66
- **Relations to maximal aerobic capacity** 67
 - Cardiovascular dimensions 67
 - Cardiac function 68
- **Strengths and limitations** 68
 - Paper I 68
 - Papers II-IV 69

CONCLUDING REMARKS
- **FUTURE PERSPECTIVES** 73
- **ACKNOWLEDGEMENTS** 74
- **REFERENCES** 77
Background and aims. The heart is a remarkably adaptable organ, continually changing its output to match metabolic demands and haemodynamic load. But also in long-term settings, such as in chronic or repeated volume load, there are changes in cardiac dimensions and mass termed cardiac hypertrophy. Depending on the stimulus imposing the volume load this hypertrophy differs in extent and phenotype. We aimed to study cardiac function in two settings with long-term volume load, including patients previously operated for aortic regurgitation and healthy females performing endurance training.

Methods. In paper I, 21 patients (age 52±12 years, all male) operated on with aortic valve replacement for aortic regurgitation (AR) underwent a cardiopulmonary exercise test (CPET) and an echocardiographic evaluation in average 49±15 months following surgery. The peak oxygen uptake (peakVO$_2$) was compared to results from a pre-operative and a six months follow-up, and relations to echocardiographic measures were determined.

In papers II–IV, 48 endurance trained female athletes (ATH, age 21±2 years) were compared to 46 untrained females (CON, age 21±2 years) regarding echocardiographic measures of cardiac dimensions, global and regional cardiac function and maximal aerobic capacity (VO$_{2\text{max}}$) determined with CPET. Relations between VO$_{2\text{max}}$ and cardiac variables were explored.

Results. In paper I, peakVO$_2$ had decreased from 26±6 to 23±5 mL/kg/min in patients from the first to second, late follow-up. This decrease was larger than expected by their increased age alone, and a majority of patients had a cardiorespiratory fitness below average according to reference values from healthy subjects of the same age, sex and weight.

In papers II–IV, we found that ATH (VO$_{2\text{max}}$ 52±5 mL/kg/min) had larger atrial, ventricular and inferior vena cava dimensions compared to CON (VO$_{2\text{max}}$ 39±5 mL/kg/min). ATH had increased measures of right ventricular (RV) systolic function (RV atrioventricular plane...
Abstract

Displacement indexed by cardiac length 2.5±0.3 vs. 2.3±0.3, p=0.001) and left ventricular (LV) diastolic function (mitral E-wave velocity 0.92±0.17 vs. 0.86±0.11 m/s, p=0.029). In addition, systolic synchrony was similar between groups while there were heterogeneous differences in diastolic and systolic function across different myocardial segments. $VO_{2\text{max}}$ was most strongly related to LV end-diastolic volume (r=0.709, p<0.001).

Conclusions. Decreasing peakVO_2 following surgery for AR, despite a normalisation in cardiac dimension could either be a result of a remaining slight myocardial dysfunction or post-operative negative influence on cardiac performance by filling disturbances or the prosthetic valve itself, or, a sign of an inadequate post-operative level of physical activity and lack of exercise training. This stresses the importance of post-operative management and methods for increasing aerobic capacity, where exercise testing could be valuable for guiding patients and tailoring exercise protocols.

The eccentric cardiac hypertrophy in ATH, symmetrically distributed across the heart, depicts the physiological hypertrophy in response to volume load in endurance training. Cardiac function was similar, or for some measures slightly improved in ATH compared to CON and LV dimensions, rather than cardiac function, were predictors of $VO_{2\text{max}}$. As the heart of female athletes has been far less studied than that in males, our results add knowledge regarding the female athlete’s heart, and our results of differences in segmental cardiac function merits further research.
Hjärtfunktion hos konditionsidrottare och patienter opererade för aortaklaffläckage

Fysiologiska studier av volymbelastningens långtidseffekter

Hjärtat har en fantastisk förmåga att anpassa sig till olika situationer. Detta ses inte minst när man går från vila till hårt arbete, då hjärt-minutvolymen ökar mångfaldigt. Men även på lång sikt uppvisar hjärtat förmåga till anpassning, då både hjärtrummen kan bli större och hjärts väggar tjockare. I denna avhandling studerades hjärtfunktion, hjärtdimensioner och kondition hos individer utsatta för ökad tillströmning av blod (volymbelastning) på grund av dels läckage genom aortaklaffen, dels till följd av flerårig konditionsträning.

Vi fann att konditionen hos patienter opererade på grund av aortaklaffläckage hade sjunkit och var lägre än förväntat utifrån ålder, kön och kroppsvikt fyra år efter operationen, trots att hjärts dimensioner och funktion hos de flesta patienterna normaliserats. Möjliga förklaringar till detta är antingen att det trots allt fanns en kvarvarande nedsättning i hjärtfunktionen vi inte uppmätt, eller att de blivit mer fysiskt inaktiva efter operationen, trots att de uppmanas att återgå till normal fysisk aktivitetsnivå.

Hos uthållighetstränade kvinnor med god kondition fann vi större hjärtrum och väggtjocklek än hos otränade kvinnor och nedre hälvenen var signifikant större hos idrottarna. Ingen av de mått på hjärtfunktion vi använde påvisade någon negativ effekt av de förstorade hjärtdimensionerna. Istället fann vi att enskilda segment i hjärtmuskeln uppvissade högre hastigheter under hjärtats kontraktionsfas, eventuellt tydande på en förbättrad funktion. Det var framförallt segment i höger kammares vägg och segment intill denna som uppvissade dessa
förändringar, som tillsammans med en viss ökning av högerkammarens längsaxelfunktion kan innebära att höger och vänster kammare anpassar sig till uthållighetsträning på olika sätt och i olika grad.

Det fanns ett samband mellan konditionsnivå mätt som högsta syreupptag och vänsterkammarens volym och massa, tydande på att hjärtrumsförstoringen var proportionell mot förbättringar i konditionsnivå.

Då kvinnliga idrottare studerats betydligt mer sällan än manliga idrottare kan en del av våra resultat vara av värde för läkare som undersöker kvinnliga idrottare för misstänkt hjärtsjukdom. Vårt fynd av försämrad kondition i efterförloppet av aortaklaffsoperation understryker vikten av att ge förutsättningar för dessa patienter att öka sin fysiska aktivitetsnivå efter operationen, för att påskynda återgång till normal konditionsnivå och undvika ytterligare försämring i kondition.
This thesis is based upon the following four papers, which will be referred to by their Roman numerals:

I. Hedman K, Tamás É, Nylander E. Decreased aerobic capacity 4 years after aortic valve replacement in male patients operated upon for chronic aortic regurgitation.

II. Hedman K, Tamás É, Henriksson J, Bjarneård N, Brudin L, Nylander E. Female athlete’s heart: Systolic and diastolic function related to circulatory dimensions.

III. Hedman K, Tamás É, Bjarneård N, Brudin L, Nylander E. Cardiac systolic regional function and synchrony in endurance trained and untrained females.

IV. Hedman K, Nylander E, Henriksson J, Bjarneård N, Brudin L, Tamás É. The size and shape of the inferior vena cava in trained and untrained females in relation to maximal oxygen uptake.
In manuscript.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>wall stress in the LaPlace equation</td>
</tr>
<tr>
<td>%COV</td>
<td>coefficient of variation in percent</td>
</tr>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>A</td>
<td>late atrial Doppler filling velocity over mitral valve</td>
</tr>
<tr>
<td>a’</td>
<td>late atrial diastolic peak myocardial velocity</td>
</tr>
<tr>
<td>AR</td>
<td>aortic regurgitation</td>
</tr>
<tr>
<td>ATH</td>
<td>athletes</td>
</tr>
<tr>
<td>AV-O$_2$-diff</td>
<td>arterio-venous oxygen difference</td>
</tr>
<tr>
<td>AVR</td>
<td>aortic valve replacement</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>CO</td>
<td>cardiac output</td>
</tr>
<tr>
<td>CON</td>
<td>controls</td>
</tr>
<tr>
<td>CPET</td>
<td>cardiopulmonary exercise testing</td>
</tr>
<tr>
<td>E</td>
<td>early Doppler filling velocity over mitral valve</td>
</tr>
<tr>
<td>e’</td>
<td>early diastolic peak myocardial velocity</td>
</tr>
<tr>
<td>E/A</td>
<td>ratio of early-to-late atrial left ventricular filling velocities</td>
</tr>
<tr>
<td>E/e’</td>
<td>ratio of early diastolic Doppler filling velocity to peak myocardial velocity</td>
</tr>
<tr>
<td>e’/a’</td>
<td>ratio of early-to-late diastolic peak myocardial velocity</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EDV</td>
<td>end-diastolic volume</td>
</tr>
<tr>
<td>ESV</td>
<td>end-systolic volume</td>
</tr>
<tr>
<td>h</td>
<td>wall thickness in the LaPlace equation</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>ICC</td>
<td>intraclass correlation coefficient</td>
</tr>
<tr>
<td>IVC</td>
<td>inferior vena cava</td>
</tr>
<tr>
<td>LA</td>
<td>left atrium</td>
</tr>
<tr>
<td>LAA$_s$</td>
<td>left atrial area in systole</td>
</tr>
<tr>
<td>LAX$_{\text{EXP}}$</td>
<td>maximal inferior vena cava long-axis diameter during expiration</td>
</tr>
<tr>
<td>LAX$_{\text{INS}}$</td>
<td>minimal inferior vena cava long-axis diameter during inspiration</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricle or left ventricular</td>
</tr>
<tr>
<td>LV$_{\text{AVD}}$</td>
<td>left ventricular atrioventricular plane displacement</td>
</tr>
<tr>
<td>LVEDV</td>
<td>left ventricular end-diastolic volume</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVESV</td>
<td>left ventricular end-systolic volume</td>
</tr>
<tr>
<td>LV-FS</td>
<td>left ventricular fractional shortening</td>
</tr>
<tr>
<td>LVID$_D$</td>
<td>left ventricular internal diameter in diastole</td>
</tr>
<tr>
<td>LVID$_S$</td>
<td>left ventricular internal diameter in systole</td>
</tr>
<tr>
<td>LVIL$_D$</td>
<td>left ventricular internal length in diastole</td>
</tr>
<tr>
<td>LVM</td>
<td>left ventricular mass</td>
</tr>
<tr>
<td>LV-12-e’</td>
<td>mean e’ of six basal and six mid-ventricular LV segments</td>
</tr>
<tr>
<td>LV-12-s’</td>
<td>mean s’ of six basal and six mid-ventricular LV segments</td>
</tr>
</tbody>
</table>
LV-a’_{BASAL} mean a’ of six basal LV segments
LV-e’_{BASAL} mean e’ of six basal LV segments
LV-s’_{BASAL} mean s’ of six basal LV segments
LV-strain_{BASAL} mean strain of six basal LV segments
Max-LV-delay maximal delay in T_s between any two LV segments
M-mode motion-mode echocardiography
P pressure in the Laplace equation
peakVO₂ peak oxygen uptake
PWT posterior wall thickness in diastole
r chamber radius in the Laplace equation
RA right atrium or right atrial
RAA_s right atrial area in systole
ROI region of interest
RV right ventricle or right ventricular
RV_{AVD} right ventricular atroventricular plane displacement
RV-a’_{BASAL} mean a’ of basal RV free wall and septum
RV-a’_{LATERAL} mean a’ of basal and mid-ventricular RV free wall
RV-e’_{BASAL} mean e’ of basal RV free wall and septum
RV-e’_{LATERAL} mean e’ of basal and mid-ventricular RV free wall
RV-s’_{BASAL} mean s’ of basal RV free wall and septum
RV-s’_{LATERAL} mean s’ of basal and mid-ventricular RV free wall
RVD₁ right ventricular basal diameter in diastole
RV-LV-delay delay in T_s between right and left ventricular free walls
RVOT-prox right ventricular outflow tract diameter in diastole
RWT relative wall thickness
s’ systolic peak myocardial velocity
SAX_{EXP-AREA} maximal IVC short axis area during expiration
SAX_{EXP-MAJOR} largest IVC diameter at SAX_{EXP-AREA}
SAX_{EXP-MINOR} smallest IVC diameter perpendicular to SAX_{EXP-MAJOR} at SAX_{EXP-AREA}
SAX_{INS-P-AREA} minimal IVC short axis area during inspiration
SAX_{INS-P-MAJOR} largest IVC diameter at SAX_{INS-P-AREA}
SAX_{INS-P-MINOR} smallest IVC diameter perpendicular to SAX_{INS-P-MAJOR} at SAX_{INS-P-AREA}
SD standard deviation
S-L-delay septal-to-lateral delay in T_s
SV stroke volume
SWT septal wall thickness in diastole
TDI tissue Doppler imaging
T_s-SD time to s’ from beginning of QRS-complex
T_S-SD standard deviation of T_s in 12 LV segments
VCO₂ carbon dioxide elimination
VO₂ oxygen uptake
VO_{2max} maximal oxygen uptake
W Watt
The heart shows a remarkable ability to adapt to different situations and demands. This is apparent in acute settings such as onset of physical activity, where an increased metabolic demand of the skeletal muscles imposes a stimulus for increases in heart rate and stroke volume and thus in cardiac output. But it is also apparent in long-term settings where either constant or repeated elevations in volume or pressure load are imposed upon the heart, and there are cardiac adaptations acting to maintain optimal conditions for heart pumping. One of these long-term adaptations is cardiac hypertrophy.

Physiological cardiac adaptation can be understood as an adequate response to an acute or chronically altered haemodynamic environment, and is advantageous for efficient cardiac pumping under the haemodynamic stimulus imposing the adaptation. However, cardiac adaptation is not always beneficial for cardiac function. In diseases directly affecting the myocardium, inadequate cardiac hypertrophy may occur. Also in diseases chronically imposing a pressure or volume load upon the heart, an initially adequate and favourable cardiac hypertrophy may eventually become insufficient or disproportionate, leading to deterioration in cardiac function.

With the purpose of gaining knowledge about cardiac adaptations in response to long-term volume load, the papers in this thesis include subjects exposed to chronic aortic regurgitation and healthy subjects participating in chronic exercise training; two conditions that present with compensatory cardiac hypertrophy in response to pathological and physiological stimuli, respectively.
The heart and physiology of work

Cardiac functional anatomy

The heart consists of a right-sided low-pressure system transporting blood from the central venous system to the lungs, and a left-sided high-pressure system transporting blood from the pulmonary circulation to the systemic arteries (Figure 1). The right ventricle (RV) has a thin, highly trabeculated heart wall, while the left ventricle (LV) is much thicker and is not as trabeculated.\(^8\)

Between the atria and ventricles lies the atrioventricular plane, which can be divided into a left and right ventricular portion. These are anchored to a fibrous skeleton called the *anulus fibrosus cordis*, which incorporates the four cardiac valves.\(^8\)

In the normal heart, the atria and ventricles contract rhythmically and with a pre-determined pattern. Following depolarization and

Figure 1. Cardiac anatomy (A) and muscle fibre orientation (B).
(Image in panel B from OpenStax College. Download for free at http://cnx.org/contents/6394fffc1-5482-4aa6-9233-23ad3488fa0@4).
contraction of myocytes in the atria, ventricular contraction starts at the apex and continues toward the base of the heart. This rhythmicity and the ability to change cardiac pace is governed by the sino-atrial node situated between the right atrium (RA) and superior vena cava. The apical-to-base pattern of contraction relies on the cardiac conduction system.46

The heart performs its pumping by contraction and relaxation of myocytes arranged in myocardial layers with different fibre orientations in the two ventricles (\textbf{Figure 1}).18, 65 By the contraction of these fibres, the blood is virtually wrung out from the ventricles as the pressure inside the heart chambers increases following myocyte contraction.17

\textit{The left ventricle}

Seen from the apex, myocytes in the LV are arranged in an outer left-handed helical orientation, in an inner right-handed helical orientation and in a circumferential orientation between the helical layers.18, 65 Contraction of these myocytes induces torsion of the myocardium, with the apex twisting counter-clockwise and the base clockwise, leading to shortening and thickening of the myocardium, which shortens and narrows the LV lumen.18, 110 In this manner, blood is ejected from and filled into the LV while the heart maintains an almost constant outer contour during the cardiac cycle.23, 88

\textit{The right ventricle}

The RV myocardium is principally composed of two distinct layers of myocytes, with an outer circumferentially oriented layer and an inner longitudinal myocardial layer.64 The circumferential layers cross over and join with LV fibres in the interventricular septum,55 and there is a ventricular interdependence where LV contraction is an important contributor to RV systolic function.130
Longitudinal cardiac function

Longitudinal function can be studied and measured as the displacement of the right and left atrioventricular planes (RV\textsubscript{AVD} and LV\textsubscript{AVD} respectively) or as the longitudinal myocardial velocities or deformation. The decrease in ventricular cavity dimensions is primarily brought about by a longitudinal shortening and to a lesser extent by radial narrowing (**Figure 2**).23

The fact that LV\textsubscript{AVD} has been reported to account for \(~60\%\) of the LV stroke volume24 while RV\textsubscript{AVD} accounts for \(~80\%\) of the RV stroke volume,23 can be interpreted to mean the RV relies more heavily on longitudinal shortening than the LV. This is further supported by the finding of higher longitudinal myocardial velocities in the RV than in the LV.101

![Figure 2. Schematic illustration of left ventricular dimension at end-diastole (red, left) and at end-systole (yellow, middle).](image-url)
Background

Physiology of work and cardiac function

The objective of the heart as a pump is to provide kinetic energy to the blood circulating in our vessels, in order for the blood to act as a transport medium for cells and molecules and to act in thermoregulation. When the heart fails in this objective, the metabolic demands of our cells are not fulfilled, which may eventually lead to cell dysfunction.

Cardiac function is continuously calibrated to match the demands of various tissues in the body via the central and autonomic nervous system, and there is a close relationship between oxygen uptake (VO₂) and cardiac output (CO). According to the principle of Fick, VO₂ is the product of CO and the difference between arterial and venous oxygen content (AV-O₂-diff):

\[\text{VO}_2 = \text{CO} \times \text{AV-O}_2\text{-diff} \quad (\text{The Fick equation}) \]

At rest, an oxygen uptake of 0.25–0.35 L/min is normally sufficient to meet metabolic demands, which is accomplished by a CO of four to six litres per minute (L/min) and an AV-O₂-diff of 40–60 mL/L blood. Depending primarily on age, sex and fitness, CO can rise four to even eightfold from rest to maximal work intensities, while the AV-O₂-diff increases two to fourfold.

Cardiac output, in turn, equals the product of heart rate (HR) and stroke volume (SV). While HR increases linearly from resting conditions to maximal work, SV has been found to increase non-uniformly between individuals. It has not been established which individual factors determine whether SV plateaus or rises progressively until maximal HR is reached, but the SV response has been suggested to be influenced by sex, age, level of fitness and blood volume.

SV is the difference between the end-diastolic and end-systolic volumes of the ventricle (EDV and ESV respectively). The higher SV seen during exercise compared to at rest is primarily brought about
by an increase in EDV123,138,139 although there have been some reports of a concomitant slight decrease in ESV.62,123,138 In other words, more blood enters the heart in each cardiac cycle during exercise than at rest, while a similar or slightly smaller amount of blood remains in the ventricle between cardiac cycles.

The acute adaptations in heart function seen during exercise are brought about by several physiological mechanisms. First, according to the Frank-Starling mechanism, when sarcomeres in myocytes are stretched as an effect of increased EDV they generate a larger force of contraction. This increased force results in more blood being ejected by each heartbeat, counterbalancing the increased filling of the heart chamber. This relies in part on a greater tension in the stretched non-contractile components of the sarcomere and in part on augmented calcium utilization.46 Second, increased activity in the sympathetic nervous system raises the concentration of circulating catecholamines and also increases HR and cardiac contractility through direct innervation of the sinoatrial node and myocardium.46,126

Simultaneously with increases in EDV and SV during exercise, the time for diastolic filling and systolic ejection decreases progressively as HR increases. Thus, more blood will enter and leave the heart in a shorter time during exercise than during resting conditions. The diastolic filling time decreases more than the ejection time, which necessitates a rapid filling rate, especially in well-trained subjects exercising with extremely high CO. This was shown in an experiment by Gledhill and colleagues51 outlined in Table 1 and it implies an augmented diastolic function in athletes compared to untrained subjects. Whether this difference is apparent and measureable at rest is controversial.49,76,125
Table 1. Cardiac functional measurements at different heart rates in seven competitive cyclists and seven untrained men obtained on a cycle ergometer. Modified from Gledhill et al. (1994).^{51}

<table>
<thead>
<tr>
<th></th>
<th>Heart rate (beats/min)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>140</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>VO₂ (L/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>0.85</td>
<td>2.17</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>0.87</td>
<td>2.65</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>NS</td>
<td>+22%</td>
<td>+35%</td>
<td></td>
</tr>
<tr>
<td>CO (L/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>10.8</td>
<td>17.8</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>12.1</td>
<td>23.2</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>NS</td>
<td>+30%</td>
<td>+42%</td>
<td></td>
</tr>
<tr>
<td>LVET (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>212</td>
<td>198</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>262</td>
<td>230</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>+24%</td>
<td>+16%</td>
<td>+19%</td>
<td></td>
</tr>
<tr>
<td>LVER (L/sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>0.57</td>
<td>0.64</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>0.51</td>
<td>0.72</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>NS</td>
<td>NS</td>
<td>+19%</td>
<td></td>
</tr>
<tr>
<td>DFT (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>342</td>
<td>185</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>267</td>
<td>157</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>-22%</td>
<td>-15%</td>
<td>-15%</td>
<td></td>
</tr>
<tr>
<td>DFR (L/sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrained</td>
<td>0.35</td>
<td>0.69</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Trained</td>
<td>0.50</td>
<td>1.06</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>%-diff</td>
<td>+44%</td>
<td>+54%</td>
<td>+68%</td>
<td></td>
</tr>
</tbody>
</table>

VO₂, oxygen uptake; CO, cardiac output; LVET, left ventricular ejection time; LVER, left ventricular emptying rate; DFT, diastolic filling time; DFR, diastolic filling rate; NS, reported not statistically significant.
Background

Cardiac hypertrophy

The capability of the heart to respond with size and volume changes to various stimuli has long been recognized.56, 61 Recently, the molecular signalling pathways underlying this cardiac plasticity have been partly explained.40, 63, 78 Increases in cardiac muscle mass are termed cardiac hypertrophy and may be categorized in different ways.

First, based upon the relation between wall thickness and cavity dimensions, there is a \textit{concentric} phenotype with a larger increase in wall thickness than in cavity dimension. This is in contrast to the \textit{eccentric} phenotype, with a proportional increase in wall thickness and cavity dimension (Figure 3). The former is generally seen with

![Diagram: Model of left ventricular remodelling in response to pressure and volume load.](image)

\textbf{Figure 3. Model of left ventricular remodelling in response to pressure and volume load.}
pressure loading (increased afterload) while the latter is seen with increased volume loading (increased preload).

Second, cardiac hypertrophy has also been dichotomized into extrinsic (or reactive) hypertrophy, in response to pressure or volume loading, and intrinsic (or genetic) hypertrophy seen in patients with inherited myocardial diseases, such as hypertrophic cardiomyopathy.

Third, a distinction between physiological and pathological cardiac hypertrophy is often made, although it is not always clear how to define these conditions. Several pathological conditions can give rise to either an adaptive, functional cardiac hypertrophy or a maladaptive, dysfunctional and possibly deleterious cardiac hypertrophy.

According to the wall stress theory proposed by Grossman, in pressure loading there is an increase in end-systolic wall stress within the LV. By a parallel addition of new myofibrils within the myocyte, there is a concentric myocardial thickening, which normalizes wall stress according to the law of LaPlace:

\[
\sigma = \frac{P \times r}{h}
\]

\(\sigma\), wall stress; \(P\), pressure; \(r\), chamber radius; \(h\), wall thickness.

In volume loading there is an increase in end-diastolic wall stress. By the addition of new sarcomeres in series within the myocytes, the LV elongates in order to normalize diastolic wall stress. This will slightly increase end-systolic wall stress, resulting in a subsequent proportional increase in wall thickness named ‘eccentric cardiac hypertrophy’.

These principles apply to the LV as well as to the RV, though in the RV, pressure \((P)\) is lower at rest while the relative wall thickness \((r/h)\) is smaller.
Background

Cardiac hypertrophy in long-term volume load

Endurance exercise training

In 1898, using chest percussion, the Swedish neurologist Henschen found that medal-winning cross-country skiers had larger hearts than less successful competitors.\(^6\) Since then, various imaging techniques have provided evidence for enlarged hearts in endurance athletes, including chest x-ray,\(^1\) echocardiography\(^8,\) and magnetic resonance imaging.\(^11\) In addition, the size of peripheral arteries,\(^5\) the aortic root\(^6\) and the inferior vena cava\(^5,\)\(^15\) have been found to be larger in endurance trained than in untrained subjects.

The endurance athlete’s heart typically shows an eccentric phenotype with increases in both cavity dimension and wall thickness.\(^11,\)\(^14\) In athletes with pronounced LV hypertrophy on echocardiography (i.e. a maximal wall thickness >12 mm or a LV internal dimension >54 mm) there may be a clinical dilemma as cardiomyopathies are the leading cause of sports-related death in this population and often show similar morphological patterns as in the athlete’s heart.\(^9\)

Cardiac size in athletes has been found to a large extent to be related to body size, but also to age and the type of sport performed.\(^9,\)\(^12,\)\(^13\) Female athletes generally show a similar magnitude of increase in cardiac dimensions as their male counterparts compared to untrained subjects, while absolute cardiac dimensions are smaller than in males.\(^11\)

Cardiac function in endurance athletes

The major advantage of the endurance trained heart during exercise is the ability to deliver a large maximal SV, in order to produce a large CO. The maximal SV in trained subjects is commonly reported to be 30–50% higher than in untrained subjects, in both males and females.\(^3,\)\(^10,\)\(^14\)
Already at rest, there is an observable difference in cardiac function, as SV is increased and HR at rest is lower in trained subjects. This could theoretically be a result of improved systolic and/or diastolic function, larger cardiac dimensions or a combination of these factors. Traditional measures of global systolic function at rest (e.g. LV ejection fraction, LVEF) are generally reported to be similar in trained and untrained subjects.147, 151 Whether overall LV diastolic function at rest is altered with endurance conditioning is under debate.29, 48, 114, 151, 157 It is possible that there are differences in segmental myocardial function between trained and untrained subjects, but that these are not apparent when measures of global cardiac function are used. In general, far fewer studies examine cardiac function in female than in male athletes.147

Chronic aortic regurgitation

Etiology and diagnosis

Depending on the definition used and what subgroups are included, the overall prevalence of chronic aortic regurgitation (AR) is reported to be in the range of 2–30%, with severe AR occurring in less than 1% of the general population.52 The most common etiology for chronic AR in industrialized countries is degenerative disease, which usually presents as a combination of a dilated aortic root and abnormalities in the aortic valve leaflets. In developing countries, rheumatic heart disease with valvular thickening and retraction is the most common etiology.67

The AR diagnosis is based upon patient history, physical findings and echocardiographic investigation and the severity of AR is defined from the presence of symptoms, degree of regurgitation, LV dilation and systolic function (Figure 4).102

Pathophysiology

Chronic AR occurs as a consequence of insufficient aortic valve closure, which permits backward flow from the aorta to the LV during diastole.
This imposes a “double filling” of the LV which must harbour the blood from the left atrium and the regurgitant volume from the aorta. This will increase LV end-diastolic volume, while the compliant LV will maintain LV end-diastolic pressure. End-systolic pressure, however, increases as the LV must produce a larger total SV in each heartbeat to compensate for the regurgitant volume. Thus, both a volume and a pressure load are imposed upon the LV.

According to the law of LaPlace, wall stress (σ) will increase greatly with increasing end-systolic pressure (P) and increased chamber radius (r), as both are nominators in the LaPlace equation. As a compensatory mechanism, eccentric hypertrophy occurs, which increases wall thickness (h, denominator in the LaPlace equation) and helps to attenuate the increase in chamber radius. In compensated AR, this is sufficient to maintain a normal wall stress, LVEF and relative wall thickness.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Definition</th>
<th>Regurgitant fraction (%)</th>
<th>Regurgitant volume (mL/beat)</th>
<th>Vena contracta (cm)</th>
<th>Jet width (% of LVOT)</th>
<th>Hemodynamic consequences</th>
<th>Hemodynamic consequences</th>
<th>Surgery? (level of evidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At risk of AR (e.g. bicuspid valve or aortic valve sclerosis)</td>
<td>None or trace</td>
<td>30</td>
<td><30</td>
<td>None</td>
<td>Normal LV systolic function (LVEF >50%)</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Progressive AR</td>
<td>Mild</td>
<td>25</td>
<td>64</td>
<td><0.6</td>
<td>>0.3</td>
<td>LVEF >50% and mild-to-moderate LV dilation (LVIDs <50mm)</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate</td>
<td>25</td>
<td>64</td>
<td>0.6</td>
<td>0.3</td>
<td>Normal LV volume or mild LV dilation</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>C</td>
<td>Asymptomatic severe AR</td>
<td>≥65</td>
<td>>0.6</td>
<td>≥60</td>
<td>>50</td>
<td>LVEF <50% or severe LV dilation (LVIDs >50mm or LVIDD >25 mm/m²)</td>
<td>Dyspnea or angina</td>
<td>Class IIb</td>
</tr>
<tr>
<td></td>
<td>Symptomatic severe AR</td>
<td>≥65</td>
<td>>0.6</td>
<td>≥60</td>
<td>≥50</td>
<td>LVEF <50% or severe LV dilation</td>
<td>Moderate-to-severe LV dysfunction</td>
<td>Class I</td>
</tr>
</tbody>
</table>

Figure 4. Definition and classification of chronic aortic regurgitation and indications for surgery adopted from current guidelines. LVOT, left ventricular outflow tract; AVR, aortic valve replacement; AR, chronic aortic regurgitation; LVEF, left ventricular ejection fraction; LVIDs and LVIDD, left ventricular internal dimension in end-systole and end-diastole, respectively. "i" denotes indexing by body surface area.
However, as the severity of AR increases, a progressive LV dilation and concomitant systolic hypertension due to increased total SV will follow.21 In severe, untreated AR LV mass is increased substantially because of marked LV dilation in combination with a modest wall thickening.11,21

As end-systolic pressure (and eventually end-diastolic pressure) continues to rise, compensatory mechanisms are exhausted and wall stress increases. This is paralleled by decreases in LVEF but also in diastolic function as LV compliance falls with LV fibrosis and substantial wall thickening.21,75

Aortic valve replacement

Much effort has been devoted to finding an optimal time for surgery, as aortic valve replacement (AVR) and living with a prosthetic heart valve impose a risk for the patient on one hand, while progressive AR, on the other hand, may induce irreversible cardiac dysfunction which is not fully corrected by an AVR that is too late. A trend toward earlier surgical intervention over the past decades can be seen, and according to current guidelines published in 2014,102 AVR is indicated when symptoms occur or in asymptomatic severe AR with LV dysfunction (LVEF <50%) or severe LV dilation (see **Figure 4**).

Following AVR, there is a rapid and early decrease in LV dimensions, and most of the decrease in LVID\textsubscript{S} has been reported within the first weeks following surgery.13,14 In serial assessment of LV dimensions following AVR for chronic AR, no further decrease in LV dimensions is generally reported beyond six months post-operatively.13,14,44,124
Methodological background

Echocardiography

The first one-dimensional echocardiographic investigation was performed by Edler and Hertz in Lund, Sweden, over 60 years ago.35, 77 Since then, the echocardiographic technology has continuously developed and cardiac dimensions can now be measured in one, two and three dimensions.77, 81, 85 Moreover, while echocardiography has, for decades, been used for examining overall cardiac function, more recent technological advances have allowed studies of myocardial segmental and regional function with a number of echocardiographic modalities, including tissue Doppler and speckle tracking imaging.96

Basic principles

Sound with a frequency above 20 kilohertz is defined as ultrasound and is not hearable by humans. In echocardiography, high frequency ultrasound (1–20 megahertz) is sent from a transducer through the body. When hitting tissues, the ultrasound is reflected (i.e. \textit{echoed}) back toward the transducer, picked up by a receiver and converted into an image by a computer. By adjusting the frequency and amplitude of the ultrasound beam, image quality is optimized by the sonographer according to the properties of the tissue being investigated. In addition, alignment of the beam is crucial for correct image acquisition and interpretation.85

Measurements of cardiac dimensions and function can be made during the investigation or later off-line, in images stored digitally.

One- and two-dimensional echocardiography

M-mode echocardiography (M denoting motion) measures movement from and toward the transducer in one dimension displayed over time (panel F and G in Figure 5). Benefits of the M-mode technique include simultaneous display of several cardiac cycles and superior temporal
resolution compared to other echocardiographic techniques. A drawback is the dependency on accurate beam alignment, especially in non-normally shaped ventricles.81, 85

Two-dimensional (2D) echocardiography, on the contrary, facilitates linear measurements perpendicular to the preferred axis, as a visual display of the cardiac chamber(s) is presented (panel A–C, Figure 5).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{A selection of one- and two-dimensional (2D) echocardiographic measurements, of which most are applied in the papers included in this thesis. Panels A-C show 2D images of left ventricular three-, two- and four-chamber views respectively. Panels D and E visualize colour flow and pulsed-wave blood Doppler images, respectively. Panels F and G present M-mode images used for determination of cavity dimensions and wall thickness (F) as well as displacement of the septal portion of the atrioventricular plane (G).}
\end{figure}
The 2D image is constructed as the ultrasound beam sweeps rapidly, generating a sector (or slice) of the scanned tissue. The 2D technique allows for measurements of areas and calculations of chamber volume. The drawback of the 2D technique is its much smaller temporal resolution, especially with large sectors and measurements deep into the body.

Blood and tissue Doppler imaging

By using the Doppler principle, which states that the reflected ultrasound will have a different frequency when hitting a target moving toward or away from the transducer, the computer software can present information on the velocity and one-dimensional direction of moving tissues hit by the ultrasound beam.

Red blood cells give rise to echoes with a high frequency and low amplitude, while echoes from cardiac muscles are of low frequency

Figure 6. Colour tissue Doppler image displaying myocardial velocity curves during two cardiac cycles in the basal septum in a four-chamber image. Schematic presentation of peak systolic (s’), early (e’) and late (a’) diastolic velocity and time to s’ (Ts) in the second cardiac cycle.
and high amplitude. By applying different filters, one can either measure movement of blood (pulsed-wave Doppler, continuous-wave Doppler and colour flow Doppler, panels D and E in Figure 5) or the myocardium (pulsed tissue Doppler imaging (TDI) or colour TDI).

In colour TDI, a region of interest (ROI) is placed off-line at any place of preference in the myocardium and the average of the myocardial velocities inside the ROI is presented visually (Figure 6), allowing manual measurements of velocities (y-axis) and time-intervals (x-axis). Although it is a feasible and readily available method for measuring segmental myocardial function, colour TDI is somewhat limited by its angle dependency, as only movements along the ultrasound beam can be measured.

Speckle tracking

Technological advances in echocardiographic software have made it possible to identify unique features inside small portions of the myocardium. By tracking these unique fingerprints (called speckles) frame by frame during the cardiac cycle, it is possible to measure myocardial deformation. The measure is dimensionless, termed ‘strain’, and is expressed as percentage change from an object’s initial dimension. A positive strain value represents an increase in dimension (stretch) while a negative strain value depicts a decrease in dimension (shortening). The average strain within different myocardial segments is calculated by the echocardiographic software and is presented graphically and numerically (Figure 7). Furthermore, the speed at which the deformation occurs is also calculated and is termed ‘strain rate’.

The major advantage of speckle tracking is its angle independency, allowing strain and strain rate to be calculated longitudinally, radially, and circumferentially from a single ultrasound beam. However, a limitation in the use of speckle tracking is that there is variability in strain measurements from equipment produced by different vendors, dependent on separate algorithms for strain calculations.
Background

Figure 7. Speckle tracking image as presented in EchoPAC software, showing longitudinal strain curves in six left ventricular segments. Segmentation outlined in the two-dimensional four-chamber image superimposed on the image to the right.

AVC, aortic valve closure.
Cardiopulmonary exercise testing

By the use of a cardiopulmonary exercise test (CPET), usually on a treadmill or bicycle ergometer, it is possible to evaluate simultaneously cellular, cardiovascular and ventilatory responses to metabolic stress from exercising muscles. The VO$_2$ and carbon dioxide elimination (VCO$_2$) can be determined by direct measurements of respiratory gas content and ventilatory flow. This is used in clinical as well as in research settings for prognostic and diagnostic information in cardiac and pulmonary diseases.

The maximal oxygen uptake (VO$_{2\text{max}}$ L/min) is an objective measure of the upper limit of an individual's aerobic capacity and is generally defined as the plateau in VO$_2$ occurring at consecutive near-maximal and maximal workloads. However, in the clinical setting, this plateau is commonly not seen, and the term ‘peakVO$_2$’ is often used to describe the highest VO$_2$ reached by a subject, in combination with other signs of maximal effort being reached.

Maximum oxygen uptake is usually indexed by body mass and presented in mL/kg/min. This facilitates interindividual comparisons and may be a more relevant measure for the subject being tested, although this method of scaling have been criticized for underestimating performance in obese individuals.
AIMS OF THE THESIS

The overall aim of the current thesis was to investigate the effects of long-term volume load upon the heart, with special focus on cardiac function at rest and how this and cardiac dimensions were related to maximal aerobic capacity.

The specific aims were:

I. To investigate maximal aerobic capacity in subjects with surgically corrected volume load caused by chronic aortic regurgitation.
 Paper I.

II. To investigate cardiovascular dimensions in endurance trained and untrained females.
 Papers II & IV.

III. To investigate right and left ventricular overall systolic and diastolic function in endurance trained and untrained females.
 Paper II.

IV. To investigate segmental and regional longitudinal systolic function in endurance trained and untrained females.
 Paper III.

V. To investigate inter- and intraventricular systolic synchrony in endurance trained and untrained females.
 Paper III.

VI. To investigate the relationship between maximal oxygen uptake and cardiovascular dimensions and function in endurance trained and untrained females.
 Papers II & IV.
Subjects

Chronic aortic regurgitation patients *(paper I)*

According to the study protocol, all patients scheduled for AVR because of AR between 2002 and 2006 at a tertiary centre in Sweden covering about 1 million inhabitants were eligible for inclusion. Exclusion criteria were active endocarditis, previous heart surgery, aortic stenosis (defined as an aortic valve area <1.6 cm²), concomitant heart valve disease or coronary artery disease.

Twenty-nine patients, all male, were enrolled pre-operatively of whom 26 underwent a first follow-up six months post-operatively including CPET, exercise radionuclide ventriculography and echocardiography.

Of these 26 patients, 21 were available and consented to participate in a second follow-up CPET. Of the five patients lost to follow-up, one had suffered a stroke, one had been diagnosed with leukaemia, one had died a non-cardiovascular death, one suffered from severe leg pain and one was not reachable.

Healthy trained and untrained females *(papers II–IV)*

According to the study protocol, we enrolled healthy, non-smoking, non-pregnant females younger than 26 years of age. The subjects underwent a CPET after being screened for cardiovascular disease with a questionnaire and a resting electrocardiogram (ECG). Using the Åstrand classification of aerobic fitness, each subject's fitness was categorized as ‘low’, ‘fair’, ‘average’, ‘good’ or ‘high’ according to VO₂max indexed by body weight (mL/kg/min) determined at the CPET.
Trained females

Aiming for a cohort of endurance trained competitive female athletes, 52 females were contacted via athletic sport clubs across Sweden during 2008 and 2009. To be included, athletes should have started dedicated training before the age of 15 and should have been competing for at least five years. Only athletes with a ‘good’ or ‘high’ VO\(_{2}\text{max}\) (i.e. \(\geq 44\) mL/kg/min) were included, which excluded six subjects.

Thus 46 athletes (ATH), of whom the majority was at the top level in their sport in Sweden, were included. Six athletes had won medals in world or European championships and 24 had won medals in national or junior national championships. All sports performed by ATH were categorized as having a high amount of a dynamic component,\(^{94}\) although with different amounts of static components (Figure 8).

![Figure 8](image-url)
Untrained females

Fifty-two female college students not regularly performing endurance or resistance training and of similar age as the trained females were examined for inclusion. Three subjects with a 'high' VO\textsubscript{2max} (i.e. ≥49 mL/kg/min) were excluded, in addition to one subject whose CPET had been terminated prematurely.

Thus, 48 controls (CON) were included, of whom 18 categorized themselves as ‘normally active’ and 33 as ‘inactive’.

Echocardiographic measurements (papers I–IV)

All echocardiographic investigations were transthoracic and made at rest with the subjects lying in the lateral decubitus position in accordance with current recommendations.81, 82, 128 In paper IV, additional investigations of the inferior vena cava (IVC) were made in the subcostal window with subjects lying horizontally on their back with only a pillow as head support.

Investigations and off-line measurements of patients in paper I were performed by the same experienced investigator. In papers II–IV, echocardiographic examinations of the subjects were performed by several experienced echocardiographers while off-line measurements were performed by the same investigator.

Ventricular and atrial dimensions

M-mode echocardiography (panel D, Figure 5) was used to measure LV posterior and septal wall thickness in diastole (PWT and SWT respectively) and LV diameter in end-diastole and end-systole (LVID\textsubscript{D} and LVID\textsubscript{S} respectively), while 2D echocardiography was used to measure LV length in diastole (LVIL\textsubscript{D}) in the two- and four-chamber views (panel B and C, Figure 5).
The modified Simpson biplane technique was used for computerized calculation of LV end-diastolic and end-systolic volume (LVEDV and LVESV respectively). Left ventricular mass (LVM) and relative wall thickness (RWT) were calculated as:

\[
LVM = 0.8 \times (1.04[(LVIDD + PWT + SWT)^3 - LVIDD^3]) + 0.6).
\]

\[
RWT = \frac{(2 \times PWT)}{LVIDD}.
\]

From a right-oriented 2D four-chamber view, diastolic basal RV diameter (RVD1) and RV proximal outflow tract diameter (RVOT-prox) were determined.128 End-systolic left and right atrial areas (LAA\textsubscript{s} and RAA\textsubscript{s} respectively) were measured in a balanced four-chamber view.

Inferior vena cava dimensions *(paper IV)*

All images were recorded during quiet respiration, and measurements were determined as maximal dimension during expiration (\textsubscript{EXP}) and minimal dimension during inspiration (\textsubscript{INSP}) within the same respiratory cycle.

Figure 9. Schematic illustration of inferior vena cava (IVC) measurements and calculations of inferior vena cava shape and collapsibility.
In the longitudinal long-axis view, IVC diameters were determined perpendicular to the IVC long-axis (LAX_{EXP} and LAX_{INS}), approximately three centimetres from the RA (Figure 9). Short-axis dimensions were determined in images obtained at the same position, after a 90° rotation of the transducer. First, the maximal IVC area during expiration ($SAX_{\text{EXP-AREA}}$) was determined. Second, the major-axis IVC diameter was determined as the largest IVC diameter in the maximal area ($SAX_{\text{EXP-MAJOR}}$). Third, the minor-axis diameter was defined as the largest IVC diameter perpendicular to the major-axis diameter ($SAX_{\text{EXP-MINOR}}$). Finally, the same measurements were applied to the minimal area during inspiration ($SAX_{\text{INS-AREA}}$, $SAX_{\text{INS-MAJOR}}$ and $SAX_{\text{INS-MINOR}}$ respectively).

The IVC shape during expiration and inspiration was calculated as ($SAX_{\text{EXP-MAJOR}} / SAX_{\text{EXP-MINOR}}$) and ($SAX_{\text{INS-MAJOR}} / SAX_{\text{INS-MINOR}}$), respectively. In addition, the relative decrease in IVC dimension (%) for each measure was calculated as $100 \times$ (expiratory dimension - inspiratory dimension) / expiratory dimension.

LV and RV systolic function (papers II–III)

Left ventricular fractional shortening (LV-FS) and LVEF were calculated as measures of global LV function from M-mode and 2D echocardiographic images respectively:

$$L_{\text{V-FS}} = 100 \times \frac{(LVID_{D} - LVID_{S})}{LVID_{D}}.$$
$$L_{\text{VEF}} = \frac{(LVEDV - LVESV)}{LVEDV}.$$

Systolic displacements of the mitral and tricuspid annular planes (LV_{AVD} and RV_{AVD} respectively) were measured with M-mode echocardiography at four sites for each annular plane and are presented as means. The apical four-chamber view was used for measuring the anterior and posterior parts of the RV_{AVD}, as well as for the lateral and septal parts of RV_{AVD} and LV_{AVD}, while the apical two-chamber view was used for measuring the anterior and posterior parts of LV_{AVD}.

- 35 -
Methods

Colour tissue Doppler imaging (papers II–III)

In off-line analysis, colour TDI (Figure 6) was utilized to measure peak systolic myocardial velocity (s', cm/s) and time to s' from the onset of the QRS-complex on a surface ECG (T_s, ms). In standard four-, three- and two-chamber apical views, with a frame rate of 89–184 frames per second, a 6x6 mm round sample volume was placed in six basal and six mid-ventricular segments in the LV (at the septal, anteroseptal, anterior, lateral, posterolateral, and posterior walls) and in the basal and mid-ventricular RV free wall. Measurements were averaged over two or three cardiac cycles, with markers of aortic valve opening and closure superimposed on the TDI images, ensuring measurements from the ejection phase only.

In paper II, basal RV s' was determined as the average s' in the RV free wall and septum (termed RV-s'\textsubscript{BASAL} in this thesis), while basal LV s' was calculated as the average of s' in all six basal LV walls (LV-s'\textsubscript{BASAL}). In paper III, regional systolic LV s' was determined as the arithmetic means of the six basal and six mid-ventricular LV segments respectively, together with overall LV function for all 12 segments (LV-12-s'). In addition, mean RV s' was calculated as the mean of RV basal and mid-ventricular s' (termed RV-s'\textsubscript{LATERAL} in this thesis). Only measurements from those individuals where all six basal or mid-ventricular LV segments were measurable were included in calculations of regional and overall LV systolic function.

Speckle tracking (paper III)

Speckle tracking echocardiography was used off-line to measure midwall peak systolic longitudinal deformation (strain, %) during the ejection phase (Figure 7). The same 12 LV segments and echocardiographic views as for TDI measurements were used in 2D images with a framerate >40 frames per second. The myocardium was automatically outlined with a ROI, which, if necessary, was corrected manually with regard to width and localization to exclude the pericardium. The software automatically analysed the quality of speckle tracking in
Methods

each segment and segments with poor tracking were excluded from further measurements.

As for LV s', regional and overall systolic LV strain were determined by calculating the arithmetic means of the six basal, six mid-ventricular and all 12 LV segments respectively.

Cardiac synchrony (paper III)

Four established systolic dyssynchrony indices were calculated:

1. **S-L-delay**, the largest difference in T_S between basal septal-to-lateral and posterior-to-anterior LV walls.\(^4\)

2. **Max-LV-delay**, the largest difference in T_S between any two out of 12 LV segments.\(^{155}\)

3. **T_S-SD**, the standard deviation of T_S in all 12 LV segments.\(^{154}\)

4. **RV-LV-delay**, the difference in T_S between the basal RV free wall and the LV lateral wall.\(^{154}\)

In addition, T_S was indexed by one RR-interval and was expressed as a percentage of total cardiac cycle length (T_S-%).

Dyssynchrony measurements were compared to cut-off values previously suggested for predicting outcomes following cardiac resynchronization therapy.\(^4,154,155\)

LV and RV diastolic function (paper II)

Pulsed-wave Doppler with a sample volume of 5 mm placed at the tip of the mitral leaflets was utilized in the four-chamber view to measure transmirtal blood flow (panel E, **Figure 5**). Early diastolic (E) and late diastolic (A) filling velocities were recorded and their ratio was calculated (E/A). Blood flow velocity was also recorded 5–10 mm into the right pulmonary vein in systole (P_S) and diastole (P_D), and P_S/P_D was determined.
Methods

Using TDI, with the same approach and with the same images as for s', the early diastolic (e') and late diastolic (a') peak velocities were determined in the filling phase. Basal LV e' and LV a' were calculated as the average e' and a' in six basal LV segments (termed LV-e'\textsubscript{BASAL} and LV-a'\textsubscript{BASAL} in this thesis), while LV-12-e' was calculated as mean e' in all 12 LV segments. The ratio of LV-e'/a'\textsubscript{BASAL} was determined (LV-e'/a'\textsubscript{BASAL}), as well as E/e', using an average of septal and lateral e'.

In addition, RV-e'\textsubscript{BASAL}, RV-a'\textsubscript{BASAL}, RV-e'\textsubscript{LATERAL} and RV-a'\textsubscript{LATERAL} were calculated as the mean of e' and a' in the septum and RV basal free wall and in the RV basal and mid-ventricular wall, respectively. Finally, RV-e'/a'\textsubscript{BASAL} and RV-e'/a'\textsubscript{LATERAL} were calculated.

Indexing (papers II–IV)

Body surface area (BSA) was used for indexing cardiac and IVC measurements, adopting the approach of transferring BSA into the same dimension as the variable being scaled.9 One-dimensional measures (wall thickness, internal dimensions, IVC diameters) were indexed by \(\sqrt{\text{BSA}} \), two-dimensional measures (atrial and IVC areas) were indexed by BSA, and three-dimensional measures (LVM, LVEDV) were indexed by \(\frac{3}{2}\sqrt{\text{BSA}} \).

Right and left ventricular myocardial peak systolic velocities and systolic displacements were indexed by LVIL\textsubscript{0}, as a measure of cardiac length.8

Cardiopulmonary exercise testing (papers I–IV)

In both patients and young healthy subjects a sitting maximal bicycle exercise test using electrically braked cycle ergometers with continuous monitoring of electrocardiograms and ventilatory flow and gas content was performed (see Table 2 for equipment). In addition, blood pressure and perceived exertion, dyspnea and chest pain15 were assessed every third minute during the test. Gas and flow analysers were calibrated
prior to each test, and ventilatory data were presented as 15 second averages. The mean of the two highest consecutive values was considered peakVO$_2$ (*paper I*) or VO$_{2\max}$ (*papers II–IV*) respectively.

In patients, an individual exercise protocol with a steady-state workload of 30–100 Watts (W) for five to six minutes followed by a continuous increment of 10–20 W per minute was chosen at the pre-operative CPET and used in all three CPETs.

All healthy females underwent an exercise protocol including 100 W steady-state cycling for six minutes, followed by a continuous 10 W increase per minute. Subjects were instructed to pedal at 60 revolutions per minute until exhaustion or until termination by the test leader according to standard criteria for termination. We aimed at VO$_2$ levelling off and a respiratory exchange ratio (VCO$_2$/VO$_2$) >1.1 to ensure a maximal effort from the subjects. No subject perceived chest pain or any adverse event during testing.

Statistical methods

Continuous or interval data were presented as mean ± one standard deviation (SD) or median with range or 25th or 75th percentiles, depending on the normality of distribution, tested with the Shapiro-Wilk test of normality. For selected, normally distributed variables, range or 95th percentiles were also presented.

Statistical significance was tested two-sidedly, and set to ≤0.05. Within-group difference was tested with a paired t-test, Wilcoxon signed ranks test, sign test or McNemar’s test depending on the type and distribution of data. Between-group difference was tested with a Student’s t-test, the Mann-Whitney test, Fisher’s exact test or the Chi2-test depending on the type and distribution of data.

Statistical relationships between variables were explored with bivariate correlation analysis, with calculation of Pearson’s correlation
Methods

The methods section is divided into three main parts: Estimation of coefficient or Spearman’s rho, depending on the normality of data. Linear univariate and stepwise multivariate regression analyses were further used to determine the art and degree of statistical relationships. In paper IV, Bland-Altman plots were constructed for selected variables to explore relations between IVC measurements.

Inter- and intraobserver variability

In papers II–IV, the reproducibility in off-line measurements from selected echocardiographic measures was tested in 16 randomly chosen subjects. Intraobserver variability was tested at least two weeks following the first measurements, and interobserver variability was tested against a second experienced investigator. The coefficient of variation (%COV) was calculated as:

\[
\text{%COV} = \frac{\sqrt{(\sum d_i^2) / 2n}}{(\text{overall means})},
\]

where \(d_i\) is the difference between the i:th paired measurement and \(n\) is the number of differences. In addition, the single measure intraclass correlation coefficient (ICC) was calculated for inter- and intraobserver variability in an absolute agreement two-way mixed model.

<table>
<thead>
<tr>
<th>Table 2. Equipment and software used in the papers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (paper I)</td>
</tr>
<tr>
<td>Bicycle ergometer</td>
</tr>
<tr>
<td>Electrocardiographic monitoring</td>
</tr>
<tr>
<td>Echocardiograph</td>
</tr>
<tr>
<td>Echocardiographic software</td>
</tr>
<tr>
<td>Statistical analysis</td>
</tr>
</tbody>
</table>

\(^1\) Upplands Väsby, Sweden; \(^2\) Freiburg, Germany; \(^3\) Milwaukee, WI, USA; \(^4\) Gentofte, Denmark; \(^5\) Hoechberg, Germany; \(^6\) Horten, Norway; \(^7\) Chicago, IL, USA; \(^8\) Armonk, NY, USA.
RESULTS

Chronic aortic regurgitation patients
(paper I)

Twenty-one patients underwent a second CPET 42±16 months after the first follow-up (range 23–73), corresponding to 49±15 months post-operatively (range 29–78). Sixteen patients had received mechanical aortic valve prosthesis, two received a biological prosthesis and three underwent aortic valve sparing surgery. There was no difference between follow-ups in subjects’ self-reported medication use (Table 3).

Patients were on average 4% heavier at the second follow-up, which resulted in a slightly increased body mass index and BSA (Table 4).

Table 3. Number of patients using various cardiac medications at first and second follow-ups.

<table>
<thead>
<tr>
<th>Medication</th>
<th>6 months post-op</th>
<th>49 months post-op</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>17</td>
<td>17</td>
<td>1.000</td>
</tr>
<tr>
<td>Beta blockade</td>
<td>11</td>
<td>12</td>
<td>0.625</td>
</tr>
<tr>
<td>ACE-inhibitor</td>
<td>8</td>
<td>9</td>
<td>1.000</td>
</tr>
<tr>
<td>Diuretics</td>
<td>3</td>
<td>5</td>
<td>1.000</td>
</tr>
<tr>
<td>ASA</td>
<td>1</td>
<td>3</td>
<td>1.000</td>
</tr>
<tr>
<td>Calcium-antagonist</td>
<td>0</td>
<td>2</td>
<td>0.500</td>
</tr>
<tr>
<td>Digitalis</td>
<td>0</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Nitrates</td>
<td>0</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Number of cardiac medicines</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
<td>0.344</td>
</tr>
</tbody>
</table>

ACE, angiotensin-converting enzyme; ASA, acetylsalicylic acid. Total number of cardiac medicines presented as median (25th and 75th percentiles).
Results

Cardiopulmonary exercise testing

Patients presented with lower absolute and weight-indexed peakVO$_2$ at the second follow-up than six months post-operatively (Table 4), and this decrease was larger than predicted by their increased age (Table 5). All patients but one had a weight-indexed peakVO$_2$ that was below average at the second follow-up, according to the Åstrand classification.

A tendency could be observed, in that patients with ‘low’ cardiorespiratory fitness pre-operatively and at the first follow-up decreased less in peakVO$_2$ than patients in other Åstrand categories (Figure 10). The decrease in peakVO$_2$ from pre-operatively to the 49 months follow-up correlated negatively with pre-operative peakVO$_2$ (r=-0.624, p=0.003), and the decrease in peakVO$_2$ from the first to the second follow-up correlated negatively to peakVO$_2$ at the first follow-up (r=-0.479, p=0.028).

Figure 10. Plots showing relation between peak oxygen uptake (peakVO$_2$) at different cardiopulmonary exercise tests (CPET). Dot colour corresponds to each subject's fitness at first CPET (x-axis) in each plot. Panel A, pre-op (x-axis) vs. 6 months (y-axis); Panel B, 6 months (x-axis) vs. 49 months (y-axis); Panel C, pre-op (x-axis) vs. 49 months (y-axis).
Table 4. Characteristics of patients before and after aortic valve replacement for aortic regurgitation

<table>
<thead>
<tr>
<th></th>
<th>Pre-op</th>
<th>6 months post-op</th>
<th>49 months post-op</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>At rest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>49±13</td>
<td>49±13</td>
<td>52±12</td>
<td>-</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>86±14</td>
<td>86±14</td>
<td>89±13</td>
<td>0.029</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27±3</td>
<td>27±3</td>
<td>28±3</td>
<td>0.032</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>2.06±0.21</td>
<td>2.06±0.21</td>
<td>2.10±0.20</td>
<td>0.027</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>71±12</td>
<td>72±13</td>
<td>75±24</td>
<td>0.596</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>141±26</td>
<td>126±14</td>
<td>127±20</td>
<td>0.977</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>70±14</td>
<td>80±10</td>
<td>81±11</td>
<td>0.827</td>
</tr>
<tr>
<td>At maximal workload</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal workload (Watt)</td>
<td>184±48</td>
<td>187±40</td>
<td>187±45</td>
<td>0.890</td>
</tr>
<tr>
<td>PeakVO₂ (L/min)</td>
<td>2.2±0.5</td>
<td>2.2±0.5</td>
<td>2.0±0.5</td>
<td>0.006</td>
</tr>
<tr>
<td>PeakVO₂ (mL/kg/min)</td>
<td>26.2±6.6</td>
<td>26.0±5.8</td>
<td>22.8±5.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Oxygen pulse (mL/beat)</td>
<td>14.9±3.1</td>
<td>14.8±3.3</td>
<td>13.5±3.2</td>
<td>0.075</td>
</tr>
<tr>
<td>Breaths per minute</td>
<td>30±4</td>
<td>31±6</td>
<td>32±7</td>
<td>0.397</td>
</tr>
<tr>
<td>Ventilation (L/min)</td>
<td>75±15</td>
<td>77±14</td>
<td>76±18</td>
<td>0.874</td>
</tr>
<tr>
<td>Respiratory exchange ratio</td>
<td>1.16±0.11</td>
<td>1.17±0.08</td>
<td>1.22±0.10</td>
<td>0.029</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>149±18</td>
<td>150±18</td>
<td>152±26</td>
<td>0.828</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>207±31</td>
<td>189±31</td>
<td>177±25</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Data presented as mean±SD. *, p-value for comparison between post-operative tests. BP, blood pressure; PeakVO₂, peak oxygen uptake.

Table 5. Predicted and actual decrease in peak oxygen uptake between first and second follow-ups.

<table>
<thead>
<tr>
<th></th>
<th>Predicted decrease*</th>
<th>Actual decrease</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/min (%)</td>
<td>4.6±2.8</td>
<td>7.9±11.4</td>
<td>0.174</td>
</tr>
<tr>
<td>… per year (%)</td>
<td>1.3±0.6</td>
<td>2.7±3.7</td>
<td>0.095</td>
</tr>
<tr>
<td>mL/kg/min (%)</td>
<td>4.9±2.7</td>
<td>11.2±11.5</td>
<td>0.020</td>
</tr>
<tr>
<td>… per year (%)</td>
<td>1.4±0.5</td>
<td>3.8±4.4</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Data presented as mean±SD. *, predicted value based upon reference values from Fleg et al. (2005).
Echocardiographic measurements

As presented in *paper I*, the mean absolute LVID\(_D\) and LVEDV were similar between the first and second follow-ups. In addition, BSA-indexed LVID\(_D\), LVID\(_S\) and LVEDV at the second follow-up were 26±3 mm/m\(^2\), 18±3 mm/m\(^2\) and 53±14 mL/m\(^2\), respectively, and none were statistically different from at the first follow-up (all p>0.10).

While pre-operative weight-indexed peakVO\(_2\) correlated with pre-operative LVESV (and LVEF), absolute pre-operative peakVO\(_2\) did not correlate with any measure of LV dimension (**Table 6**).

Table 6. Statistically significant correlations between left ventricular measures and peak oxygen uptake pre- and post-operatively.

<table>
<thead>
<tr>
<th></th>
<th>Pre-op</th>
<th>6 months post-op</th>
<th>49 months post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeakVO(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-op</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>6 months post-op</td>
<td>NS</td>
<td>LVIDD r=0.465*</td>
<td>LVIDD r=0.670**</td>
</tr>
<tr>
<td>49 months post-op</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>PeakVO(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mL/min/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-op</td>
<td>LVESV r=-0.600*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>LVEF r=0.493*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months post-op</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>49 months post-op</td>
<td>LVEF r=0.513*</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

*, p≤0.05; **, p≤0.01. Correlations tested between peak oxygen uptake (peakVO\(_2\)) and left ventricular end-diastolic (LVEDV) and end-systolic volume (LVESV), left ventricular internal dimension in diastole (LVID\(_D\)) and systole (LVID\(_S\)) and left ventricular ejection fraction (LVEF). NS, not statistically significant.
Healthy trained and untrained females
(*papers II–IV*)

Trained females had, in average, been competing for 6±2 years and currently trained 13±5 hours at 9±3 sessions per week. They were taller and heavier than CON, resulting in a 3% larger BSA (*Table 7*). Absolute and weight-indexed VO$_{2\text{max}}$ was 43% (3.2±0.3 vs. 2.3±0.4 L/min, <0.001) and 33% (52±5 vs. 39±5 mL/kg/min, <0.001) larger in ATH than in CON respectively.

<table>
<thead>
<tr>
<th></th>
<th>Trained females</th>
<th>Untrained females</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21±2</td>
<td>21±2</td>
<td>0.743</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>61±6</td>
<td>58±6</td>
<td>0.009</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.68±0.06</td>
<td>1.66±0.05</td>
<td>0.028</td>
</tr>
<tr>
<td>Body surface area (m2)</td>
<td>1.69±0.10</td>
<td>1.63±0.09</td>
<td>0.008</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>22±2</td>
<td>21±2</td>
<td>0.219</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>112±11</td>
<td>111±9</td>
<td>0.804</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>65±6</td>
<td>68±8</td>
<td>0.065</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>54±8</td>
<td>71±10</td>
<td><0.001</td>
</tr>
<tr>
<td>PQ-interval (ms)</td>
<td>154±22</td>
<td>153±24</td>
<td>0.842</td>
</tr>
<tr>
<td>QRS-duration (ms)</td>
<td>92±8</td>
<td>88±9</td>
<td>0.019</td>
</tr>
<tr>
<td>QTc-interval (ms)</td>
<td>428±26</td>
<td>428±18</td>
<td>0.990</td>
</tr>
<tr>
<td>QRS-axis (°)</td>
<td>70±24</td>
<td>66±27</td>
<td>0.377</td>
</tr>
</tbody>
</table>

Data presented as mean±SD. BP, blood pressure.
Results

Cardiovascular dimensions

All left and right cardiac dimensions were larger in ATH than in CON, with and without indexing by the proper power of BSA (Table 8). The number of subjects exceeding current reference values for healthy females is presented in Figure 11.

Several IVC dimensions were larger in ATH, including the standard long-axis expiratory diameter (p<0.001).

<table>
<thead>
<tr>
<th>Table 8. Cardiovascular dimensions in trained and untrained females.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>SWT (mm)</td>
</tr>
<tr>
<td>PWT (mm)</td>
</tr>
<tr>
<td>LVIDD (mm)</td>
</tr>
<tr>
<td>LVILD (mm)</td>
</tr>
<tr>
<td>LVM (g)</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
</tr>
<tr>
<td>LAA_s (cm²)</td>
</tr>
<tr>
<td>RVOT-prox (mm)</td>
</tr>
<tr>
<td>RVD1 (mm)</td>
</tr>
<tr>
<td>RAAS (cm²)</td>
</tr>
<tr>
<td>IVC LAX_EXP (mm)</td>
</tr>
<tr>
<td>IVC LAX_INSPOP (mm)</td>
</tr>
<tr>
<td>IVC SAX_EXP-MAJOR (mm)</td>
</tr>
<tr>
<td>IVC SAX_INSPOP-MAJOR (mm)</td>
</tr>
<tr>
<td>IVC SAX_EXP-MINOR (mm)</td>
</tr>
<tr>
<td>IVC SAX_INSPOP-MINOR (mm)</td>
</tr>
<tr>
<td>IVC SAX_EXP-AREA (cm²)</td>
</tr>
<tr>
<td>IVC SAX_INSPOP-AREA (cm²)</td>
</tr>
</tbody>
</table>

Data presented as mean±SD. *, red colour denotes that the measure remained statistically significantly larger in athletes following indexing by the proper dimension of body surface area, as described in ‘Methods’. For abbreviations, see ‘Methods’ and ‘Abbreviations’.
Results

<table>
<thead>
<tr>
<th>LVIDD (mm)</th>
<th>38-52</th>
<th>53-56</th>
<th>57-61</th>
<th>>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVIDDi (mm/m²)</td>
<td>23-31</td>
<td>32-34</td>
<td>35-37</td>
<td>>37</td>
</tr>
<tr>
<td>LVIDS (mm)</td>
<td>22-35</td>
<td>36-38</td>
<td>39-41</td>
<td>>41</td>
</tr>
<tr>
<td>LVIDSi (mm/m²)</td>
<td>13-21</td>
<td>22-23</td>
<td>24-26</td>
<td>>26</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>46-106</td>
<td>107-120</td>
<td>121-130</td>
<td>>130</td>
</tr>
<tr>
<td>LVEDVi (mL/m²)</td>
<td>29-61</td>
<td>62-70</td>
<td>71-80</td>
<td>>80</td>
</tr>
<tr>
<td>LVESV (mL)</td>
<td>14-42</td>
<td>43-55</td>
<td>56-67</td>
<td>>67</td>
</tr>
<tr>
<td>LVESVi (mL/m²)</td>
<td>8-24</td>
<td>25-32</td>
<td>33-40</td>
<td>>40</td>
</tr>
<tr>
<td>SWT (mm)</td>
<td>6-10</td>
<td>11-13</td>
<td>14-16</td>
<td>>16</td>
</tr>
<tr>
<td>PWT (mm)</td>
<td>6-9</td>
<td>10-12</td>
<td>13-15</td>
<td>>15</td>
</tr>
<tr>
<td>LVM (g)</td>
<td>67-162</td>
<td>163-186</td>
<td>187-210</td>
<td>>210</td>
</tr>
<tr>
<td>LVMi (g/m²)</td>
<td>43-95</td>
<td>96-108</td>
<td>109-121</td>
<td>>121</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>54-74</td>
<td>75-90</td>
<td>91-95</td>
<td>>95</td>
</tr>
</tbody>
</table>

Female presentation with abnormal measurements in the current study

Untrained females (n)

<table>
<thead>
<tr>
<th>Normal</th>
<th>Mildly abnormal</th>
<th>Moderately abnormal</th>
<th>Severely abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>10</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

Trained females (n)

<table>
<thead>
<tr>
<th>Normal</th>
<th>Mildly abnormal</th>
<th>Moderately abnormal</th>
<th>Severely abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 11. Reference values for left ventricular dimensions according to current guidelines and number of trained and untrained females from Lang et al. (2015)81

<table>
<thead>
<tr>
<th>LVW (g/m²)</th>
<th>67.1-162.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVW (g)</td>
<td>67.1-162.0</td>
</tr>
<tr>
<td>PWT (mm)</td>
<td>6.9-10.2</td>
</tr>
<tr>
<td>SWT (mm)</td>
<td>6.9-10.2</td>
</tr>
<tr>
<td>LVESV (mL)</td>
<td>3.6-18.0</td>
</tr>
<tr>
<td>LVESV (mL/m²)</td>
<td>3.6-18.0</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>2.9-61.0</td>
</tr>
<tr>
<td>LVEDV (mL/m²)</td>
<td>2.9-61.0</td>
</tr>
<tr>
<td>LVIDD (mm)</td>
<td>2.9-52.0</td>
</tr>
<tr>
<td>LVIDD (mm/m²)</td>
<td>2.9-52.0</td>
</tr>
</tbody>
</table>
The RWT was similar between groups (0.33±0.05 in both groups, p=0.998) and eccentric hypertrophy was apparent in two CON and 19 ATH (Figure 12).

Inferior vena cava shape

There was no difference between groups in the ratio of SAX major-to-minor dimension (Figure 13). In the whole sample of subjects, IVC shape was similar at $\text{SAX}_{\text{EXP-AREA}}$ 1.3 (1.2–1.5), and $\text{SAX}_{\text{INSPI-AREA}}$ 1.4 (1.2–1.6), p=0.054. At $\text{SAX}_{\text{EXP-AREA}}$ only one control subject had a ratio >2.0 (2.1), while three CON and one ATH had a ratio >2.0 at $\text{SAX}_{\text{INSPI-AREA}}$ (2.1–2.6).

![Graph showing relative wall thickness and left ventricular mass index in athletes and controls with cut-off values and remodelling patterns according to current recommendations.](image-url) LV, left ventricular.
Results

Number of athletes (red) and controls (grey)

Ratio of major-to-minor diameter

At minimal area
(inspiration)
Median 1.4 (1.2-1.6)
Median 1.4 (1.2-1.6)
p = 0.844

At maximal area
(expiration)
Median 1.3 (1.2-1.6)
Median 1.3 (1.2-1.4)
p = 0.884

Figure 13. Inferior vena cava shape at minimal (upper panel) and maximal (lower panel) area.

Cardiac function at rest

Overall cardiac function

Systolic function

Measures of overall LV and RV systolic function are presented in Table 9. Absolute measures of longitudinal systolic function showed statistically significant correlations with LV length (L_{AVD} \textbf{r}=0.379, \textbf{p}<0.001; $L_{s'BASAL}$ \textbf{r}=0.336, \textbf{p}=0.001; R_{AVD} \textbf{r}=0.412, \textbf{p}<0.001; $R_{s'BASAL}$ \textbf{r}=0.222, \textbf{p}=0.032). Indexing these measures by LV length altered statistical significance in such a manner that only indexed R_{AVD} remained higher in ATH (2.5±0.3 vs. 2.3±0.3, \textbf{p}=0.001) and indexed $L_{s'BASAL}$ was higher in CON (0.79±0.07 vs. 0.85±0.09, \textbf{p}=0.002).
Diastolic function

Measures of overall LV and RV diastolic function are presented in Table 9. E/e’ was similar in ATH and CON (7.6±2.0 vs. 7.2±1.2 respectively, p=0.208). While E and LV-e’BASAL were unrelated to heart rate, both A and LV-a’BASAL increased with higher heart rate at rest (Figure 14).

<table>
<thead>
<tr>
<th>Table 9. Cardiac function at rest.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Trained</td>
</tr>
<tr>
<td>females</td>
</tr>
<tr>
<td>Untrained</td>
</tr>
<tr>
<td>females</td>
</tr>
<tr>
<td>Relative</td>
</tr>
<tr>
<td>difference</td>
</tr>
<tr>
<td>P-value</td>
</tr>
<tr>
<td>Systolic function</td>
</tr>
<tr>
<td>LVEF (%)</td>
</tr>
<tr>
<td>59±4</td>
</tr>
<tr>
<td>57±4</td>
</tr>
<tr>
<td>+3 %</td>
</tr>
<tr>
<td>0.039</td>
</tr>
<tr>
<td>LV-FS (%)</td>
</tr>
<tr>
<td>36±4</td>
</tr>
<tr>
<td>34±4</td>
</tr>
<tr>
<td>+6 %</td>
</tr>
<tr>
<td>0.024</td>
</tr>
<tr>
<td>LV-AVOD (mm)</td>
</tr>
<tr>
<td>15±2</td>
</tr>
<tr>
<td>14±1</td>
</tr>
<tr>
<td>+7 %</td>
</tr>
<tr>
<td>0.002</td>
</tr>
<tr>
<td>LV-s′_BASAL (cm/s)</td>
</tr>
<tr>
<td>6.7±0.7</td>
</tr>
<tr>
<td>6.8±0.7</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.887</td>
</tr>
<tr>
<td>LV-strain_BASAL (%)</td>
</tr>
<tr>
<td>-19±2</td>
</tr>
<tr>
<td>-19±2</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.072</td>
</tr>
<tr>
<td>RV_AVOD (mm)</td>
</tr>
<tr>
<td>21±2</td>
</tr>
<tr>
<td>19±2</td>
</tr>
<tr>
<td>+15 %</td>
</tr>
<tr>
<td><0.001</td>
</tr>
<tr>
<td>RV-s′_BASAL (cm/s)</td>
</tr>
<tr>
<td>9.0±0.9</td>
</tr>
<tr>
<td>8.3±0.9</td>
</tr>
<tr>
<td>+8 %</td>
</tr>
<tr>
<td>0.001</td>
</tr>
<tr>
<td>RV-s′_LATERAL (cm/s)</td>
</tr>
<tr>
<td>9.7±1.5</td>
</tr>
<tr>
<td>8.7±1.5</td>
</tr>
<tr>
<td>+10%</td>
</tr>
<tr>
<td>0.004</td>
</tr>
<tr>
<td>Diastolic function</td>
</tr>
<tr>
<td>E (m/s)</td>
</tr>
<tr>
<td>0.92±0.17</td>
</tr>
<tr>
<td>0.86±0.11</td>
</tr>
<tr>
<td>+8 %</td>
</tr>
<tr>
<td>0.029</td>
</tr>
<tr>
<td>A (m/s)</td>
</tr>
<tr>
<td>0.34±0.09</td>
</tr>
<tr>
<td>0.39±0.09</td>
</tr>
<tr>
<td>-13 %</td>
</tr>
<tr>
<td>0.007</td>
</tr>
<tr>
<td>E/A</td>
</tr>
<tr>
<td>2.9±0.9</td>
</tr>
<tr>
<td>2.3±0.7</td>
</tr>
<tr>
<td>+27 %</td>
</tr>
<tr>
<td><0.001</td>
</tr>
<tr>
<td>LV-e′_BASAL (cm/s)</td>
</tr>
<tr>
<td>12.2±1.5</td>
</tr>
<tr>
<td>11.8±1.2</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.192</td>
</tr>
<tr>
<td>LV-a′_BASAL (cm/s)</td>
</tr>
<tr>
<td>3.2±0.8</td>
</tr>
<tr>
<td>3.4±0.9</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.183</td>
</tr>
<tr>
<td>LV-e′/a′_BASAL</td>
</tr>
<tr>
<td>4.1±1.2</td>
</tr>
<tr>
<td>3.6±0.9</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.058</td>
</tr>
<tr>
<td>RV-e′_BASAL (cm/s)</td>
</tr>
<tr>
<td>-12.0±1.6</td>
</tr>
<tr>
<td>-11.6±1.6</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.321</td>
</tr>
<tr>
<td>RV-a′_BASAL (cm/s)</td>
</tr>
<tr>
<td>-5.3±1.4</td>
</tr>
<tr>
<td>-5.1±1.5</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.474</td>
</tr>
<tr>
<td>RV-e′/a′_BASAL</td>
</tr>
<tr>
<td>2.4±0.7</td>
</tr>
<tr>
<td>2.5±0.9</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.554</td>
</tr>
<tr>
<td>RV-e′_LATERAL (cm/s)</td>
</tr>
<tr>
<td>-11.6±2.1</td>
</tr>
<tr>
<td>-11.1±2.0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.240</td>
</tr>
<tr>
<td>RV-a′_LATERAL (cm/s)</td>
</tr>
<tr>
<td>-5.3±1.8</td>
</tr>
<tr>
<td>-5.0±1.6</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.483</td>
</tr>
<tr>
<td>RV-e′/a′_LATERAL</td>
</tr>
<tr>
<td>2.4±0.8</td>
</tr>
<tr>
<td>2.4±1.0</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>0.855</td>
</tr>
</tbody>
</table>

Data presented as mean±SD. For abbreviations, see ‘Methods’ and ‘Abbreviations.’
Results

Figure 14. Scatter-dot diagrams showing relations between heart rate and early and late diastolic filling velocity (E- and A-wave, panel A) and peak myocardial velocity in early and late diastole (LV-e’_{BASAL} and LV-a’_{BASAL}, panel B). The red colour represents athletes and the grey colour represents controls.
Systolic synchrony

There was no between-group difference in any of the four dyssynchrony indices presented in Figure 15. A majority of subjects exceeded available cut-off values suggested for cardiac resynchronization therapy.4, 154, 155

![Figure 15](image-url)
Figure 15. Histograms showing distribution of dyssynchrony indices in athletes (red) and controls (grey). Dotted lines represent cut-off values for cardiac resynchronization therapy.4, 154, 155 Data presented as median (25th and 75th percentiles). No statistically significant differences between groups.
Results

Subgroup analysis

Females categorizing themselves as ‘inactive’ had lower absolute and weight-indexed \(VO_{2\text{max}} \) than normally active females (both \(p<0.001 \), Table 10). Endurance athletes performing sports with a low amount of a static component had lower body mass, BSA and lower absolute \(VO_{2\text{max}} \) than ATH performing sports with a high amount of a static component. However, when indexing \(VO_{2\text{max}} \) by body mass, there was no difference in aerobic capacity between groups (\(p=0.556 \)).

Table 10. Subgroup analysis of selected variables in inactive and normally active females as well as in endurance trained females categorized by different amounts of static components in sports.

<table>
<thead>
<tr>
<th></th>
<th>Untrained females</th>
<th>Trained females</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inactive (n=30)</td>
<td>Normally active (n=18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low static (n=20)</td>
<td>Moderate static (n=13)</td>
<td>High static (n=13)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>21±2</td>
<td>22±2</td>
<td>0.098</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>56±7</td>
<td>61±4</td>
<td>0.009</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164±4</td>
<td>168±4</td>
<td>0.012</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.60±0.10</td>
<td>1.69±0.07</td>
<td>0.002</td>
</tr>
<tr>
<td>(VO_{2\text{max}}) (L/min)</td>
<td>2.1±0.3</td>
<td>2.6±0.2</td>
<td>(<0.001)</td>
</tr>
<tr>
<td>(VO_{2\text{max}}) (mL/kg/min)</td>
<td>37±5</td>
<td>43±4</td>
<td>(<0.001)</td>
</tr>
<tr>
<td>LVM (g)</td>
<td>111±25</td>
<td>119±24</td>
<td>0.255</td>
</tr>
<tr>
<td>LVM_i (g)</td>
<td>55±12</td>
<td>55±10</td>
<td>0.953</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>85±14</td>
<td>88±13</td>
<td>0.507</td>
</tr>
<tr>
<td>LVEDVi (mL)</td>
<td>42±6</td>
<td>40±6</td>
<td>0.290</td>
</tr>
<tr>
<td>E/A</td>
<td>2.2±0.7</td>
<td>2.5±0.7</td>
<td>0.299</td>
</tr>
<tr>
<td>LVAVD (mm)</td>
<td>14±1</td>
<td>15±2</td>
<td>0.069</td>
</tr>
<tr>
<td>RVAVD (mm)</td>
<td>18±2</td>
<td>19±2</td>
<td>0.360</td>
</tr>
</tbody>
</table>

P-value from Student’s t-test and one-way ANOVA for untrained and trained females, respectively. BSA, body surface area; \(VO_{2\text{max}} \), maximal oxygen uptake; LVM and LVEDV, left ventricular mass and end-diastolic volume; “i”, indexed by cubed BSA; E/A, ratio of Doppler E- to A-wave; LVAVD and RVAVD, left and right atrioventricular plane displacement, respectively.
Results

Segmental myocardial function

Systolic function

Segmental systolic strain, s' and T_s were different between groups in four, six and four LV segments respectively (**Figure 17**). When accounting for the increased LV length in ATH indexed s' was only higher in ATH in the mid-ventricular septal wall ($p=0.040$). At the lateral and posterolateral walls, indexed s' was higher in CON at both the basal and mid-ventricular levels, as well as at the basal anterior segment (all $p<0.02$).

Diastolic function

Segmental e' was higher in ATH in two mid-ventricular LV segments, but was similar in all basal segments and in the RV (**Figure 16**).

![Figure 16. Differences in segmental early peak diastolic velocity between athletes and controls. 4Ch, 2Ch and 3Ch denote four-, two- and three-chamber views respectively.](image-url)
Figure 17. Differences in segmental systolic strain (Panel A), peak systolic velocity (Panel B) and systolic time-interval (Panel C) between athletes and controls. 4Ch, 2Ch and 3Ch denote four-, two- and three-chamber views respectively.
Results

Relation to maximal aerobic capacity

The strongest correlations between whole-group absolute VO₂max and anthropometric, cardiac functional and cardiovascular dimensional variables are presented in Table 11.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body surface area</td>
<td>.535</td>
<td><0.001</td>
</tr>
<tr>
<td>Body weight</td>
<td>.521</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEDV</td>
<td>.709</td>
<td><0.001</td>
</tr>
<tr>
<td>LVM</td>
<td>.692</td>
<td><0.001</td>
</tr>
<tr>
<td>RVOT-prox</td>
<td>.489</td>
<td><0.001</td>
</tr>
<tr>
<td>RVD1</td>
<td>.310</td>
<td>0.002</td>
</tr>
<tr>
<td>LA area</td>
<td>.604</td>
<td><0.001</td>
</tr>
<tr>
<td>RA area</td>
<td>.641</td>
<td><0.001</td>
</tr>
<tr>
<td>IVC LAX_{Exp}</td>
<td>.523</td>
<td><0.001</td>
</tr>
<tr>
<td>IVC LAX_{Insp}</td>
<td>.274</td>
<td>0.010</td>
</tr>
<tr>
<td>LVEF</td>
<td>.351</td>
<td>0.001</td>
</tr>
<tr>
<td>LV_{AVO}</td>
<td>.320</td>
<td>0.002</td>
</tr>
<tr>
<td>RV_{AVO}</td>
<td>.592</td>
<td><0.001</td>
</tr>
<tr>
<td>RV-s’_{BASAL}</td>
<td>.393</td>
<td><0.001</td>
</tr>
<tr>
<td>E/A</td>
<td>.319</td>
<td>0.002</td>
</tr>
<tr>
<td>LV-12-e’</td>
<td>.299</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Only the two strongest correlations for each set of variables presented. No measure of RV diastolic function correlated with VO₂max. For abbreviations, see ‘Methods’ and ‘Abbreviations’.
We set out to examine the effects of long-term volume load upon the heart, with special focus on cardiac function at rest and how this and cardiac dimensions were related to maximal aerobic capacity.

Cardiac hypertrophy in health and disease

Cardiac hypertrophy following volume load is believed to arise from a combination of neurohumoral signalling and biomechanical stress.\(^{36,63}\) However, the cardiac hypertrophy seen in endurance athletes is usually limited to values far from those seen in patients with chronic AR, which the papers in the current thesis support.

In ATH, roughly a third were above current reference values for LVID\(_r\), while only four (8%) CON showed mild increases in LVID\(_d\). This stands in contrast to what has previously been reported for the AR cohort, where pre-operative LVID\(_d\) was clearly above current reference values in most patients.\(^{44,142}\)

In ATH, there was a symmetrical bi-atrial enlargement and bi-ventricular eccentric hypertrophy when compared to CON, which depicts the physiological hypertrophy seen in endurance athletes.

The large increases in LV dimensions and mass seen in AR patients have been attributed to the combination of pressure and volume load seen as the regurgitation progresses.\(^{11,21}\) The largest LVM in athletes has also frequently been reported in subjects performing sports with a large amount of both dynamic and static components,\(^{112,152}\) such as rowing, cycling and triathlon.\(^{94}\) However, these individuals are usually taller and heavier than most athletes practicing pure dynamic sports, and care must be taken to normalize LV dimensions and mass properly.\(^9\) We found indexed measures of cardiac function and dimensions as well as VO\(_{2}\)\(_{max}\) to be similar in ATH performing sports with a low and a
moderate-to-high amount of static training. However, subgroups were small and the current results should be considered indicative rather than conclusive.

There are several differences between the volume load seen in chronic AR and that seen with endurance training beyond concomitant pressure load or not. First, the time during which the heart is exposed to increased volume load is far longer in chronic AR even though elite endurance athletes train 10–20 hours/week.133 Second, the degree of volume load is also different. Endurance athletes commonly increase their SV by 20–40% at maximal work intensities,125 while in severe chronic AR the extra volume entering the LV with each beat is more than 60 mL (or a near doubling of SV).102 Although the eccentric hypertrophy seen in endurance exercise is generally attributed to intermittent increases in volume load during training sessions and competitions, there is also a \sim10\% blood volume expansion27,38,131 which, in theory, could induce a slight chronic volume loading. A similar magnitude of increase in LVM and LVEDV to that found in endurance training is seen in normal human pregnancy,132 accompanied by an average increase in plasma volume of \sim40\%.45

On a molecular level, there are emerging differences in gene transcription in cardiac hypertrophy following repeated endurance exercise and pathological stimuli, although evidence so far comes from studies of rodents16,40 and more recently of swine.78 Although this is an exciting field of research, it remains to be elucidated what inherent characteristic(s) of the stimuli (i.e. volume load) dictate the type and magnitude of the hypertrophy.
Inferior vena cava in volume load

Inferior vena cava dimension

Due to its close anatomical and functional connection to the right side of the heart, echocardiographic examination of the IVC is recommended to be integrated in clinical routine investigations. The size and inspiratory decrease in IVC diameter reflect RA pressure, although this has been questioned in endurance athletes, as there are a few reports on increased IVC diameter in (predominately male) athletes, as summarized in Table 12. Therefore, we wanted to study the IVC dimension in female endurance athletes.

Both absolute and BSA-indexed IVC short-axis area and long-axis diameter were larger in ATH than in CON, while the decrease in IVC dimensions during quiet inspiration was similar between the two groups. As we extended our echocardiographic examination to a cross-sectional view, we were able to show that the IVC long-axis diameter represented its short-axis minor diameter and thus underestimated maximal IVC dimension.

As our study was exploratory rather than experimental, we did not explore the mechanisms underlying a possible IVC dilation with endurance exercise. In theory, a dilation could be attributed to an increased RA pressure with training, or could be a sign of increased vagal signalling with vessel dilation in athletes or an effect of an elevated plasma volume following endurance training.

There are a limited number of studies reporting similar surrogate measures of RA pressure in athletes and controls and a small study on healthy subjects with varying VO\textsubscript{2max} but similar invasively measured RA pressures. Thus, we believe there is no evidence to support IVC dilation secondary to increased RA pressures in athletes and that the most plausible explanation for larger IVC dimensions in athletes may be the commonly reported 10% increase in plasma volume.
Discussion

Inferior vena cava shape

We found a slightly oval, similarly shaped IVC in ATH and CON. Few subjects had a major-to-minor ratio exceeding 2.0. Thus, endurance training or a large IVC diameter per se does not seem to alter the shape of the IVC, at least not in the group of females considered in this study. To our knowledge, there are no previous comparative data on IVC shape in healthy subjects, although the IVC shape has gained some attention lately in different clinical settings.\(^{69,92,99}\)

Table 12. Previous studies presenting the inferior vena cava diameter in athletes.

<table>
<thead>
<tr>
<th>Method</th>
<th>Subjects (n)</th>
<th>IVC size (mm)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeppilli et al. (1995)(^{156})</td>
<td>M-mode (2D-guided), in subcostal area. LAX, just before outlet of hepatic veins.</td>
<td>Road and track cycling (15), long-distance running (15), volleyball (15). (No females). 20 sedentary male non-smokers.</td>
<td>ATH (cyclists): 27.8 (95% CI 27.2–28.4) CON: 20.0 (95% CI 18.7–21.2)</td>
</tr>
<tr>
<td>Goldhammer et al. (1999)(^{53})</td>
<td>2D echocardiography, subxiphoid view. LAX and SAX,* 1–2 cm from RA-junction.</td>
<td>58 ATH from a variety of eleven sports (11 females). 28 control subjects, physically active 3–4 hrs/wk. (8 females).</td>
<td>ATH: 23.4 (SD 4.8) CON: 11.4 (SD 1.3)</td>
</tr>
<tr>
<td>Erol and Karakelleoglu (2002)(^{37})</td>
<td>2D echocardiography, subxiphoid view. Axis not specified, 1 cm from RA-junction.</td>
<td>Running (14), wrestling (10), basketball (5), boxing (4), skiing (3). (No females). 16 normally active male control subjects.</td>
<td>ATH: 18.8 (SD 2.2) CON: 15.2 (SD 1.7)</td>
</tr>
<tr>
<td>D’Ascenzi et al. (2013)(^{30})</td>
<td>2D echocardiography, subcostal view. Axis not specified, 1–2 cm from RA-junction.</td>
<td>Soccer (50, male), basketball (26, male), volleyball (24, female). 78 sedentary subjects (28 female) without cardiovascular disease.</td>
<td>ATH: 21.5 (SD 4.8) CON: 17.5 (SD 3.2)</td>
</tr>
</tbody>
</table>

* which diameter that is presented in paper is not specified by authors.\(^{53}\)

IVC, inferior vena cava; 2D, two-dimensional; ATH, athletes; CON, controls; CI, confidence interval; LAX, long-axis; SAX, short-axis; RA, right atrial.
Decline in peakVO₂ following AVR

As a previous study of our group found that maximal aerobic capacity was unchanged and below average in patients with AR six months following AVR, the study presented in paper I aimed to investigate maximal aerobic capacity after a longer follow-up time to see whether peakVO₂ normalized more slowly than LV dimensions.

Somewhat surprisingly, peakVO₂ was significantly lower at the second follow-up, and had decreased more than expected by the patients’ increased age. These results are somewhat in contrast to previously published studies. However, as seen in Figure 18, our study differs from previous studies in several respects including pre-operative peakVO₂ (and thus probably the severity of AR), follow-up time, number of patients and heterogeneity regarding valve disease.

One possible explanation for the discrepancy in results could be that our patients were more aerobically fit pre-operatively than those in

![Figure 18. Longitudinal change in peak oxygen uptake (peakVO₂) following aortic valve replacement in previous studies and in paper I. AR, aortic regurgitation; MR, mitral regurgitation.](image-url)
other studies, and thus had less potential for increases in peakVO$_2$. Nevertheless, according to both the Åstrand classification of physical fitness published in 1960, and the more recent SHIP-study including 253 males from north-eastern Germany, a majority of our patients were indeed unfit at the late follow-up compared to healthy subjects of similar age, weight and sex.

This must be considered clinically relevant, as having low cardio-respiratory fitness is a predictor of all-cause mortality and cardiovascular events, and longitudinal decreases in cardiorespiratory fitness have been linked to increased risk of cardiovascular death, independent of changes in BMI.

Either the current results may indicate a decline in cardiac function between the first and second follow-ups or that the patients were more physically inactive after the second follow-up. Although LVEF at rest was somewhat lower at the late follow-up than six months post-operatively, it was previously reported by our group that the same patients showed a slight improvement of the ability to increase LVEF and s’ in the basal LV during supine submaximal exercise, from the first to the second follow-up.

Although all patients were encouraged to resume regular physical activity after discharge and were offered participation in cardiac rehabilitation at the referring hospital, we did not measure or enquire into the level of physical activity in patients, leaving us without this part of the puzzle.

While there is solid evidence for beneficial effects of exercise training and of an increased level of physical activity level in patients with coronary artery disease and heart failure, there are fewer studies on patients with AR following AVR. Most available studies are small and contain a mix of valvular pathologies, and the results are somewhat conflicting. However, there is no reason to believe that structured cardiac rehabilitation and exercise training would be
unfavourable or not feasible in this population. One study on patients with coronary artery disease found that there was a relation between fear of movement (*kinesiophobia*) and non-attendance at cardiac rehabilitation, and that the physical activity level was lower in patients with *kinesiophobia*.20 Our findings support the need for active follow-up and, perhaps, intensified and more structured exercise prescription in these patients to avoid deterioration in aerobic capacity.

Cardiac function in physiological volume load

In our studies upon young, healthy females in *paper II* and *paper III*, we performed a comprehensive echocardiographic examination to assess LV and RV overall and regional myocardial function at rest in systole as well as in diastole. As there are far fewer studies of cardiac function in samples of exclusively female athletes than in their male counterparts, our data are novel in several aspects.

One expected, but still important finding was that cardiac function in ATH, with clear evidence of eccentric remodelling and increased LVM compared to CON, was not impaired in any sense. Although there is abundant evidence that regular physical activity is beneficial,83, 84 possible adverse effects upon cardiac function of long-term high-intensity and high-dose endurance exercise have recently been under discussion.79, 106

Systolic function

Overall LV and RV systolic function

There were statistically significant differences between ATH and CON in traditional measures of overall LV systolic function (i.e. LVEF and LV-FS). However, these differences were small and most likely not clinically relevant for the actual LV function. In addition, we found overall as well as basal and mid-ventricular regional strain and peak systolic myocardial velocities to be similar in trained and untrained females. Although LVAVD was greater in ATH, this difference diminished
Discussion

following indexing by the increased cardiac length in ATH. Thus, we conclude that overall and longitudinal systolic LV function at rest was no different in females exposed to physiological long-term volume load than in untrained females of the same age.

In the RV on the other hand, we found longitudinal systolic function measured as RV_{AVD}, $RV-s'_{BASAL}$, and $RV-s'_LATERAL$ to be higher in ATH. When indexing for cardiac length, RV_{AVD} remained 8% higher in ATH than in CON ($p=0.001$), which could imply a difference in RV longitudinal systolic function at rest between groups.

Our results are consistent with previous reports on normal LVEF in male and female athletes. Absolute s' in the basal LV, LV_{AVD}, and LV global longitudinal strain were reported by most authors to be similar in trained and untrained, predominately male subjects. A few studies have reported signs of increased systolic longitudinal function in athletes, although all these authors have refrained from taking the increased LV length into account, which has been suggested but rarely applied.

Interestingly, unindexed measures of RV longitudinal function are consistently being reported as higher in trained subjects. This, together with our finding of larger indexed RV_{AVD} in ATH, may imply that the RV adapts to training with an augmentation in longitudinal function, although the results from studies measuring RV longitudinal strain in athletes are somewhat conflicting. In normal subjects, the RV has been found to be more dependent on longitudinal shortening than the LV. This could be a plausible explanation for why measures of RV longitudinal function would be higher in the right, but not the left ventricle of athletes, when compared to untrained subjects.

Segmental LV and RV systolic function

We found higher s' in ATH than in CON in the RV and in LV segments adjacent to the RV. This could either imply that the free RV wall and
septum adapt to endurance training in a similar fashion, possibly augmenting RV longitudinal shortening, or that an adaptation in RV longitudinal function influences septal movement. The septum is an important factor in ventricular interdependence, and both circumferential and longitudinal muscle fibres from the RV free wall traverse into the interventricular septum.55

There are no previous studies describing segmental systolic myocardial function in female athletes. Studies reporting s’ in a few separate basal LV segments in samples of male or predominately male athletes gave conflicting results.5, 90, 105, 119, 134, 145, 157 A few studies reporting segmental strain in the basal LV septal and lateral wall segment found deformation to be either concomitantly similar,145 concomitantly higher in ATH than in CON,134 or higher in CON in the basal septum but not in the basal lateral LV wall.19 Reports on RV segmental strain are equally conflicting.5, 119, 143, 145

It is possible that differences in athletic populations, characteristics of included control subjects or methodological differences, such as echocardiographic software and settings, explain some of the diversity in results. Nevertheless, it is possible that there are subtle differences in systolic function at rest between trained and untrained subjects, and that these are not always detectable with global measures of systolic function.

Inter- and intraventricular systolic synchrony

We found similar inter- and intraventricular synchrony in trained and untrained females. This concurs with two previous studies using a different measure of synchrony than in the current study.25, 32 These results and the fact that ATH had similar synchrony values as previously reported in healthy females,95, 129 imply that endurance training in females does not impose systolic mechanical dyssynchrony. This may be clinically relevant for sports cardiologists evaluating female athletes.
Diastolic function

Overall LV and RV diastolic function

Blood flow velocity over the mitral valve was higher in ATH during early diastole (E) and higher in CON in late diastole (A), which rendered higher E/A in ATH. In contrast, myocardial peak velocities in the basal LV (LV-e'_{BASAL} and LV-a'_{BASAL}), and LV-e'/a'_{BASAL} were not different between groups. E (but not A) was found to be independent of HR. The lower A velocity, previously reported in female endurance athletes, is logical as late diastolic filling, depending on atrial contraction, becomes less important with lower HR and longer diastole in athletes.

Higher E velocity has, to our knowledge, not been reported in female athletes until now, although previously found in mixed samples of male and female athletes and in male athlete groups. Altogether, there seems to be an enhancement in cardiac relaxation in endurance athletes, reflected in higher early filling velocity even at rest. In addition, in senior as well as in young athletes, surrogate measures of LV compliance have been reported to be higher than in sedentary subjects. Furthermore, a recent study indicated a slight increase in LV compliance, accompanied by LV hypertrophy, following one year of intensive endurance training in previously sedentary subjects. Thus, enhanced LV diastolic function in endurance athletes seems to result from both improved relaxation and higher LV compliance.

As in the LV, there was no difference between ATH and CON in RV diastolic myocardial peak velocities. This conforms to a previous report of similar tricuspid early filling velocity in female long-distance runners and sedentary controls, and e’ in the basal RV has also been found similar in mixed samples of trained compared to untrained subjects. However, there are reports of increased e’ in the basal RV of speedskaters, long-distance swimmers and rowers compared to controls, or even lower in water polo players than in...
controls.120 This inconsistency in previous results could probably in part be explained by the diversity in sports performed by included endurance athletes.

\textit{Segmental RV and LV diastolic function}

In two mid-ventricular LV segments, but in none of the RV segments, e' was 13\% higher in ATH than in CON. In both cases, these segments were not the same as those where s' was different between groups. The significance of this finding is unclear, but it could indicate that, similarly to systolic segmental function, there are heterogeneous myocardial adaptations in diastolic function across the myocardium.

\textbf{Relations to maximal aerobic capacity}

\textbf{Cardiovascular dimensions}

In healthy females, there was a relation between the size of the heart at rest and maximal aerobic capacity, and 50\% of the variability in VO$_{2\text{max}}$ (L/min) could be attributed to inter-individual differences in LVEDV. In healthy females, a large LVEDV at rest implies a large SV at rest, which in turn is related to a large maximal SV, CO and thus VO$_{2\text{max}}$.12, 127, 159

The strongest correlation between VO$_{2\text{max}}$ and any IVC dimension was found between IVC LAX$_{\text{Exp}}$ and VO$_{2\text{max}}$ ($r=0.523$, $p<0.001$), which was a weaker correlation than between VO$_{2\text{max}}$ and LVEDV or LVM. This could imply that cardiac dimensions have a more direct effect upon VO$_{2\text{max}}$, and that IVC dilation is secondary to other, systemic adaptations occurring in parallel with increases in VO$_{2\text{max}}$ and cardiac dimensions.

In AR patients, pre-operative absolute peakVO$_2$ did not correlate with any pre-operative measure of cardiac size, although pre-operative weight-indexed peakVO$_2$ correlated negatively with pre-operative LVESV ($r=-0.600$, $p\leq0.05$). This is probably a sign that when AR severity progresses and the regurgitant volume increases, LVESV will increase while maximal aerobic capacity decreases.
Cardiac function

Although the correlations were strongest between VO\(_{2\text{max}}\) and dimensional variables, there were some weak-to-moderate positive correlations between VO\(_{2\text{max}}\) and measures of cardiac function. Among systolic variables, measures of RV longitudinal function (i.e. RV\(_{AVD}\) and RV-s’\(_{BASAL}\)) were more strongly related to VO\(_{2\text{max}}\) than any LV systolic variable. In contrast, while LV diastolic variables (i.e. E/A and LV-12-e’) correlated weakly to VO\(_{2\text{max}}\), there was no correlation between VO\(_{2\text{max}}\) and any RV diastolic variable. This may indicate that RV systolic longitudinal function and LV diastolic function at rest are (weak) determinants of VO\(_{2\text{max}}\).

Strengths and limitations

Paper I

A major advantage of this paper was the longitudinal design, which enabled us to follow peakVO\(_2\) over time for up to four years. We also exclusively studied AR patients, which improves our generalizability to this population of patients. In addition, all patients undergoing AVR at our tertiary centre during the study inclusion period participated in the study. As all patients were male, we cannot be sure that these findings would apply for female patients.

In retrospect, it would have been of interest to measure, or at least enquire into, the physical activity level of patients serially, in order to search for an explanation for the decreased aerobic capacity late post-operatively. Ideally, a questionnaire, which has recently been validated, regarding kinesiophobia could have been administered to the patients as well.\(^{20}\) Finally, we categorized the fitness of the patients by using previously published reference values.\(^{73,149,158}\) Although these are widely used, it would have been a strength to compare fitness serially in a healthy age and sex-matched cohort of subjects from the same geographic region that the patients lived in.
Papers II–IV

We consider our design, including exclusively female athletes and healthy females of similar age, to be a major strength of these studies. As few studies have been performed exclusively upon female endurance athletes, it has been somewhat hard to extrapolate findings from mixed samples of athletes or male athletes to their female counterparts. Furthermore, we have chosen our indexing methods carefully and applied these both to selected functional as well as dimensional variables, to avoid overestimating potential differences between groups.

The cross-sectional design has built-in limitations in determining causality, and thus, we cannot rule out the possibility that the differences between ATH and CON were due to constitutional factors. The present study was designed for echocardiographic measurements at rest only, which leaves us without data on cardiac function during exercise and how this relates to maximal aerobic capacity. Finally, the inter- and intraobserver variability was not negligible for some measurements, although this can be attributed, at least in part, to limitations in the echocardiographic software and algorithms.
In patients operated on for aortic regurgitation, maximal aerobic capacity did not improve following surgery. This finding stresses the importance of post-operative follow-up and management that includes considering the patient’s physical activity level. A post-operative exercise test, ideally a cardiopulmonary exercise test, could be useful for evaluating post-operative aerobic capacity and could guide exercise prescription and need for follow-up.

We found that females with a history of several years of dedicated endurance training presented with symmetric and proportional enlargement of cardiac dimensions and wall thickness. Cardiac function at rest was normal and in some aspects even supranormal in comparison to untrained females. As there are relatively few studies that have exclusively investigated female athletes, our results may contribute to the understanding of the heart in female endurance athletes.

Our finding of differences in segmental myocardial function is interesting and merits further research. In addition, the results regarding similar synchrony in trained and untrained females may be of importance for sports cardiologists evaluating female athletes, as increased dyssynchrony does not seem to be a physiological adaptation to endurance exercise.
Some results of the current studies raise questions that merit further research.

It would be of interest to investigate how structured exercise training and physical activity counselling in patients following AVR would affect their aerobic capacity and well-being, as well as measures of cardiac function.

As differences in cardiac function between trained and untrained females were found even at rest, it would be valuable to see if these differences are more pronounced during exercise. In particular, how segmental myocardial function and diastolic function affect cardiac performance (e.g. stroke volume) during exercise remains to be fully elucidated.

We have not found a definitive causative explanation for the difference in inferior vena cava diameter, as discussed in paper IV. Though an increase in plasma volume could cause this dilatation, there are other possible explanations as well. An experimental study could help to answer this physiological question.

Although there has been a plethora of cross-sectional studies comparing athletes with controls, there are still relatively few longitudinal studies. Much is still unknown regarding cardiac adaptations to volume load. For example, what is the minimum requirement in training dose to achieve cardiac hypertrophy, and are there any differences in response to endurance exercises of varying intensity?
Acknowledgements

“*If you want to go quickly, go alone. If you want to go far, go together.*”
– African proverb

To acknowledge all who made this thesis possible is a pleasant but yet challenging task. There is no doubt that many people contributed to the content of this thesis directly or indirectly – by support, advice or inspiration – and I send my dearest gratitude to all of you. In particular, I would like to acknowledge the people below.

My main supervisor Professor Eva Nylander. Already when I attended your lectures as a physiotherapy student I got overwhelmed by your knowledge in physiology and yet humble approach to science, which I believe later led me into both research and clinical physiology. Thank you for adopting me as a tottering medical student wanting “to do research on exercise and the heart”, supporting me along the way and teaching me much of what I know about physiology.

My co-supervisor doctor Éva Tamás. Thank you for always letting me try to find my own answers, while always supporting me when I do not. By your help, I have not only slowly developed my scientific thinking and writing, I have also increased my self-efficacy.

My co-supervisor Lars Brudin. Thank you for sharing your extensive knowledge in medical statistics and physiology, hereby improving not only my manuscripts but also my conceptions.

My co-authors Niclas Bjarnegård and Jan Henriksson. Without your help with patient recruitment (Jan) and examinations (Niclas), *papers II–IV* would obviously not have been possible. In addition, thank you for sharing your scientific knowledge and improving the manuscripts.

My colleagues at the department of Clinical physiology, thank you all! Especially Professor Jan Engvall for methodological and scientific discussions regarding echocardiographic techniques, Elisabeth Forsström for patiently
teaching me cardiopulmonary exercise testing and Inger Ekman for helping me in understanding echocardiography. In addition, thank you to all skilled sonographers performing echocardiographic investigations and to Elin Wistrand and Malin Strand for keeping all practicalities running smoothly.

My fellow doctoral students, especially Karolina Kristenson, Lena Forsberg, Anna Carlén, Jakub Zajac, Jonatan Eriksson and Sabina Borg for scientific, friendly and encouraging discussions along the way.

County council of Östergötland, for providing opportunities to engage in research during my internship. I am especially grateful to my former boss Lena Holmertz for her flexibility and support, which made my time as a researching medical intern so much easier.

Susan Barclay Öhman and Rowena Jansson for your sharp eyes and intelligent comments during language revision of the papers in this thesis.

Henrik Rosenberg and Anders Birck at GE Healthcare for your help regarding echocardiographic software versions.

My friends and family. Your support of course dates back to long before the start of this thesis but is so very important. My mother and father for your never ending support and help throughout my life. My brother Fredrik for inspiring me to and paving the way to higher studies in the first place. Marita and Kjell for babysitting and supporting our family in so many ways.

Slutligen, min älskade närmaste familj som fyller och förgyller mitt liv. Siri och Greta som alltid hjälper mig att se vad som är viktigt på riktigt och Sofie som inte bara står ut med mig utan även står bredvid mig oavsett vad. Tack för allt!

This work was financially supported by grants from:

♥ The Swedish Heart and Lung foundation ♥ ALF Grants, County Council of Östergötland
♥ Swedish National Centre for Research in Sports ♥ Länsförsäkringsbolagen Research Foundation

23. Carlsson M, Ugander M, Heiberg E, Arheden H.
The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans.

Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy.

Three-dimensional echocardiographic characterization of left ventricular remodeling in Olympic athletes.

Analysis by pulsed Doppler tissue imaging of ventricular interaction in long-distance competitive swimmers.

27. Convertino VA, Mack GW, Nadel ER.
Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?

Biventricular myocardial adaptation to different training protocols in competitive master athletes.

Range of right heart measurements in top-level athletes: the training impact.

Characterization of right atrial function and dimension in top-level athletes: a speckle tracking study.

31. Dahlberg G.
Errors of estimation.

Tomographic left ventricular volumetric emptying analysis by real-time 3-dimensional echocardiography: influence of left ventricular dysfunction with and without electrical dyssynchrony.

33. Dorn GW, 2nd.
The fuzzy logic of physiological cardiac hypertrophy.
Hypertension. 2007;49(5):962-70.
34. Downing J, Balady GJ.
The role of exercise training in heart failure.

35. Edler I, Hertz CH.
The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954.

36. Ellison GM, Waring CD, Vicinanza C, Torella D.
Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms.
Heart. 2012;98(1):5-10.

37. Erol MK, Karakelleoglu S.
Assessment of right heart function in the athlete's heart.

38. Esfandiari S, Sasson Z, Goodman JM.
Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise.

Cardiac performance in endurance-trained and moderately active young women.

Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs.

41. Fick A.
Ueber die Messung des Blutquantums in den Herzventrikeln.

42. Fleg JL, Morrell CH, Bos AG, Brant LJ, et al.
Accelerated longitudinal decline of aerobic capacity in healthy older adults.

Exercise standards for testing and training: a scientific statement from the American Heart Association.

44. Forsberg LM, Nylander E, Tamás É.
Exercise echocardiography predicts postoperative left ventricular remodeling in aortic regurgitation.

45. Frederiksen MC.
Physiologic changes in pregnancy and their effect on drug disposition.
46. Freeman RV, Otto CM.
Chapter 76. Aortic Valve Disease.

47. Gaasch WH, Zile MR.
Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry.

48. George KP, Gates PE, Birch KM, Campbell IG.
Left ventricular morphology and function in endurance-trained female athletes.

49. George KP, Naylor LH, Whyte GP, Shave RE, et al.
Diastolic function in healthy humans: non-invasive assessment and the impact of acute and chronic exercise.

Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications.

51. Gledhill N, Cox D, Jamnik R.
Endurance athletes' stroke volume does not plateau: major advantage is diastolic function.

52. Goldbarg SH, Halperin JL.
Aortic regurgitation: disease progression and management.

53. Goldhammer E, Mesnick N, Abinader EG, Sagiv M.
Dilated inferior vena cava: a common echocardiographic finding in highly trained elite athletes.

Vascular adaptation in athletes: is there an ‘athlete’s artery’?

55. Greenbaum RA, Ho SY, Gibson DG, Becker AE, et al.
Left ventricular fibre architecture in man.

56. Grossman W, Jones D, McLaurin LP.
Wall stress and patterns of hypertrophy in the human left ventricle.

57. Grossman W, Paulus WJ.
Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling.

71. Kim HJ, Park SW, Cho BR, Hong SH, et al.
The role of cardiopulmonary exercise test in mitral and aortic regurgitation: it can predict post-operative results.

Right and left ventricular adaptation to training determined by conventional echocardiography and tissue Doppler imaging in young endurance athletes.

Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study.

Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis.

Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement.

76. Krieg A, Scharhag J, Kindermann W, Urhausen A.
Cardiac tissue Doppler imaging in sports medicine.

77. Krishnamoorthy VK, Sengupta PP, Gentile F, Khandheria BK.
History of echocardiography and its future applications in medicine.

78. Kuster DW, Merkus D, Blonden LA, Kremer A, et al.
Gene reprogramming in exercise-induced cardiac hypertrophy in swine: A transcriptional genomics approach.
J Mol Cell Cardiol. 2014;77:168-74.

79. La Gerche A, Heidbuchel H.
Can intensive exercise harm the heart? You can get too much of a good thing.
Circulation. 2014;130(12):992-1002.

Vigorous physical training after aortic valve replacement: analysis of 10 patients.

Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging.

82. Lang RM, Bierig M, Devereux RB, Flachskampf FA, et al.
Recommendations for chamber quantification.
Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study.

Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.

85. Leech G.
Chapter 1. Physical Principles and the Basic Exam.

86. Levine BD, Lane LD, Buckey JC, Friedman DB, et al.
Left ventricular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance.

87. Longhurst JC, Kelly AR, Gonyea WJ, Mitchell JH.
Echocardiographic left ventricular masses in distance runners and weight lifters.

88. Lundbäck S.
Cardiac Pumping and Function of the Ventricular Septum.

89. Malouf JF, Edwards WD, Tajik J, Seward JB.
Chapter 4. Functional Anatomy of the Heart.

Left ventricular function in elite rowers in relation to training-induced structural myocardial adaptation.

91. Maron BJ, Pelliccia A.
The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death.
Circulation. 2006;114(15):1633-44.

Predictive value of a flat inferior vena cava on initial computed tomography for hemodynamic deterioration in patients with blunt torso trauma.
J Trauma. 2010;69(6):1398-402.

93. Meyer T, Scharhag J, Kindermann W.
Peak oxygen uptake. Myth and truth about an internationally accepted reference value.
Task Force 8: classification of sports.

Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundle-branch block.

Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography.

Intervendor Variability of Two-Dimensional Strain Using Vendor-Specific and Vendor-Independent Software.

98. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, et al.
Recommendations for the evaluation of left ventricular diastolic function by echocardiography.

A novel method for dry weight assessment in hemodialysis patients: utilization of inferior vena cava flat ratio to correct for individual variations in vessel diameter.

Physical training after heart valve replacement.

Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging.

Alteration in left ventricular normal and shear strains evaluated by 2D-strain echocardiography in the athlete’s heart.
104. Nottin S, Nguyen LD, Terbah M, Obert P.
Left ventricular function in endurance-trained children by tissue Doppler imaging.

105. Nottin S, Nguyen LD, Terbah M, Obert P.
Long-term endurance training does not prevent the age-related decrease in left
ventricular relaxation properties.

106. O'Keefe JH, Lavie CJ, Guazzi M.
Part 1: potential dangers of extreme endurance exercise: how much is too much?
Part 2: screening of school-age athletes.

Effects of aging, sex, and physical training on cardiovascular responses to exercise.

Right atrial and ventricular adaptations to training in male caucasian athletes:
an echocardiographic study.

109. Palka P, Lange A, Nihoyannopoulos P.
The effect of long-term training on age-related left ventricular changes by Doppler
myocardial velocity gradient.

Linking left ventricular function and mural architecture: what does the clinician need to know?
Heart. 2014;100(16):1289-98.

Left and right ventricular adaptation assessed by Doppler tissue echocardiography in athletes.

112. Pelliccia A.
Determinants of morphologic cardiac adaptation in elite athletes: the role of athletic
training and constitutional factors.

113. Pelliccia A, Culaso F, Di Paolo FM, Maron BJ.
Physiologic left ventricular cavity dilatation in elite athletes.

Athlete's heart in women. Echocardiographic characterization of highly trained elite female athletes.

The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes.
Sex-specific characteristics of cardiac function, geometry, and mass in young adult elite athletes.

117. Petitjean C, Rougon N, Cluzel P.
Assessment of myocardial function: a review of quantification methods and results using tagged MRI.

118. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE.
The athlete's heart. A meta-analysis of cardiac structure and function.

Myocardial adaptation and efficiency in response to intensive physical training in elite speedskaters.

Assessment of the left ventricular chamber stiffness in athletes.

Strain rate and tissue tracking imaging in quantitation of left ventricular systolic function in endurance and strength athletes.

Left ventricular remodeling with intensive exercise after aortic valve replacement.

123. Rerych SK, Scholz PM, Newman GE, Sabiston DC, Jr., et al.
Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: evaluation by radionuclide angiocardiography.

Reversal of left ventricular dilatation, hypertrophy, and dysfunction by valve replacement in aortic regurgitation.

125. Rowland T.
Endurance athletes' stroke volume response to progressive exercise: a critical review.

126. Rowland T, Unnithan V.
Myocardial inotropic response to progressive exercise in healthy subjects: a review.

Left ventricular response to dynamic exercise in young cyclists.
Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography.

Ventricular asynchrony of time-to-peak systolic velocity in structurally normal heart by tissue Doppler imaging.

130. Santamore WP, Dell'Italia LJ.
Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.

Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness.

Morphological and functional adaptation of the maternal heart during pregnancy.

133. Seiler KS, Kjerland GØ.
Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution?

Analysis of athletes’ heart by tissue Doppler and strain/strain rate imaging.

135. Sire S.
Physical training and occupational rehabilitation after aortic valve replacement.

Does fitness level modulate the cardiovascular hemodynamic response to exercise?

137. Stringer WW, Hansen JE, Wasserman K.
Cardiac output estimated noninvasively from oxygen uptake during exercise.

Left ventricular volumes during exercise in endurance athletes assessed by contrast echocardiography.
Left ventricular volume changes during supine exercise in young endurance athletes.

Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention.

Exercise radionuclide ventriculography for predicting post-operative left ventricular function in chronic aortic regurgitation.

142. Tamás É, Nielsen NE, Vanhanen I, Nylander E.
Measurement of physical work capacity in patients with chronic aortic regurgitation: a potential improvement in patient management.

Echocardiographic tissue deformation imaging of right ventricular systolic function in endurance athletes.

Factors affecting the postoperative exercise capacity of patients with mitral stenosis and aortic regurgitation.
Cardiology. 1994;85(3-4):201-6.

145. Tumuklu MM, Etikan I, Cinar CS.
Left ventricular function in professional football players evaluated by tissue Doppler imaging and strain imaging.

Effects of exercise training after open heart surgery on quality of life and exercise tolerance in patients with mitral regurgitation or aortic regurgitation.

Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete's heart.

Stroke Volume Does not Plateau in Female Endurance Athletes.

Principles of Exercise Testing and Interpretation. 5th ed.
References

150. Vella CA, Robergs RA.
A review of the stroke volume response to upright exercise in healthy subjects.

Left ventricular morphology and function in female athletes: a meta-analysis.

The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience.

153. Wisløff U, Helgerud J, Støylen A, Ellingsen Ø.
Atrioventricular plane displacement in female endurance athletes.

Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure.

155. Yu CM, Lin H, Zhang Q, Sanderson JE.
High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration.
Heart. 2003;89(1):54-60.

Echocardiographic size of conductance vessels in athletes and sedentary people.

157. Zoncu S, Pelliccia A, Mercuro G.
Assessment of regional systolic and diastolic wall motion velocities in highly trained athletes by pulsed wave Doppler tissue imaging.

158. Åstrand I.
Aerobic work capacity in men and women with special reference to age.

159. Åstrand PO, Cuddy TE, Saltin B, Stenberg J.
CARDIAC OUTPUT DURING SUBMAXIMAL AND MAXIMAL WORK.
Papers

The articles associated with this thesis have been removed for copyright reasons. For more details about these see:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123316