
 

 

Asymptotic Analysis of Asymmetric MIMO Links: 
EVM Limits for Joint Decoding of PSK and QAM 
Mikko Vehkapera, Taneli Riihonen, Maksym Girnyk, Emil Björnson, Merouane 
Debbah, Lars K. Rasmussen and Risto Wichman 

The self-archived postprint version of this conference article is available at Linköping 
University Institutional Repository (DiVA): 
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127291 
  
  
N.B.: When citing this work, cite the original publication. 
Vehkapera, M., Riihonen, T., Girnyk, M., Björnson, E., Debbah, M., Rasmussen, L. K., Wichman, R., 
(2015), Asymptotic Analysis of Asymmetric MIMO Links: EVM Limits for Joint Decoding of PSK and 
QAM, 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) , 1869-1873. 
https://doi.org/10.1109/ICC.2015.7248597 

Original publication available at: 
https://doi.org/10.1109/ICC.2015.7248597 
Copyright: IEEE 
http://www.ieee.org/ 
©2015 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for 
creating new collective works for resale or redistribution to servers or lists, or to reuse 
any copyrighted component of this work in other works must be obtained from the 
IEEE.  

 
 

 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127291
https://doi.org/10.1109/ICC.2015.7248597
http://www.ieee.org/
http://twitter.com/?status=OA%20Article:%20Asymptotic%20Analysis%20of%20Asymmetric%20MIMO%20Links:%20EVM%20Limits%20for%20Joint%20Decoding%20of%20P...%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127291%20via%20@LiU_EPress%20%23LiU


Asymptotic Analysis of Asymmetric MIMO Links:
EVM Limits for Joint Decoding of PSK and QAM
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Abstract—Hardware non-idealities in wireless transmitter elec-
tronics cause distortion that is not captured by conventional
linear channel models; in fact, error-vector magnitude (EVM)
measurements in conformance testing conceptually reduce their
collective effect to an additive noise component at each subcarrier.
Motivated by the EVM, the present paper considers a ‘binoisy’
multiple-input multiple-output (MIMO) channel model where
the additional non-idealities manifest themselves as an additive
distortion noise term at the transmit side. Through this extended
MIMO relation, the effects of hardware impairments on the
achievable rates of different digital modulation schemes are
studied via large system analysis. The numerical results illustrate
how tolerable EVM levels depend non-trivially on various factors,
including the signal-to-noise ratio, modulation order and the level
of asymmetry in antenna array configurations.

I. INTRODUCTION

Digital, e.g., phase-shift keying (PSK) or quadrature am-
plitude modulation (QAM), data symbols are not discrete or
deterministic due to hardware impairments [1], [2] after they
pass a practical transmitter chain. Conformance testing mea-
sures this aspect through the error-vector magnitude (EVM)
aiming at guaranteeing that communication is limited by either
receiver noise or the lack of entropy in basic alphabets, e.g.,
QPSK. However, data rates have recently been improved by
increasing modulation order, e.g., using 16-QAM at relatively
high signal-to-noise ratio (SNR), in which cases transmitter
hardware impairments can have significant impact and should
be taken into account in theoretical performance analysis too.

In principle, the EVM characterizes the distortion effects as
an additive transmitter noise term, which is in contrast with
conventional link-level signal models that contain an additive
thermal-noise term only at the receiver after a fading channel.
Motivated by the EVM, we adopt the ’binoisy’ channel model
of [3]–[12], which includes also a transmit-side noise term;
this is a convenient compromise between facilitating theoret-
ical analysis and resorting to measurements or simulations.
In a strict sense, additive noise is still only a simplified
representation of complex nonlinear phenomena occurring due
to hardware impairments, especially when considering their
joint coupled effects or residual distortion after compensation.

The key reference results for the present study are reported
in [3]–[12]. These seminal works formulated the research
niche around the binoisy channel model and established the
baseline understanding of MIMO communication under EVM
with numerical simulations and theoretical analysis. However,
all the earlier analytic capacity results are restricted to the
notional case of Gaussian signaling while, except for [3],
practical digital modulation schemes, e.g., PSK and QAM
considered herein, have not been analytically evaluated for
binoisy channels. On the other hand, simulation-based studies
have mainly considered bit/symbol/packet error rates although
the transmission rate is a more representative performance
metric for modern systems which utilize adaptive encoding.

As for MIMO processing, we focus on regular spatial mul-
tiplexing, where a transmitter separately encodes and sends an
independent data stream at each of its antennas without having
channel state information or being aware of the transmit-side
noise it produces, and a receiver jointly decodes the output
signals of the fading MIMO channel knowing its instantaneous
realization and the noise statistics. Mutual information (MI)
between the channel input and output at the large-system limit
(LSL) is evaluated for this scenario using the replica method1

[18], [19]. For some special cases like Gaussian signaling,
we would have exact asymptotic results when the number of
antennas grows without bound, while they can be otherwise
considered accurate approximations for PSK and QAM as
shown by comparisons to Monte Carlo simulations.

The analytic results, presented in a complete form in [20],
allow us to study the rate loss due to EVM under joint
decoding. The results cover all practical discrete modulation
schemes for which QPSK, 8-PSK, and 16-QAM are used
as examples in this paper. Especially, theoretical results are
illustrated herein with a diverse set of new numerical results,
including simulations for validating their accuracy. The focus
is on understanding the effect of transmit-to-receive antenna
ratio and finding the key worst-case scenarios which estab-
lishes practical guidelines for choosing target EVM limits.

1The replica method originates from statistical physics. It was introduced
to the analysis of wireless systems by [13], [14] and later applied to various
problems in communication theory, e.g., MIMO systems [15]–[17], by many.



II. SYSTEM MODEL

Consider the system depicted in Fig. 1 and modeled as a
binoisy channel [3]–[12]. The received signal is given by

y = H(x+ v) +w, (1)

where H ∈ CN×M is the MIMO channel matrix and x ∈ CM
the signal of interest. The additive receive-side noise com-
ponent w ∈ CN is caused by thermal noise and distortion
arising from the non-ideal behavior of the radio-frequency
(RF) transceivers. Similarly, v ∈ CM represents the effect of
thermal noise and hardware impairments at the transmit side.
In conventional MIMO literature it is common to consider
only the receive-side noise component, which translates to the
special case of v = 0 in our generic system model.

Let us denote the probability density (or mass) function of
the transmit vector x by p(x) and assume it factorizes as

p(x) =

M∏
m=1

p(xm), (2)

so that independent streams are transmitted at each transmit
antenna. Furthermore, let p(xm) be a zero-mean distribution
with variance γ̄m. For later convenience, we let Γ be a diago-
nal matrix whose non-zero elements are given by γ̄1, . . . , γ̄M ,
that is, Γ = E{xxH}. The channel H is assumed to have
independent identically distributed (IID) circularly symmetric
complex Gaussian (CSCG) elements with variance2 1/M . The
additive noise vectors v and w are modeled as CSCG random
vectors with covariance matrices Rv and Rw, respectively.
Since the hardware components causing distortions at each
transmit-side branch are decoupled, we assume that the spatial
covariance matrix of the noise term v is diagonal Rv =

diag(r
(1)
v , . . . , r

(M)
v ). Hence, v has independent entries drawn

according to p(vm) = g(vm | 0; r
(m)
v ). For simplicity we also

assume that any given noise component is independent of any
other random variable (RV) in the system. The SNR without
transmit-side noise is defined as tr(Γ)/ tr(Rw).

The probability density function (PDF) of the received
signal, conditioned on x, v and H , is given by

p(y | x,v,H) = g(y |H(x+ v); Rw), (3)

where g(x | µ; R) denotes complex Gaussian density with
mean µ and covarianceR. The receiver is assumed to knowH
and the true distribution p(x) of the channel input. However,
the additional transmit-side term v is in general unknown at
the receive side and, thus, the PDF in (3) cannot be directly
used for detection and decoding. Herein, we consider the case
where the receiver knows the PDFs of the noise plus distortion

2The assumption here is that the total power emitted from the transmit
antennas is constant; that is, tr(Γ) = γ̄, where γ̄ is some fixed power budget
that does not depend on M . For the following analysis, however, it is more
convenient to treat the elements of Γ to be independent of M and let the
transmit power normalization be part of the channel instead. We also use the
shorthand p(x) = g(x | µ; R) when x is a complex Gaussian RV with mean
µ and covariance matrix R. Note that if RV x is CSCG, it has automatically
zero mean so that defining the covariance matrix is sufficient for defining the
density p(x).
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Fig. 1. System model for non-ideal MIMO communications with transmit
and receive distortion. The receiver has perfect knowledge of the MIMO
channel and statistical information about the additive distortion plus noise
terms. Optimal joint decoding is performed at the receiver.

terms v and w as well as the distribution of the data vector
x so that the conditional PDF

p(y | x,H) = Ev{g(y |H(x+ v); Rw)} (4)
= g(y |Hx; Rw +HRvH) (5)

is used for joint decoding of the transmitted signals. Note that
the effective noise covariance matrix in (5) depends now on
the instantaneous channel realization H .

III. PERFORMANCE ANALYSIS

Given that the input distribution at the transmitter is p(x)
and joint decoding with the channel transition probability (5)
is performed at the receiver, the achievable rate of the system
is described by the (ergodic) mutual information (MI) between
the channel inputs and outputs. Herein we focus on the
ideal case where codewords span infinitely many independent
channel realizations and consider the ergodic MI:

I(y; x) = E

{
ln

(
p(y | x,H)}

Ex{p(y | x,H)}

)}
, (6)

where the expectation is w.r.t. all RVs in (1). One of the
entropy terms in (6), related to the numerator, reads

E{ln p(y | x,H)} = −EH{ln det(Rw +HRvH
H)} − c,

(7)
where c = N ln(eπ) and we emphasized the fact that there
is an expectation left w.r.t. the channel realizations H in
(7). This could be evaluated, for example, using Monte Carlo
methods or random matrix theory [21], [22]. Unfortunately,
to the best of our knowledge, the other entropy term in (6),
arising from the denominator, is mathematically intractable for
rigorous methods like random matrix theory when p(x) is an
arbitrary distribution that satisfies (2). For example, given that
the channel input for each transmit antenna is drawn uniformly
at random from a finite set A, calculating E{ln p(y | H)}
and combining it with (7) reduces (6) to the form (8) given
at the top of the next page. This form is computationally very
complex and can be evaluated using Monte Carlo methods
only for small number of antennas and simple constellations.

We use the replica method to obtain analytic results for a
general input distribution p(x). They are written in a com-
pressed form where the assumption of LSL is suppressed for
notational simplicity. For finite M and N , the results should
therefore be considered as approximations. The derivations
have been omitted here due to space constraints but they can
be found, among other complementing results, in the related
journal article [20] and the current numerical results are new.



I(y; x) = M ln |A| −N − 1

|A|
∑

x∈AM

Ev,w,H

{
ln

( ∑
x̃∈AM

e−[H(x−x̃+v)+w]H(Rw+HRvH)−1[H(x−x̃+v)+w]

)}
(8)

Proposition 1. Let us define for notational convenience a
scalar channel input

χm = xm + vm, (9)

where xm ∼ p(xm) and vm ∼ g(vm | 0; r
(m)
v ) are

independent for all m = 1, . . . ,M . Furthermore, let

p(zm | χm) = g(zm | χm; η−1) (10)

be a conditional PDF of a non-fading single-input single-
output (SISO) AWGN channel whose input is (9) and the noise
variance is given by η−1. The conditional mean estimator of
χm received over this channel reads then by definition

〈χm〉 =
Eχm
{χmp(zm | χm)}

Eχm
{p(zm | χm)}

, (11)

where the parameter η is given, along with another parameter
ε, as the solution to the coupled fixed point equations

η =
1

αN
tr
[
(Rw + εIN )−1

]
, (12)

ε =
1

M

M∑
m=1

[
γ̄m + r(m)

v − E|〈χm〉|2
]
. (13)

If we also define a second set of parameters η′ and ε′ that
are solutions to another set of coupled fixed point equations,
independent of (12) and (13),

η′ =
1

αN
tr
[
(Rw + ε′IN )−1

]
, (14)

ε′ =
1

M

M∑
m=1

r
(m)
v

1 + η′r
(m)
v

, (15)

the per-stream ergodic MI of the original MIMO system (6)
can be approximated as

1

M
I(y; x) =

ln det(Rw + εIN )−ln det(Rw + ε′IN )

αN

−(ηε− η′ε′) +
1

M

M∑
m=1

[
I(zm; χm)− ln(1 + η′r(m)

v )
]
, (16)

where α = M/N and I(zm; χm) is the MI of the Gaussian
channel defined by (9) and (10).

Proposition 1 holds for all input distributions that satisfy
(2), including notional Gaussian signals, and exemplifies the
so-called decoupling principle [14]. Herein this means that
the analysis of a fading MIMO channel can be decomposed
to analyzing an equivalent set of non-fading SISO channels.
For concreteness, we concentrate next on the case of discrete
signaling when the noise plus distortion is spatially white
(Rv = rvIM ) and the transmit power is uniformly allocated
(Γ = γ̄IM ). This makes the channels m = 1, 2, . . . ,M
identically distributed and the subscript m can be omitted.

Example 1. Let A be a discrete modulation alphabet with
fixed and finite cardinality |A|. Let the channel inputs xm be
drawn independently and uniformly from A. The parameter ε
in (13) is obtained using3

〈χ〉 =
1

p(z)

∑
x∈A

[
1

|A|
g(z | x; η−1 + rv)

(
x+ ηrvz

1 + ηrv

)]
, (17)

E
{
|〈χ〉|2

}
=

∫
C
p(z)E

{
|〈χ〉|2

}
dz, (18)

in Proposition 1. Here p(z) is given by

p(z) =
1

|A|
∑
x∈A

g(z | x; η−1 + rv), (19)

and the related MI term reads by definition as

I(z; χ) = ln

(
η

eπ

)
−
∫
C
p(z) ln p(z)dz. (20)

In order to obtain (16), both (13) and (20) need to be solved
in general numerically. ♦

IV. NUMERICAL EXAMPLES

In the following, assume for simplicity that Γ = γ̄I , Rw =
I and Rv = (10EVM/10)γ̄I , where EVM gives the error-vector
magnitude of the transmitter in decibels. The SNR without
transmit-side noise is therefore simply γ̄.

The first numerical experiment plotted in Fig. 2 examines
the accuracy of the asymptotic analytic results when applied
to finite-sized systems. The EVM is fixed to the rather pes-
simistic value of EVM = −10 dB to highlight the differences
between the ideal and imperfect hardware configurations. The
normalized rate is shown using the asymptotic replica analysis
(lines) and Monte Carlo simulations (markers) for a finite-
size symmetric antenna setup with M = N = 4. The gap
between asymptotic result presented in Example 1 and Monte
Carlo averaging of (8) is somewhat greater for the ideal
case than for the noisy setup with hardware impairments.
The analytic approximation given by the replica method is,
however, reasonably good already at M = N = 4, even
though M,N →∞ is required formally by the analysis.

The next example in Fig. 3 illustrates the performance of a
MIMO system with three different antenna ratios α = M/N ∈
{1/2, 1, 2}. To emphasize the effect of hardware impairments,
we have plotted the rate loss (in percents) for the case with
transmit noise (EVM = −20 dB) when compared to the
ideal case. The markers depict the points where the maximum
relative rate loss is experienced for joint decoding; except for
the case of 16-QAM and α = 2 that has maximum EVM loss
at γ̄ = 25.5 dB and hence outside of the range of the figure.

3For a complex variable z = x+ jy, we denote
∫
C( )dz =

∫
R2 ( )dxdy.
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Fig. 2. Normalized rate M−1I(y; x) in bits per channel use (cu) vs. SNR
for MIMO transmission with ideal hardware (EVM = −∞ dB) and hardware
impairments (EVM = −10 dB). Lines are for replica results and markers for
Monte Carlo simulations with M = N = 4 antenna configuration.
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Fig. 3. Rate loss percentage vs. SNR for noisy setup (EVM = −20 dB)
when compared to ideal hardware. Three different antenna ratios, α =
M/N ∈ {1/2, 1, 2}, are shown. The markers depict the maximum rate loss
(in percentage) for each of the cases within the given SNR region.

Adopting the worst-case SNRs revealed by Fig. 3 as repre-
sentative example values, Fig. 4 illustrates the rate loss due to
transmit-side noise in terms of the ratio of the number of trans-
mit antennas to the number of receive antennas. In principle,
having a large number of receive antennas compared to trans-
mit antennas yields SNR gain which effectively compensates
for the existence of transmit-side noise. When increasing the
antenna ratio, the rate loss increases until it reaches a worst-
case scenario, which depends on the SNR operation point, after
which it decreases slightly until converging to a saturation
level. The transmit-side noise is especially harmful when a
large number of spatial streams are transmitted in comparison
to the number of receive antennas. Interestingly, the worst-case
scenarios are not exactly the same when they are determined
based on SNR (cf. Fig. 3) and the antenna ratio (cf. Fig. 4).
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Fig. 4. Rate loss percentage vs. antenna ratios α = M/N for noisy setup
(EVM = −20 dB) when compared to ideal hardware at different SNRs.
The SNRs are selected to match the markers found in Fig. 3, except for the
high-SNR case of 16-QAM that corresponds to maximum rate loss at α = 2.
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curves define the (γ̄,EVM) pairs that result to rate losses higher than 5%,
and vice versa for the areas below the curves. For the full legend, see Fig. 3.

Finally, Fig. 5 represents the most processed form of the
new numerical results generated based on the replica analysis
to illustrate the ultimate EVM limits in efficient operation.
One should note that it would be nearly impossible, or at
least computationally prohibitive, to obtain equivalent results
from simulations unless considering Gaussian signaling, which
demonstrates the value of our theoretical study for the analysis
of digital modulation. In particular, Fig. 5 shows contours
for a rate loss of 5% in terms of both SNR and EVM
such that the MIMO link should operate below the curves
to meet this specific, reasonably tolerable, target when its
transmit-to-receive antenna ratio is fixed at the example values
α = M/N ∈ {1/2, 1, 2}. The lowest points of the curves yield
the ultimate worst-case scenarios in terms of SNR and EVM
limits below which the rate loss is small at any SNR.



TABLE I
SUGGESTED EVM TARGETS FOR DIGITAL MODULATION

transmit-to-receive antenna ratio, α = M/N
constellation 1/2 1 2
QPSK −15 dB −17 dB −21 dB
8-PSK −18 dB −20 dB −26 dB
16-QAM −21 dB −23 dB −31 dB
64-QAM∗ −29 dB

∗The target for 64-QAM with symmetric antenna configuration
is concluded from the numerical results of [20] for comparison.

V. DISCUSSION AND CONCLUSIONS

Considering a ‘binoisy’ channel model, we studied the
asymptotic (the number of transmit M and receive N antennas
grow without bound while their ratio α is fixed) achievable
rates of spatially multiplexed MIMO systems suffering from
transceiver hardware impairments. For optimal joint decoding,
where the receiver is designed and implemented explicitly
based on the generalized system model, expressions have been
given for the ergodic mutual information between the channel
inputs and outputs. The mathematical expressions provided in
the paper cover practical discrete modulation schemes such
as QAM and PSK, as well as capacity-achieving Gaussian
signaling. Finite-sized simulations were provided to verify the
accuracy of the asymptotic expressions.

The numerical results showed that the effects of transmit-
side noise depend non-trivially on multiple factors, including
the signal-to-noise ratio, modulation order and the level of
asymmetry in antenna array configurations. The results were
also used to identify the EVM values that allow for system
operation within a certain maximum rate loss percentage
compared to the ideal case. In the considered cases, the
asymmetry in antenna array configurations had the effect of
either increasing the relative rate loss (M > N ) or decreasing
the effect of transmit-side distortion (M < N ) when compared
to the standard, symmetric setup M = N , for the same
modulation order, EVM and SNR. Especially, the rate loss is
pronounced when the modulation order is increased and there
are a large number of independent transmit streams.

As an ultimate conclusion, we suggest a set of EVM targets
deduced from the numerical results to provide guidelines for
practical conformance testing and for justifying the cases
where conventional theoretical studies can convincingly ne-
glect transmitter hardware impairments: If the EVM remains
below the values tabulated in Table I, their effect can be
considered negligible. Rate loss is usually much less than 5%
if the SNR differs from a worst-case scenario and the antenna
ratio is less than the tabulated value. The values have also been
rounded down to 1 dB precision which adds safety margin.
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