liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Crispin, Xavier, ProfessorORCID iD iconorcid.org/0000-0001-8845-6296
Alternativa namn
Publikationer (10 of 125) Visa alla publikationer
Kim, N., Petsagkourakis, I., Chen, S., Berggren, M., Crispin, X., Jonsson, M. & Zozoulenko, I. (2019). Electric Transport Properties in PEDOT Thin Films. In: John R. Reynolds; Barry C. Thompson; Terje A. Skotheim (Ed.), Conjugated Polymers: Properties, Processing, and Applications (pp. 45-128). Boca Raton: CRC Press
Öppna denna publikation i ny flik eller fönster >>Electric Transport Properties in PEDOT Thin Films
Visa övriga...
2019 (Engelska)Ingår i: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, s. 45-128Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

Ort, förlag, år, upplaga, sidor
Boca Raton: CRC Press, 2019
Nationell ämneskategori
Materialteknik Biomaterial
Identifikatorer
urn:nbn:se:liu:diva-160891 (URN)10.1201/9780429190520-3 (DOI)9780429190520 (ISBN)
Tillgänglig från: 2019-10-14 Skapad: 2019-10-14 Senast uppdaterad: 2019-10-14Bibliografiskt granskad
Fahlman, M., Fabiano, S., Gueskine, V., Simon, D. T., Berggren, M. & Crispin, X. (2019). Interfaces in organic electronics. Nature Reviews Materials
Öppna denna publikation i ny flik eller fönster >>Interfaces in organic electronics
Visa övriga...
2019 (Engelska)Ingår i: Nature Reviews Materials, E-ISSN 2058-8437Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2019
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:liu:diva-160114 (URN)10.1038/s41578-019-0127-y (DOI)2-s2.0-85069828729 (Scopus ID)
Tillgänglig från: 2019-09-05 Skapad: 2019-09-23 Senast uppdaterad: 2019-09-10Bibliografiskt granskad
Zhao, D., Martinelli, A., Willfahrt, A., Fischer, T., Bernin, D., Ullah Khan, Z., . . . Crispin, X. (2019). Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nature Communications, 10, Article ID 1093.
Öppna denna publikation i ny flik eller fönster >>Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles
Visa övriga...
2019 (Engelska)Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1093Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2019
Nyckelord
Ionic Thermopiles; thermoelectric; screen printing; ionic liquid
Nationell ämneskategori
Annan fysik
Identifikatorer
urn:nbn:se:liu:diva-154943 (URN)10.1038/s41467-019-08930-7 (DOI)000460410800001 ()30842422 (PubMedID)
Anmärkning

Funding agencies:  Swedish research council [2016-03979, 2015-05070]; Swedish Governmental Agency for Innovation Systems [2015-04859]; Advanced Functional Materials Center at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; United States National Science Found

Tillgänglig från: 2019-03-06 Skapad: 2019-03-06 Senast uppdaterad: 2019-03-26Bibliografiskt granskad
Li, Z., Sun, H., Hsiao, C.-L., Yao, Y., Xiao, Y., Shahi, M., . . . Zhang, F. (2018). A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS. Advanced Electronic Materials, 4(2), Article ID 1700496.
Öppna denna publikation i ny flik eller fönster >>A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS
Visa övriga...
2018 (Engelska)Ingår i: Advanced Electronic Materials, ISSN 2199-160X, Vol. 4, nr 2, artikel-id 1700496Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2018
Nyckelord
free-standing PEDOT:PSS film; output power density; p-type; thermoelectric generators
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:liu:diva-145465 (URN)10.1002/aelm.201700496 (DOI)000424888600015 ()2-s2.0-85039784826 (Scopus ID)
Anmärkning

Funding Agencies|Vinnova Marie Curie incoming project [2016-04112]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [200900971]; Recruitment Program of Global Youth Experts; National Natural Science Foundation of China [21474035]; United States National Science Foundation [DMR-1262261]; Open Fund of the State Key Laboratory of Luminescent Materials and Devices [2016-skllmd-03]; European Research Council [ERC 307596]

Tillgänglig från: 2018-03-13 Skapad: 2018-03-13 Senast uppdaterad: 2018-04-09Bibliografiskt granskad
Wijeratne, K., Ail, U., Brooke, R., Vagin, M., Liu, X., Fahlman, M. & Crispin, X. (2018). Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.. Proceedings of the National Academy of Sciences of the United States of America (7), 11899-11904
Öppna denna publikation i ny flik eller fönster >>Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.
Visa övriga...
2018 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, nr 7, s. 11899-11904Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

Ort, förlag, år, upplaga, sidor
National academy of sciences, 2018
Nyckelord
conducting polymer, electron transfer, thermogalvanic cell
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-152759 (URN)10.1073/pnas.1806087115 (DOI)000450642800036 ()30397110 (PubMedID)
Anmärkning

Funding agencies: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University Faculty Grant [SFO-Mat-LiU 2009-00971]

Tillgänglig från: 2018-11-20 Skapad: 2018-11-20 Senast uppdaterad: 2019-03-21
Che, C., Vagin, M., Wijeratne, K., Zhao, D., Warczak, M., Jonsson, M. & Crispin, X. (2018). Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels. Advanced Sustainable Systems, 317
Öppna denna publikation i ny flik eller fönster >>Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels
Visa övriga...
2018 (Engelska)Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2018
Nationell ämneskategori
Kemi
Identifikatorer
urn:nbn:se:liu:diva-148575 (URN)10.1002/adsu.201800021 (DOI)
Tillgänglig från: 2018-06-13 Skapad: 2018-06-13 Senast uppdaterad: 2018-06-26
Edberg, J., Malti, A., Granberg, H., Hamedi, M. M., Crispin, X., Engquist, I. & Berggren, M. (2017). Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite. Flexible and printed electronics, 4(2), Article ID 045010.
Öppna denna publikation i ny flik eller fönster >>Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite
Visa övriga...
2017 (Engelska)Ingår i: Flexible and printed electronics, E-ISSN 2058-8585, Vol. 4, nr 2, artikel-id 045010Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics(an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm−1 ). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NOR logic.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2017
Nyckelord
organic electronics, PEDOT, nanocellulose, organic electrochemical transistors, supercapacitors, composites, flexible electronics
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:liu:diva-145181 (URN)10.1088/2058-8585/aa8027 (DOI)2-s2.0-85041011470 (Scopus ID)
Tillgänglig från: 2018-02-13 Skapad: 2018-02-13 Senast uppdaterad: 2019-01-09Bibliografiskt granskad
Malti, A., Edberg, J., Granberg, H., Ullah Khan, Z., Andreasen, J. W., Liu, X., . . . Berggren, M. (2016). An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, Article ID 1500305.
Öppna denna publikation i ny flik eller fönster >>An Organic Mixed Ion–Electron Conductor for Power Electronics
Visa övriga...
2016 (Engelska)Ingår i: Advanced Science, ISSN 2198-3844, artikel-id 1500305Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2016
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-123225 (URN)10.1002/advs.201500305 (DOI)000370336500011 ()
Anmärkning

Funding agencies:  Knut and Alice Wallenberg foundation [KAW 2011.0050]; Onnesjo Foundation; Advanced Functional Materials Center at Linkoping University; Stiftelsen for strategisk forskning (SSF); RISE Research Institutes of Sweden; U.S. National Science Foundation [DMR-12

Tillgänglig från: 2015-12-08 Skapad: 2015-12-08 Senast uppdaterad: 2018-02-15
Bao, Q., Fabiano, S., Andersson, M., Braun, S., Sun, Z., Crispin, X., . . . Fahlman, M. (2016). Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition. Advanced Functional Materials, 26(7), 1077-1084
Öppna denna publikation i ny flik eller fönster >>Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition
Visa övriga...
2016 (Engelska)Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 7, s. 1077-1084Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The semiconductor-electrode interface impacts the function and the performance of (opto) electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, LangmuirShafer-manufactured homogenous mono-and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH, 2016
Nationell ämneskategori
Fysik Elektroteknik och elektronik Biologiska vetenskaper
Identifikatorer
urn:nbn:se:liu:diva-126253 (URN)10.1002/adfm.201504729 (DOI)000371079300010 ()
Anmärkning

Funding Agencies|EU project SUNFLOWER of FP7 cooperation programme [287594]; Swedish Research Council [2013-4022]; Goran Gustafsson Foundation for Research in Natural Sciences and Medicine; Swedish Research Council Linnaeus grant LiLi-NFM; Advanced Functional Materials Center at Linkoping University

Tillgänglig från: 2016-03-21 Skapad: 2016-03-21 Senast uppdaterad: 2017-11-30
Abdollahi Sani, N., Wang, X., Granberg, H., Andersson Ersman, P., Crispin, X., Dyreklev, P., . . . Berggren, M. (2016). Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose. Scientific Reports, 6(28921)
Öppna denna publikation i ny flik eller fönster >>Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose
Visa övriga...
2016 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, nr 28921Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-mu Ps) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-mu Ps and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-mu Ps. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 x 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

Ort, förlag, år, upplaga, sidor
NATURE PUBLISHING GROUP, 2016
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-130275 (URN)10.1038/srep28921 (DOI)000378907900001 ()27357006 (PubMedID)
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Foundation for Strategic Research; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Tillgänglig från: 2016-08-01 Skapad: 2016-07-28 Senast uppdaterad: 2017-11-28
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-8845-6296

Sök vidare i DiVA

Visa alla publikationer