liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Schön, Thomas
Alternativa namn
Publikationer (10 of 159) Visa alla publikationer
Dahlin, J., Lindsten, F. & Schön, T. (2015). Particle Metropolis-Hastings using gradient and Hessian information. Statistics and computing, 25(1), 81-92
Öppna denna publikation i ny flik eller fönster >>Particle Metropolis-Hastings using gradient and Hessian information
2015 (Engelska)Ingår i: Statistics and computing, ISSN 0960-3174, E-ISSN 1573-1375, Vol. 25, nr 1, s. 81-92Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Particle Metropolis-Hastings (PMH) allows for Bayesian parameter inference in nonlinear state space models by combining MCMC and particle filtering. The latter is used to estimate the intractable likelihood. In its original formulation, PMH makes use of a marginal MCMC proposal for the parameters, typically a Gaussian random walk. However, this can lead to a poor exploration of the parameter space and an inefficient use of the generated particles.

We propose two alternative versions of PMH that incorporate gradient and Hessian information about the posterior into the proposal. This information is more or less obtained as a byproduct of the likelihood estimation. Indeed, we show how to estimate the required information using a fixed-lag particle smoother, with a computational cost growing linearly in the number of particles. We conclude that the proposed methods can: (i) decrease the length of the burn-in phase, (ii) increase the mixing of the Markov chain at the stationary phase, and (iii) make the proposal distribution scale invariant which simplifies tuning.

Ort, förlag, år, upplaga, sidor
Springer, 2015
Nationell ämneskategori
Reglerteknik Signalbehandling Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-106749 (URN)10.1007/s11222-014-9510-0 (DOI)000349028500013 ()
Projekt
Probabilistic modelling of dynamical systems
Forskningsfinansiär
Vetenskapsrådet, 621-2013-5524
Anmärkning

On the day of the defence date the status of this article was Manuscript.

Tillgänglig från: 2014-05-21 Skapad: 2014-05-21 Senast uppdaterad: 2019-12-02Bibliografiskt granskad
Valenzuela, P. E., Dahlin, J., Rojas, C. R. & Schön, T. (2014). A graph/particle-based method for experiment design in nonlinear systems. In: Edward Boje and Xiaohua Xia (Ed.), Proceedings of the 19th IFAC World Congress, 2014: . Paper presented at 19th IFAC World Congress, Cape Town, South Africa, August 24-29 (pp. 1404-1409). International Federation of Automatic Control
Öppna denna publikation i ny flik eller fönster >>A graph/particle-based method for experiment design in nonlinear systems
2014 (Engelska)Ingår i: Proceedings of the 19th IFAC World Congress, 2014 / [ed] Edward Boje and Xiaohua Xia, International Federation of Automatic Control , 2014, s. 1404-1409Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose an extended method for experiment design in nonlinear state space models. The proposed input design technique optimizes a scalar cost function of the information matrix, by computing the optimal stationary probability mass function (pmf) from which an input sequence is sampled. The feasible set of the stationary pmf is a polytope, allowing it to be expressed as a convex combination of its extreme points. The extreme points in the feasible set of pmf’s can be computed using graph theory. Therefore, the final information matrix can be approximated as a convex combination of the information matrices associated with each extreme point. For nonlinear systems, the information matrices for each extreme point can be computed by using particle methods. Numerical examples show that the proposed techniquecan be successfully employed for experiment design in nonlinear systems.

Ort, förlag, år, upplaga, sidor
International Federation of Automatic Control, 2014
Serie
World Congress, ISSN 1474-6670 ; Volumen 19, Part 1
Nationell ämneskategori
Reglerteknik Signalbehandling Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-106751 (URN)10.3182/20140824-6-ZA-1003.00361 (DOI)978-3-902823-62-5 (ISBN)
Konferens
19th IFAC World Congress, Cape Town, South Africa, August 24-29
Projekt
Probabilistic modelling of dynamical systems
Forskningsfinansiär
Vetenskapsrådet, 621-2013-5524
Tillgänglig från: 2014-05-21 Skapad: 2014-05-21 Senast uppdaterad: 2016-05-04Bibliografiskt granskad
Dahlin, J., Schön, T. B. & Villani, M. (2014). Approximate inference in state space models with intractable likelihoods using Gaussian process optimisation.
Öppna denna publikation i ny flik eller fönster >>Approximate inference in state space models with intractable likelihoods using Gaussian process optimisation
2014 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

We propose a novel method for MAP parameter inference in nonlinear state space models with intractable likelihoods. The method is based on a combination of Gaussian process optimisation (GPO), sequential Monte Carlo (SMC) and approximate Bayesian computations (ABC). SMC and ABC are used to approximate the intractable likelihood by using the similarity between simulated realisations from the model and the data obtained from the system. The GPO algorithm is used for the MAP parameter estimation given noisy estimates of the log-likelihood. The proposed parameter inference method is evaluated in three problems using both synthetic and real-world data. The results are promising, indicating that the proposed algorithm converges fast and with reasonable accuracy compared with existing methods.

Förlag
s. 25
Serie
LiTH-ISY-R, ISSN 1400-3902 ; 3075
Nyckelord
Approximate Bayesian computations, Gaussian process optimisation, Bayesian parameter inference, alpha-stable distribution
Nationell ämneskategori
Sannolikhetsteori och statistik Reglerteknik Signalbehandling
Identifikatorer
urn:nbn:se:liu:diva-106198 (URN)LiTH-ISY-R-3075 (ISRN)
Forskningsfinansiär
Vetenskapsrådet, 621-2013-5524
Tillgänglig från: 2014-04-28 Skapad: 2014-04-28 Senast uppdaterad: 2016-05-04Bibliografiskt granskad
Andersson Naesseth, C., Lindsten, F. & Schön, T. (2014). Capacity estimation of two-dimensional channels using Sequential Monte Carlo. In: 2014 IEEE Information Theory Workshop: . Paper presented at Information Theory Workshop (pp. 431-435).
Öppna denna publikation i ny flik eller fönster >>Capacity estimation of two-dimensional channels using Sequential Monte Carlo
2014 (Engelska)Ingår i: 2014 IEEE Information Theory Workshop, 2014, s. 431-435Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We derive a new Sequential-Monte-Carlo-based algorithm to estimate the capacity of two-dimensional channel models. The focus is on computing the noiseless capacity of the 2-D (1, ∞) run-length limited constrained channel, but the underlying idea is generally applicable. The proposed algorithm is profiled against a state-of-the-art method, yielding more than an order of magnitude improvement in estimation accuracy for a given computation time.

Nationell ämneskategori
Reglerteknik Datavetenskap (datalogi) Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-112966 (URN)10.1109/ITW.2014.6970868 (DOI)
Konferens
Information Theory Workshop
Tillgänglig från: 2015-01-06 Skapad: 2015-01-06 Senast uppdaterad: 2018-11-09
Kronander, J., Dahlin, J., Jönsson, D., Kok, M., Schön, T. & Unger, J. (2014). Real-time video based lighting using GPU raytracing. In: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), 2014: . Paper presented at 22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 September 2014, Lisbon, Portugal. IEEE Signal Processing Society
Öppna denna publikation i ny flik eller fönster >>Real-time video based lighting using GPU raytracing
Visa övriga...
2014 (Engelska)Ingår i: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), 2014, IEEE Signal Processing Society, 2014Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The recent introduction of HDR video cameras has enabled the development of image based lighting techniques for rendering virtual objects illuminated with temporally varying real world illumination. A key challenge in this context is that rendering realistic objects illuminated with video environment maps is computationally demanding. In this work, we present a GPU based rendering system based on the NVIDIA OptiX framework, enabling real time raytracing of scenes illuminated with video environment maps. For this purpose, we explore and compare several Monte Carlo sampling approaches, including bidirectional importance sampling, multiple importance sampling and sequential Monte Carlo samplers. While previous work have focused on synthetic data and overly simple environment maps sequences, we have collected a set of real world dynamic environment map sequences using a state-of-art HDR video camera for evaluation and comparisons.

Ort, förlag, år, upplaga, sidor
IEEE Signal Processing Society, 2014
Serie
Proceedings of the European Signal Processing Conference, ISSN 2076-1465
Nyckelord
High dynamic range imaging, image synthesis, iamge based lighting
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:liu:diva-107638 (URN)000393420200327 ()
Konferens
22nd European Signal Processing Conference (EUSIPCO 2014), 1-5 September 2014, Lisbon, Portugal
Projekt
VPS
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), IISS-0081
Tillgänglig från: 2014-06-17 Skapad: 2014-06-17 Senast uppdaterad: 2018-07-19Bibliografiskt granskad
Dahlin, J., Lindsten, F. & Schön, T. (2014). Second-Order Particle MCMC for Bayesian Parameter Inference. In: Proceedings of the 19th IFAC World Congress: . Paper presented at 19th IFAC World Congress, Cape Town, South Africa, August 24-29, 2014 (pp. 8656-8661).
Öppna denna publikation i ny flik eller fönster >>Second-Order Particle MCMC for Bayesian Parameter Inference
2014 (Engelska)Ingår i: Proceedings of the 19th IFAC World Congress, 2014, s. 8656-8661Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose an improved proposal distribution in the Particle Metropolis-Hastings (PMH) algorithm for Bayesian parameter inference in nonlinear state space models. This proposal incorporates second-order information about the parameter posterior distribution, which can be extracted from the particle filter already used within the PMH algorithm. The added information makes the proposal scale-invariant, simpler to tune and can possibly also shorten the burn-in phase. The proposed algorithm has a computational cost which is proportional to the number of particles, i.e. the same as the original marginal PMH algorithm. Finally, we provide two numerical examples that illustrates some of the possible benefits of adding the second-order information.

Nyckelord
Particle filtering/Monte Carlo methods; Nonlinear system identification; Bayesian methods
Nationell ämneskategori
Reglerteknik Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-113997 (URN)10.3182/20140824-6-ZA-1003.00277 (DOI)
Konferens
19th IFAC World Congress, Cape Town, South Africa, August 24-29, 2014
Projekt
CADICS
Forskningsfinansiär
Vetenskapsrådet, 621-2013-5524
Tillgänglig från: 2015-02-05 Skapad: 2015-02-05 Senast uppdaterad: 2016-05-04
Andersson Naesseth, C., Lindsten, F. & Schön, T. (2014). Sequential Monte Carlo for Graphical Models. In: Advances in Neural Information Processing Systems: . Paper presented at Neural Information Processing Systems (NIPS) (pp. 1862-1870).
Öppna denna publikation i ny flik eller fönster >>Sequential Monte Carlo for Graphical Models
2014 (Engelska)Ingår i: Advances in Neural Information Processing Systems, 2014, s. 1862-1870Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distribution defined by the PGM. One of the key merits of the SMC sampler is that it provides an unbiased estimate of the partition function of the model. We also show how it can be used within a particle Markov chain Monte Carlo framework in order to construct high-dimensional block-sampling algorithms for general PGMs.

Nationell ämneskategori
Datavetenskap (datalogi) Sannolikhetsteori och statistik Reglerteknik
Identifikatorer
urn:nbn:se:liu:diva-112967 (URN)
Konferens
Neural Information Processing Systems (NIPS)
Tillgänglig från: 2015-01-06 Skapad: 2015-01-06 Senast uppdaterad: 2018-11-09Bibliografiskt granskad
Taghavi, E., Lindsten, F., Svensson, L. & Schön, T. B. (2013). Adaptive stopping for fast particle smoothing. In: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP): . Paper presented at 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013; Vancouver, BC; Canada (pp. 6293-6297). IEEE
Öppna denna publikation i ny flik eller fönster >>Adaptive stopping for fast particle smoothing
2013 (Engelska)Ingår i: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE , 2013, s. 6293-6297Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Particle smoothing is useful for offline state inference and parameter learning in nonlinear/non-Gaussian state-space models. However, many particle smoothers, such as the popular forward filter/backward simulator (FFBS), are plagued by a quadratic computational complexity in the number of particles. One approach to tackle this issue is to use rejection-sampling-based FFBS (RS-FFBS), which asymptotically reaches linear complexity. In practice, however, the constants can be quite large and the actual gain in computational time limited. In this contribution, we develop a hybrid method, governed by an adaptive stopping rule, in order to exploit the benefits, but avoid the drawbacks, of RS-FFBS. The resulting particle smoother is shown in a simulation study to be considerably more computationally efficient than both FFBS and RS-FFBS.

Ort, förlag, år, upplaga, sidor
IEEE, 2013
Nyckelord
Sequential Monte Carlo, particle smoothing, backward simulation
Nationell ämneskategori
Signalbehandling Reglerteknik
Identifikatorer
urn:nbn:se:liu:diva-93461 (URN)10.1109/ICASSP.2013.6638876 (DOI)978-147990356-6 (ISBN)
Konferens
38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013; Vancouver, BC; Canada
Projekt
CNDMCADICS
Forskningsfinansiär
Vetenskapsrådet, 621-2010-5876
Tillgänglig från: 2013-06-03 Skapad: 2013-06-03 Senast uppdaterad: 2014-12-02
Lindsten, F. & Schön, T. B. (2013). Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1), 1-143
Öppna denna publikation i ny flik eller fönster >>Backward simulation methods for Monte Carlo statistical inference
2013 (Engelska)Ingår i: Foundations and Trends in Machine Learning, ISSN 1935-8237, Vol. 6, nr 1, s. 1-143Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machine learning. These methods have had a profound impact on statistical inference in a wide range of application areas where probabilistic models are used. Moreover, there are many algorithms in machine learning which are based on the idea of processing the data sequentially, first in the forward direction and then in the backward direction. In this tutorial we will review a branch of Monte Carlo methods based on the forward-backward idea, referred to as backward simulators. These methods are useful for learning and inference in probabilistic models containing latent stochastic processes. The theory and practice of backward simulation algorithms have undergone a significant development in recent years and the algorithms keep finding new applications. The foundation for these methods is sequential Monte Carlo (SMC). SMC-based backward simulators are capable of addressing smoothing problems in sequential latent variable models, such as general, nonlinear/non-Gaussian state-space models (SSMs). However, we will also clearly show that the underlying backward simulation idea is by no means restricted to SSMs. Furthermore, backward simulation plays an important role in recent developments of Markov chain Monte Carlo (MCMC) methods. Particle MCMC is a systematic way of using SMC within MCMC. In this framework, backward simulation gives us a way to significantly improve the performance of the samplers. We review and discuss several related backward-simulation-based methods for state inference as well as learning of static parameters, both using a frequentistic and a Bayesian approach.

Nyckelord
Bayesian learning, Markov chain Monte Carlo, Nonlinear signal processing, Particle smoothing, Sequential Monte Carlo
Nationell ämneskategori
Reglerteknik Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-98294 (URN)10.1561/2200000045 (DOI)
Projekt
CNDMCADICS
Forskningsfinansiär
Vetenskapsrådet
Tillgänglig från: 2013-10-07 Skapad: 2013-10-07 Senast uppdaterad: 2013-10-08
Lindsten, F., Schön, T. & Jordan, M. I. (2013). Bayesian semiparametric Wiener system identification. Automatica, 49(7), 2053-2063
Öppna denna publikation i ny flik eller fönster >>Bayesian semiparametric Wiener system identification
2013 (Engelska)Ingår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 49, nr 7, s. 2053-2063Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a novel method for Wiener system identification. The method relies on a semiparametric, i.e. a mixed parametric/nonparametric, model of a Wiener system. We use a state-space model for the linear dynamical system and a nonparametric Gaussian process model for the static nonlinearity. We avoid making strong assumptions, such as monotonicity, on the nonlinear mapping. Stochastic disturbances, entering both as measurement noise and as process noise, are handled in a systematic manner. The nonparametric nature of the Gaussian process allows us to handle a wide range of nonlinearities without making problem-specific parameterizations. We also consider sparsity-promoting priors, based on generalized hyperbolic distributions, to automatically infer the order of the underlying dynamical system. We derive an inference algorithm based on an efficient particle Markov chain Monte Carlo method, referred to as particle Gibbs with ancestor sampling. The method is profiled on two challenging identification problems with good results. Blind Wiener system identification is handled as a special case.

Ort, förlag, år, upplaga, sidor
Elsevier, 2013
Nyckelord
System identification, Wiener, Block-oriented models, Gaussian process, Semiparametric, Particle filter, Ancestor sampling, Particle Markov chain Monte Carlo
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-95954 (URN)10.1016/j.automatica.2013.03.021 (DOI)000321233900011 ()
Anmärkning

Funding Agencies|project Calibrating Nonlinear Dynamical Models|621-2010-5876|Swedish Research Council||CADICS||Linnaeus Center||

Tillgänglig från: 2013-08-19 Skapad: 2013-08-12 Senast uppdaterad: 2017-12-06
Organisationer

Sök vidare i DiVA

Visa alla publikationer