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Abstract—An analysis of broadcasting in massive MIMO
(multiple-input and multiple-output) systems with a limited
coherence interval is presented. When broadcasting common
information, such as control signals, the base station does not
have channel state information to the terminals. We propose
that the base station broadcasts this common information using
a low dimensional orthogonal space-time block code (OSTBC).
This code is mapped onto the large antenna array with the use of
a dimension reducing matrix, effectively “shrinking” the channel.
The terminal can estimate the effective channel and decode the
information, even when the coherence interval is short compared
to the number of base station antennas. Different OSTBCs are
compared in terms of outage capacity in practical scenarios using
estimated CSI. In particular, the trade-off between diversity and
rate, when little or no time/frequency diversity is available, is
investigated.

I. INTRODUCTION

Massive MIMO (multiple-input and multiple-output) is a
contender for 5G wireless networks technology, where each
base station (BS) is equipped with a large number of antennas,
in the order of hundreds, serving many users in the same time-
frequency resource utilizing the large number of degrees of
freedom to perform spatial beamforming. To reap the benefits
of the massive array, to perform beamforming, the BS requires
channel state information (CSI), which is acquired through
uplink pilot transmission from the terminals.

Much previous work on massive MIMO has focused on
precoders/detectors, channel estimation, pilot allocation or
resource allocation, to improve the spectral efficiency of the
payload transmission. However, little attention has been given
to broadcasting channels, where the BS transmits common
information to all users in the cell, including the ones which
are not currently being served. One example is the transmis-
sion of control information—including system information,
paging information and random access information—which
is necessary for the system operation. In a massive MIMO
system, the BS will have to use these broadcast channels to
tell the inactive terminals to send pilots. This will probably be
a very short message, but still needs to be conveyed reliably.
Reliability is key here, since failure to detect causes delays and
false detection may cause unnecessary pilot contamination [1].

For the terminal to be aware of everything happening
in the cell, the terminal needs to continuously decode the
broadcasted information, even when it is idle. This calls for a
low complexity detection method to save energy.

When transmitting short packets, the whole packet may only
span one channel realization, consequently, time or frequency
diversity may not be available. Thus, in order to convey a
message reliably over a fading channel when little or no
time/frequency diversity is available, extra spatial diversity
from the coded transmission is desirable. In light of this, as
well as the need for low complexity detectors, this paper con-
siders broadcasting information using orthogonal space-time
block codes (OSTBCs). An OSTBC offers spatial diversity on
top of the time/frequency diversity offered by the channel and
is very simple to decode.

In general, when transmitting longer packets, the diversity
offered by a space-time code might not be as useful as when
transmitting short packets, for a number of reasons. Firstly,
in a low mobility scenario, the coherence interval is long,
so estimating the channel very accurately at the BS, through
feedback, is feasible. Secondly, in high mobility scenarios, or
if the channel is highly disperse, the channel offers enough
time/frequency diversity so the spatial diversity from the code
is redundant [2]. However, when short packets that require
low error probability are conveyed, space-time diversity may
be beneficial [2]. Moreover, looking at the outage performance
is more relevant in this scenario than the ergodic data rate that
assumes coding over many fading realizations.

With a limited coherence interval and a large number of
antennas at the BS, it is infeasible to send a pilot block from
the BS in order for the terminals to learn the complete channels
[3], [4]. In [3] we formulated this problem and suggested a
simple solution by spatial repetition of a lower dimensional
code over the antenna array. However, no further analysis was
conducted. The paper [4] follows a similar idea and optimizes
the mapping from the lower dimensional code to the antennas
to make the transmitted signal have constant envelope and the
BS to emit the signals isotropically. The main effect of this
mapping, however, is that it decreases the channel dimension.

This paper investigates how to choose the mapping from
the low dimensional code to the antenna array and analyzes
the performance of different OSTBCs in several practical
scenarios.

II. SYSTEM MODEL

We consider downlink transmission, without CSI at the
BS, in a single cell system. The BS is equipped with M0

antennas and serves a number of single antenna terminals.
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Furthermore, the terminals have high mobility, leading to a
limited coherence interval. We let τc denote the length of the
coherence interval, measured in transmission symbols.

As all terminals will receive the same information, we
consider a single arbitrary terminal within the cell. If τ is
the block length, where τ ≤ τc, the 1 × τ received signal
vector at the terminal can be expressed as

yH = gHX0 +wH, (1)

where gH ∈ C1×M0 , X0 ∈ CM0×τ and wH ∈ C1×τ are the
channel from the BS to the terminal, the transmitted symbol
block and white Gaussian noise, respectively. X0 in (1) can
represent both a pilot block, in case of channel estimation, and
a data block, in the case of data transfer.

For channel estimation, the BS transmits an orthogonal pilot
block, from which the terminal applies a maximum-likelihood
(ML) or a minimum mean squared error (MMSE) estimator
[5]. However, if τp (τp < τc) is the number of symbols spent
on pilots and τp < M0, the pilot block X0p ∈ CM0×τp is
tall. This means that the ML estimator cannot be used since
(X0pX

H
0p)

−1 does not exist. While the MMSE can be used,
the channel estimate will be confined to the column space of
X0p. If the coherence interval is limited, but τc > M0, both
of these estimation techniques can be used, but the pilot block
may eat up a large part of the coherence interval, leaving little
room for payload data.

A. The Dimension Reducing Matrix

To still be able to estimate the channel at the terminal,
even when the coherence interval is limited, the BS can use a
fixed matrix Φ ∈ CM0×M , to effectively reduce the channel
dimension. Here, M is referred to as the number of virtual
antennas (VAs). We call Φ a dimension-reducing (DR) matrix,
since it reduces channel dimension from M0 to M elements.

The BS uses the DR matrix to map a code of smaller
dimensions onto the large antenna array. Let X ∈ CM×τ be
a low dimensional code (M < M0). This smaller matrix is
mapped onto the array using Φ as

X0 = ΦX. (2)

By inserting (2) into (1) we get

yH = gHΦX +wH = hHX +wH, (3)

where h , ΦHg ∈ CM×1 is referred to as the effective
channel. Now, if the DR matrix is chosen in such a way that
M < τp, then the pilot block Xp ∈ CM×τp is a wide matrix,
and standard estimation techniques can be used to estimate all
dimensions of the effective channel. The DR matrix basically
spreads the low dimensional code matrix over the BS antennas.
In order to use this channel estimate, all subsequent data will
have to be sent using the same DR matrix. One very simple
example of Φ—if we assume M0 = Mr, where r is an
integer—is when the symbols are repeated cyclically over the

antennas, giving

X0 =
1√
r


X
X
...
X

 and Φ =
1√
r


IM
IM

...
IM

 .
We choose Φ to be semi-unitary, i.e., ΦHΦ = IM in order

to make tr(X0X
H
0 ) = tr(XXH). Hence, the output power

does not depend on the size of the BS array, but solely on the
underlying, lower dimensional code.

Any choice of Φ confines the effective channel to the
subspace spanned by the columns of ΦH. That is, the BS
implicitly beamforms into this subspace. For channels not
in this subspace (channels in the approximate nullspace of
ΦH), the channel gains will be small. If the true channel
stems from an i.i.d. Rayleigh fading distribution, however, this
does not matter because any randomly chosen (semi-unitary)
DR matrix will, statistically, be as good as any other, when
looking at many channel realizations. This is so since an i.i.d.
Rayleigh fading channel is statistically invariant to rotations. If
g ∼ CN (0, βIM0

), then h ∼ CN (0, βIM ), so the DR matrix
simply makes the effective channel smaller.

An alternative to choosing a random DR matrix, is to
optimize the DR matrix with respect to a particular metric.
In [4], the authors optimize this DR matrix to have constant
envelope and to make the BS emit energy isotropically. Here,
however, we let the DR matrix be semi-unitary and analyze
how to choose the dimensions of this matrix in different
scenarios.

However, if the channel does have a structure some choices
of the DR matrix will be better than others. To avoid beam-
forming in the wrong direction for an extended period of time
when the BS has no knowledge of the structure, the BS can
use a set of different DR matrices, and alternate between these.
If there is a statistical structure that the BS is aware of, the BS
can exploit this based on the dominating eigenspaces, similar
to the pilot optimization performed in [6].

In the remainder of this article, the word “channel” refers
to the smaller effective channel, h with M elements, unless
otherwise explicitly stated.

B. Channel Estimation

For the terminal to learn the channel, the BS transmits a
pilot block Xp ∈ CM×τp , known a priori to the terminal. The
terminal then computes the MMSE estimate of the channel
[5], i.e.,

ĥ = ChXp(I +XH
pChXp)

−1y, (4)

where it is assumed that the temporal noise correlation is
identity. Furthermore, we let the channel covariance matrix

Ch , E[hhH] = βIM ,

so (4) can be simplified to

ĥ = βXp(I + βXH
pXp)

−1y

= (Iβ−1 +XpX
H
p )

−1Xpy,
(5)



where β is a parameter depending on the physical position of
the terminal and is assumed to be constant for many coherence
intervals. Moreover, the pilot matrix is orthogonal and satisfies

XpX
H
p =

ρpτp
M

I,

where ρp is the normalized transmit power used for pilots. The
channel estimate has zero mean and the covariance

E[ĥĥ
H
] , Cĥ =

β2ρpτp
M + βρpτp

I. (6)

In addition, the channel estimation errors, h̃ , h − ĥ,
are statistically independent, have zero mean and covariance
Ch̃ = Ch −Cĥ.

Remark: Choosing a larger number M of VAs while spend-
ing the same amount of energy on pilots makes the channel
estimate worse in the sense that the error variance for each

element,
Mβ

M + βρpτp
, increases with M .

III. ACHIEVABLE RATES

We derive an achievable rate for when an arbitrary OSTBC
is used. Let X ∈ CM×τ be an OSTBC of the form

X =

ns∑
n=1

(Ans
R
n + iBns

I
n), (7)

where i is the imaginary unit and {sn} (sn = sRn + isIn) are
the symbols transmitted by the BS. Furthermore, the set of
matrices {An,Bn} is an amicable orthogonal design. These
matrices define the code and are used, together with the
symbols, to build up the codeword X . Moreover, the rate of
the code is ns/τ symbols per channel use.

To decode the data symbols, the terminal treats the estimated
channel in (4) as the true channel. Hence, in the following
calculations, all expectations are taken conditioned on ĥ. The
estimate of the real (or imaginary) part of symbol sn is given
by multiplying the received signal with AH

n ĥ (or −iBH
n ĥ)

from the right, followed by taking the real part, i.e., the
estimate of the real part of sn is1 [7, Theorem 7.3]

ŝRn = <
(
yHAH

nĥ
)
= <

(
hHXAH

k ĥ+wHAH
nĥ
)

= <
(
ĥ

H
XAH

nĥ− h̃
H
XAH

nĥ+wHAH
nĥ
)

= ||ĥ||2sRn −< (en1 ) + < (en2 ) ,

(8)

where we in the last equality use the fact that

<
(
vHAkA

H
nv
)
= 0, k 6= n and <

(
ivHBkA

H
nv
)
= 0, ∀k,

for any complex vector v. Moreover, in (8) we have defined the
error terms en1 , h̃

H
XAH

nĥ and en2 , wHAH
nĥ. The first error

term is the error associated with the channel estimation error,
while the second error term stems from the white Gaussian
noise.

In order to find an achievable rate, the signal-to-noise ratio
(SNR) of each decoded symbol is calculated using the conven-
tional approach from [8] to compute a lower bound on mutual

1For the imaginary part, the calculations are almost identical.

information. The two error terms in (8) are uncorrelated, so
the error variance is the sum of the variance of the errors.
With

E
[
|en1 |2|ĥ

]
= E

[
ĥ

H
AnX

Hh̃h̃
H
XAH

nĥ|ĥ
]

= ĥ
H
AnE

[
XHCh̃X

]
AH
nĥ,

(9)

and

E
[
|en2 |2|ĥ

]
= E

[
ĥ

H
AnwwHAH

nĥ|ĥ
]
= ||ĥ||2 (10)

the SNR for the complex2 symbol sn is

SNRn =
||ĥ||4E[|sn|2]

||ĥ||2 + ĥ
H
AnE

[
XHCh̃X

]
AH
nĥ

. (11)

Note that the SNR is not necessarily the same for all received
symbols for one specific channel estimate. As a special case
we consider square OSTBC3, where M = τ , which implies

E
[
XXH] = E

[
XHX

]
=

ns∑
n=1

E
[
|sn|2

]
IM =

ρdτ

M
IM ,

where ρd is the normalized transmit power used to transmit
data. With this we can simplify the SNR expression in (11) to

SNR = ||ĥ||2 ρdτ
Mns

/(
1 +

βρdτ

M + βρpτp

)
. (12)

IV. PERFORMANCE METRICS

In the case of little or no time/frequency diversity and
tight latency constraints, the outage capacity is a meaningful
performance metric. Furthermore, in this setting, the outage
capacity is a good approximation of the maximal achievable
rate R∗(n, ε) for blocklength n and error probability ε [10].

In this paper we consider short messages, of finite block
length and therefore a finite number of diversity branches
[11] or channel realizations. For an OSTBC with rate ns/τ ,
spanning L diversity branches, resulting in SNRs equal to
SNRl, l = 1, . . . , L, the outage probability is

pout(R)=Pr

{
(τc−τp)ns
Lτcτ

L∑
l=1

log2(1+SNRl)<R

}
, (13)

where (τc − τp)/τc is the fraction of the coherence interval
spent on payload data. The ε-outage rate of a code is defined
as the maximum rate, R, for which pout(R) < ε. Note that if
we let L→∞, the outage rate coincides with the ergodic rate
of the code.

The number of diversity branches, L, is a measure of
how much time/frequency diversity the channel provides. If
L is large, the added diversity from the space-time codes
is somewhat superfluous and it would probably be better to
prioritize high rate instead of high diversity, when choosing
code. However, if L is small, the added diversity from the
space-time code might be very beneficial. In the following
section, we quantify these intuitive claims.

2Note that taking the real part of the above errors effectively divides the
variance in 2. However, when the variances of both the real and imaginary
part are added, the 2 cancels out.

3The famous Alamouti [9] scheme is one example of a square OSTBC.



V. RATE VERSUS DIVERSITY

To see the trade-off between rate and diversity, four different
OSTBCs are considered, summarized in Table I. The first code
is the Alamouti code, and the other three can be found in [7].4

TABLE I
SUMMARY OF THE DIFFERENT CODES INVESTIGATED.

code id M τ ns Rate (ns/τ )
ala 2 2 2 1
343 3 4 3 3/4
443 4 4 3 3/4
884 8 8 4 1/2

The scenario considered is of a single resource-block pair
[12] in LTE consisting of 12 subcarriers and 14 OFDM
symbols, adding up to a coherence interval of τc = 168 sym-
bols. 1 ms (the length of 14 OFDM symbols) approximately
corresponds to the coherence time experienced at highway
speed, when using a 2 GHz carrier.

Since the terminal works with estimated CSI, part of the
coherence interval will be spent on pilots, and channel esti-
mation for codes with more VAs will consume a larger part
of the coherence interval. Here we assume that τp = M , i.e.
as few symbols as possible are spent on the pilot sequence.
However, the normalized transmit power of the BS is the same.
This means that a large code will spend more energy in total
on pilots, so that the channel estimate is of similar quality,
no matter what code we pick. The total normalized power
spent on the τc symbols is ρτc. We assume that the normalized
powers in the training phase and data phase are equal to ρ.

A. The Cost of More Virtual Antennas

When is more VAs beneficial, and at what point does the
cost of estimating more channel coefficients outweigh the gain
from the extra diversity? To shed some light on this, we
compare two codes with the same rate, but different number
of virtual antennas, i.e., 343 and 443 from Table I.

Figure 1 shows the ergodic capacity and the outage rate for
ε = 10−5 for codes 343 and 443, using estimated CSI. As
can be seen, the number of VAs has little impact on the ergodic
capacity (L → ∞). We see that even with more training (4
symbols compared to 3), the code with more spatial diversity
has a little advantage. However, if equal amount of energy
would be spent on pilots, the code with fewer VAs would be
better. The reason is that when the same amount of energy is
spent on pilots, there is less energy spent on each estimated
channel coefficient for the code with more spatial diversity.

Looking at the other extreme, when no time/frequency
diversity is available (L = 1), the curves shows that the benefit
of having extra diversity from the additional VA is greater than
the cost of having to estimate one more channel coefficient.
This means that square codes (M = τ ) are preferred, when
there is very little time/frequency diversity.

4Investigating larger codes is part of future work.
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Fig. 1. Comparison of the ergodic and outage (ε = 10−5) rate of a square
OSTBC and a rectangular OSTBC with the same pre-log factor. The two
codes are almost equal when looking at ergodic rate, but the code with more
spatial diversity performs better in a low diversity scenario.

B. Low Diversity Scenario

In a low diversity scenario (L = 1) we concluded in
Section V-A that square codes are preferred to rectangular
codes. Hence, here we compare the outage rate of the three
square codes from Table I. To see how each of these codes
perform, we use the SNR expression in (12). For the ergodic
rates, the pre-log factor is the most important thing, which
basically means that the ala code (M = 2) is the best choice,
since it is the only code in Table I with rate 1.

Looking at Figure 2, more antennas are beneficial at low
normalized transmit power. The increase in diversity more than
compensates for the loss in rate given by the pre-log factor.
However, at high normalized transmit power, the pre-log factor
ns/τ determines the slope of the rate curve. This means that
the codes with the largest pre-log factor will dominate the
others. In other words the ala code is optimal in this sense,
for high normalized transmit powers.

As shown in Figure 2, the best choice of the number of VAs
varies, depending on the rate of communication. For example,
if 1 bit/s/Hz is sufficient, the 884 code is the best, since we can
communicate with an error probability less than 10−5 using
less power than the other codes. As the rate demand increases,
so will the preference of rate over diversity when choosing
which code to use. The 443 code is the best if the rate demand
is around 7 bit/s/Hz, while the rate demand has to exceed 12
bit/s/Hz for the ala code to be the preferred choice.

A looser reliability constraint favors codes with higher rates.
If we would loosen the reliability constraint, to ε = 10−3, for
example (not shown due to lack of space), the curves would
shift to the left. Other than the higher rates, we would see
that the intersections of the curves are moved even further
to the left. For example, if communication with 3 bit/s/Hz is
required, then the 884 code is the best choice for the case of
error probability less than 10−5, while the 443 code is better
if the error probability is less than 10−3.
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Fig. 2. Outage rates for the three square codes in Table I with error probability
10−5. L = 1 diversity branch and packet length 168 symbols, giving a
coherence interval of τc = 168/1 = 168 symbols.

C. Intermediate Diversity Scenario

We now consider the case when we have a stringent delay
constraint, but are allowed to spread out the subcarriers over
a larger bandwidth. If the subcarriers are far enough apart, it
is reasonable to assume that each one sees a different channel
realization. Hence, here we have L = 12 diversity branches.
Here we have more frequency diversity than in the previous
case, but still not as much to be able to say that the ergodic
rate is a good metric.

Since we now average over 12 realizations, the outage
capacity will improve, but at the cost of training. Since all 12
channels need to be estimated by the terminal, the BS needs
to send pilots on each of the diversity branches. Each branch
is now only 14 symbols long, which means that training takes
up a significant part of the coherence interval.

Comparing Figure 3 with Figure 2 we see that, because of
the increased cost of training, codes with more diversity are not
as dominant, even for very low rates. Adding more diversity
branches quickly reaches the point of diminishing returns for
this scenario. The rates are also significantly lower, as a large
part of the coherence interval is used for pilots.

VI. CONCLUSION

When broadcasting common information in a massive
MIMO system, the information needs to be conveyed from
the BS to terminals for which no CSI is available at the BS.
We derived an achievable rate for an arbitrary OSTBC and
analyzed the performance of different codes when the packet
length is short and reliability is important. As seen in the
numerical analysis, the optimal choice of the number of virtual
antennas (or dimension of the code) varies with reliability
and rate requirements. The numerical results indicate that, for
moderate rates in a low diversity scenario, the high diversity
code is preferred. The Alamouti code performs well if there is
enough time and/or frequency diversity, but falls behind codes
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Fig. 3. Outage rates for the four codes in Table I with error probability 10−5.
L = 12 diversity branches and packet length 168 symbols, giving a coherence
interval of τc = 168/12 = 14 symbols.

with more spatial diversity when time/frequency diversity
is limited. In a low diversity scenario, where the message
only sees one channel realization additional diversity offered
by the code seems necessary, especially when the reliability
constraint is tightened.

REFERENCES

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, November 2010.

[2] A. Lozano and N. Jindal, “Transmit diversity vs. spatial multiplexing in
modern MIMO systems,” IEEE Trans. Wireless Commun., vol. 9, no. 1,
pp. 186–197, January 2010.

[3] M. Karlsson and E. Larsson, “On the operation of massive MIMO with
and without transmitter csi,” in 2014 IEEE 15th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC),
June 2014, pp. 1–5.

[4] X. Meng, X.-G. Xia, and X. Gao, “Constant-envelope omni-directional
transmission with diversity in massive MIMO systems,” in 2014 IEEE
Global Communications Conference (GLOBECOM), Dec 2014, pp.
3784–3789.

[5] M. Biguesh and A. Gershman, “Downlink channel estimation in cellular
systems with antenna arrays at base stations using channel probing with
feedback,” EURASIP J. Appl. Signal Process., no. 9, pp. 1330–1339,
2004.

[6] E. Björnson and B. Ottersten, “A framework for training-based esti-
mation in arbitrarily correlated Rician MIMO channels with Rician
disturbance,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1807–
1820, 2010.

[7] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless
Communications. New York, NY, USA: Cambridge University Press,
2003.

[8] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading
MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory,
vol. 52, no. 5, pp. 2203–2214, 2006.

[9] S. Alamouti, “A simple transmit diversity technique for wireless commu-
nications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,
Oct 1998.

[10] W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-
antenna fading channels at finite blocklength,” IEEE Trans. Inf. Theory,
vol. 60, no. 7, pp. 4232–4265, July 2014.
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