liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 65) Visa alla publikationer
Hashemniya, F., Caillaud, B., Frisk, E., Krysander, M. & Malandain, M. (2024). Fault Diagnosability Analysis of Multi-Mode Systems. In: Louise Travé-Massuyès (Ed.), IFAC-PapersOnLine: . Paper presented at 12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2024 Ferrara, Italy, June 4 – 7, 2024 (pp. 210-215). Elsevier, 58(4)
Öppna denna publikation i ny flik eller fönster >>Fault Diagnosability Analysis of Multi-Mode Systems
Visa övriga...
2024 (Engelska)Ingår i: IFAC-PapersOnLine / [ed] Louise Travé-Massuyès, Elsevier, 2024, Vol. 58, nr 4, s. 210-215Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Multi-mode systems can operate in different modes, leading to large numbers of different dynamics. Consequently, applying traditional structural diagnostics to such systems is often untractable. To address this challenge, we present a multi-mode diagnostics algorithm that relies on a multi-mode extension of the Dulmage-Mendelsohn decomposition. We introduce two methodologies for modeling faults, either as signals or as Boolean variables, and apply them to a modular switched battery system in order to demonstrate their effectiveness and discuss their respective advantages.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Serie
IFAC-PapersOnLine, ISSN 2405-8963
Nyckelord
Multi-mode systems, Diagnostics, Dulmage-Mendelsohn decomposition
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-206835 (URN)10.1016/j.ifacol.2024.07.219 (DOI)001296047100036 ()
Konferens
12th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2024 Ferrara, Italy, June 4 – 7, 2024
Tillgänglig från: 2024-08-23 Skapad: 2024-08-23 Senast uppdaterad: 2024-10-15
Ramos, I. E., Coric, A., Su, B., Zhao, Q., Eriksson, L., Krysander, M., . . . Zhang, L. (2024). Online acoustic emission sensing of rechargeable batteries: technology, status, and prospects. Journal of Materials Chemistry A, 12(35), 23280-23296
Öppna denna publikation i ny flik eller fönster >>Online acoustic emission sensing of rechargeable batteries: technology, status, and prospects
Visa övriga...
2024 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 12, nr 35, s. 23280-23296Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Online acoustic emission (AE) sensing is a nondestructive method that has the potential to be an indicator of battery health and performance. Rechargeable batteries exhibit complex mechano-electrochemical behaviors during operation, such as electrode expansion/contraction, phase transition, gas evolution, film formation, and crack propagation. These events emit transient elastic waves, which may be detected by a piezoelectric-based sensor attached to the battery cell casing. Research in this field is active and new findings are generated continuously, highlighting its potential and importance of further research and development. This Review provides a comprehensive analysis of AE sensing in rechargeable batteries, aiming to describe the underlying mechanisms and potential applications in battery monitoring and diagnostics. This Review summarizes recent progress and discusses future perspectives in applying online acoustic emission sensing as a non-destructive method for monitoring rechargeable batteries.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2024
Nationell ämneskategori
Annan kemiteknik
Identifikatorer
urn:nbn:se:liu:diva-207202 (URN)10.1039/d4ta04571h (DOI)001288435100001 ()2-s2.0-85201104403 (Scopus ID)
Anmärkning

Funding Agencies|Swedish Energy Agency [2023-00990, 2023-00126]; Swedish Research Council [2022-03856]; Forsk Foundation [23-372]; Swedish Research Council [2022-03856] Funding Source: Swedish Research Council

Tillgänglig från: 2024-09-04 Skapad: 2024-09-04 Senast uppdaterad: 2025-04-17Bibliografiskt granskad
Hashemniya, F., Balachandran, A., Frisk, E. & Krysander, M. (2024). Structural Diagnosability Analysis of Switched and Modular Battery Packs. In: 2024 Prognostics and System Health Management Conference (PHM): . Paper presented at Prognostics and System Health Management Conference (PHM), Stockholm, Sweden, 28-31 May, 2024. (pp. 362-369). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Structural Diagnosability Analysis of Switched and Modular Battery Packs
2024 (Engelska)Ingår i: 2024 Prognostics and System Health Management Conference (PHM), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 362-369Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Safety, reliability, and durability are targets of all engineering systems, including Li-ion batteries in electric vehicles. This paper focuses on sensor setup exploration for a battery-integrated modular multilevel converter (BI-MMC) that can be part of a solution to sustainable electrification of vehicles. BI-MMC contains switches to convert DC to AC to drive an electric machine. The various configurations of switches result in different operation modes, which in turn, pose great challenges for diagnostics. The study explores diverse sensor arrangements and system configurations for detecting and isolating faults in modular battery packs. Configurations involving a minimum of two modules integrated into the pack are essential to successfully isolate all faults. The findings indicate that the default sensor setup is insufficient for achieving complete fault isolability. Additionally, the investigation also demonstrates that current sensors in the submodules do not contribute significantly to fault isolability. Further, the results on switch positions show that the system configuration has a significant impact on fault isolability. A combination of appropriate sensor data and system configuration is important in achieving optimal diagnosability, which is a paramount objective in ensuring system safety.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Serie
2024 Prognostics and System Health Management Conference (PHM), ISSN 2166-563X, E-ISSN 2166-5656
Nationell ämneskategori
Inbäddad systemteknik
Identifikatorer
urn:nbn:se:liu:diva-207716 (URN)10.1109/phm61473.2024.00070 (DOI)9798350360585 (ISBN)9798350360592 (ISBN)
Konferens
Prognostics and System Health Management Conference (PHM), Stockholm, Sweden, 28-31 May, 2024.
Forskningsfinansiär
Energimyndigheten
Tillgänglig från: 2024-09-18 Skapad: 2024-09-18 Senast uppdaterad: 2024-09-18
Mohammadi, A., Krysander, M. & Jung, D. (2022). Analysis of grey-box neural network-based residuals for consistency-based fault diagnosis. In: : . Paper presented at 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2022. Pafos, Cyprus, 8-10 June 2022 (pp. 1-6). Elsevier, 55(6)
Öppna denna publikation i ny flik eller fönster >>Analysis of grey-box neural network-based residuals for consistency-based fault diagnosis
2022 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Data-driven fault diagnosis requires training data that is representative of the different operating conditions of the system to capture its behavior. If training data is limited, one solution is to incorporate physical insights into machine learning models to improve their effectiveness. However, while previous works show the usefulness of hybrid approaches for isolation of faults, the impact of training data must be taken into consideration when drawing conclusions from data-driven residuals in a consistency-based diagnosis framework. By giving an understanding of the physical interaction between the signals, a hybrid fault diagnosis approach, can enforce model properties of residual generators to isolate faults that are not represented in training data. The objective of this work is to analyze the impact of limited training data when training neural network-based residual generators. It is also investigated how the use of structural information when selecting the network structure is a solution to limited training data and how to ameliorate the performance of hybrid approaches in face of this challenge.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022
Serie
IFAC papers online, E-ISSN 2405-8963 ; 6
Nyckelord
Grey-box recurrent neural networks, structural analysis, fault diagnosis, machine learning, model-based diagnosis, anomaly classification
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-188245 (URN)10.1016/j.ifacol.2022.07.097 (DOI)000858756200001 ()
Konferens
11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2022. Pafos, Cyprus, 8-10 June 2022
Tillgänglig från: 2022-09-07 Skapad: 2022-09-07 Senast uppdaterad: 2022-10-20
Frisk, E., Jarmolowitz, F., Jung, D. & Krysander, M. (2022). Fault Diagnosis Using Data, Models, or Both – An Electrical Motor Use-Case. In: : . Paper presented at 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2022. Pafos, Cyprus, 8-10 June 2022 (pp. 533-538). Elsevier, 55(6)
Öppna denna publikation i ny flik eller fönster >>Fault Diagnosis Using Data, Models, or Both – An Electrical Motor Use-Case
2022 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

With trends as IoT and increased connectivity, the availability of data is consistently increasing and its automated processing with, e.g., machine learning becomes more important. This is certainly true for the area of fault diagnostics and prognostics. However, for rare events like faults, the availability of meaningful data will stay inherently sparse making a pure data-driven approach more difficult. In this paper, the question when to use model-based, data-driven techniques, or a combined approach for fault diagnosis is discussed using real-world data of a permanent magnet synchronous machine. Key properties of the different approaches are discussed in a diagnosis context, performance quantified, and benefits of a combined approach are demonstrated.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022
Serie
IFAC papers online, E-ISSN 2405-8963
Nyckelord
fault diagnosis, model-based diagnosis, data-driven diagnosis, sparse data
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-188246 (URN)10.1016/j.ifacol.2022.07.183 (DOI)000884499400003 ()
Konferens
11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2022. Pafos, Cyprus, 8-10 June 2022
Tillgänglig från: 2022-09-07 Skapad: 2022-09-07 Senast uppdaterad: 2022-12-06
Mohammadi Sarband, N., Becirovic, E., Krysander, M., Larsson, E. G. & Gustafsson, O. (2021). Massive Machine-Type Communication Pilot-Hopping Sequence Detection Architectures Based on Non-Negative Least Squares for Grant-Free Random Access. IEEE Open Journal of Circuits and Systems, 2, 253-264
Öppna denna publikation i ny flik eller fönster >>Massive Machine-Type Communication Pilot-Hopping Sequence Detection Architectures Based on Non-Negative Least Squares for Grant-Free Random Access
Visa övriga...
2021 (Engelska)Ingår i: IEEE Open Journal of Circuits and Systems, ISSN 2644-1225, Vol. 2, s. 253-264Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

User activity detection in grant-free random access massive machine type communication (mMTC) using pilot-hopping sequences can be formulated as solving a non-negative least squares (NNLS) problem. In this work, two architectures using different algorithms to solve the NNLS problem is proposed. The algorithms are implemented using a fully parallel approach and fixed-point arithmetic, leading to high detection rates and low power consumption. The first algorithm, fast projected gradients, converges faster to the optimal value. The second algorithm, multiplicative updates, is partially implemented in the logarithmic domain, and provides a smaller chip area and lower power consumption. For a detection rate of about one million detections per second, the chip area for the fast algorithm is about 0.7 mm 2 compared to about 0.5 mm 2 for the multiplicative algorithm when implemented in a 28 nm FD-SOI standard cell process at 1 V power supply voltage. The energy consumption is about 300 nJ/detection for the fast projected gradient algorithm using 256 iterations, leading to a convergence close to the theoretical. With 128 iterations, about 250 nJ/detection is required, with a detection performance on par with 192 iterations of the multiplicative algorithm for which about 100 nJ/detection is required.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2021
Nyckelord
5G mobile communication, base stations, Internet of Things, machine-to-machine communications, MIMO
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:liu:diva-179789 (URN)10.1109/ojcas.2020.3043643 (DOI)
Forskningsfinansiär
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Tillgänglig från: 2021-10-01 Skapad: 2021-10-01 Senast uppdaterad: 2024-12-13Bibliografiskt granskad
Skarman, F., Gustafsson, O., Jung, D. & Krysander, M. (2020). Acceleration of Simulation Models Through Automatic Conversion to FPGA Hardware. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL): . Paper presented at 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 Aug.-4 Sept. 2020 (pp. 359-360). IEEE
Öppna denna publikation i ny flik eller fönster >>Acceleration of Simulation Models Through Automatic Conversion to FPGA Hardware
2020 (Engelska)Ingår i: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), IEEE , 2020, s. 359-360Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

By running simulation models on FPGAs, their execution speed can be significantly improved, at the cost of increased development effort. This paper describes a project to develop a tool which converts simulation models written in high level languages into fast FPGA hardware. The tool currently converts code written using custom C++ data types into Verilog. A model of a hybrid electric vehicle is used as a case study, and the resulting hardware runs significantly faster than on a general purpose CPU.

Ort, förlag, år, upplaga, sidor
IEEE, 2020
Nyckelord
FPGA, High Level Synthesis, Dynamic Programming, Hybrid Electric Vehicles
Nationell ämneskategori
Datorteknik
Identifikatorer
urn:nbn:se:liu:diva-171274 (URN)10.1109/FPL50879.2020.00068 (DOI)000679186400056 ()9781728199023 (ISBN)9781728199030 (ISBN)
Konferens
30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 31 Aug.-4 Sept. 2020
Tillgänglig från: 2020-11-12 Skapad: 2020-11-12 Senast uppdaterad: 2021-08-27Bibliografiskt granskad
Jakobsson, E., Pettersson, R., Frisk, E. & Krysander, M. (2020). Fatigue Damage Monitoring for Mining Vehicles using Data Driven Models. International Journal of Prognostics and Health Management, 11(1), Article ID 004.
Öppna denna publikation i ny flik eller fönster >>Fatigue Damage Monitoring for Mining Vehicles using Data Driven Models
2020 (Engelska)Ingår i: International Journal of Prognostics and Health Management, E-ISSN 2153-2648, Vol. 11, nr 1, artikel-id 004Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The life and condition of a mine truck frame are related to how the machine is used. Damage from stress cycles is accumulated over time, and measurements throughout the life of the machine are needed to monitor the condition. This results in high demands on the durability of sensors, especially in a harsh mining application. To make a monitoring system cheap and robust, sensors already available on the vehicles are preferred rather than additional strain gauges. The main question in this work is whether the existing on-board sensors can give the required information to estimate stress signals and calculate accumulated damage of the frame. Model complexity requirements and sensors selection are also considered. A final question is whether the accumulated damage can be used for prognostics and to increase reliability. The investigation is performed using a large data set from two vehicles operating in real mine applications. Coherence analysis, ARX-models, and rain flow counting are techniques used. The results show that a low number of available on-board sensors like load cells, damper cylinder positions, and angle transducers can give enough information to recreate some of the stress signals measured. The models are also used to show significant differences in usage by different operators, and its effect on the accumulated damage.

Ort, förlag, år, upplaga, sidor
Rochester, NY, United States: Prognostics and Health Management Society, 2020
Nyckelord
Fatigue damage, System identification, Damage accumulation
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:liu:diva-165753 (URN)10.36001/ijphm.2020.v11i1.2595 (DOI)000594760700004 ()
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)
Tillgänglig från: 2020-05-19 Skapad: 2020-05-19 Senast uppdaterad: 2023-07-24Bibliografiskt granskad
Mohammadi Sarband, N., Becirovic, E., Krysander, M., Larsson, E. G. & Gustafsson, O. (2020). Pilot-Hopping Sequence Detection Architecture for Grant-Free Random Access using Massive MIMO. In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS): . Paper presented at IEEE International Symposium on Circuits and Systems (ISCAS), ELECTR NETWORK, oct 10-21, 2020. IEEE
Öppna denna publikation i ny flik eller fönster >>Pilot-Hopping Sequence Detection Architecture for Grant-Free Random Access using Massive MIMO
Visa övriga...
2020 (Engelska)Ingår i: 2020 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2020Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this work, an implementation of a pilot-hopping sequence detector for massive machine type communication is presented. The architecture is based on solution a non-negative least squares problem. The results show that the architecture supporting 1024 users can perform more than one million detections per second with a power consumption of less than 70 mW when implemented in a 28 nm FD-SOI process.

Ort, förlag, år, upplaga, sidor
IEEE, 2020
Serie
International Symposium on Circuits and Systems (ISCAS), ISSN 0271-4302, E-ISSN 2158-1525
Nyckelord
Coherence, Computer architecture, Base stations, MIMO communication, Convergence, Uplink, Optimization
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
urn:nbn:se:liu:diva-170119 (URN)10.1109/ISCAS45731.2020.9180888 (DOI)000706854700071 ()9781728133201 (ISBN)
Konferens
IEEE International Symposium on Circuits and Systems (ISCAS), ELECTR NETWORK, oct 10-21, 2020
Tillgänglig från: 2020-09-29 Skapad: 2020-09-29 Senast uppdaterad: 2024-12-13
Jung, D., Dong, Y., Frisk, E., Krysander, M. & Biswas, G. (2020). Sensor selection for fault diagnosis in uncertain systems. International Journal of Control, 93(3), 629-639
Öppna denna publikation i ny flik eller fönster >>Sensor selection for fault diagnosis in uncertain systems
Visa övriga...
2020 (Engelska)Ingår i: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 93, nr 3, s. 629-639Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Finding the cheapest, or smallest, set of sensors such that a specified level of diagnosis performance is maintained is important to decrease cost while controlling performance. Algorithms have been developed to find sets of sensors that make faults detectable and isolable under ideal circumstances. However, due to model uncertainties and measurement noise, different sets of sensors result in different achievable diagnosability performance in practice. In this paper, the sensor selection problem is formulated to ensure that the set of sensors fulfils required performance specifications when model uncertainties and measurement noise are taken into consideration. However, the algorithms for finding the guaranteed global optimal solution are intractable without exhaustive search. To overcome this problem, a greedy stochastic search algorithm is proposed to solve the sensor selection problem. A case study demonstrates the effectiveness of the greedy stochastic search in finding sets close to the global optimum in short computational time.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2020
Nyckelord
Fault diagnosis, fault detection and isolation, sensor selection
Nationell ämneskategori
Elektroteknik och elektronik Datorteknik
Identifikatorer
urn:nbn:se:liu:diva-117176 (URN)10.1080/00207179.2018.1484171 (DOI)000525971000025 ()
Anmärkning

The previous status of this article was Manuscript.

Tillgänglig från: 2015-04-21 Skapad: 2015-04-21 Senast uppdaterad: 2021-12-28Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4965-1077

Sök vidare i DiVA

Visa alla publikationer