liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Kaijser, Thomas
Publikationer (10 of 10) Visa alla publikationer
Kaijser, T. (2017). A contraction theorem for Markov chains on general state spaces. Revue Roumaine De Mathématiques Pures Et Appliquées, 62(2), 355-370
Öppna denna publikation i ny flik eller fönster >>A contraction theorem for Markov chains on general state spaces
2017 (Engelska)Ingår i: Revue Roumaine De Mathématiques Pures Et Appliquées, ISSN 0035-3965, Vol. 62, nr 2, s. 355-370Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Let {Xn, n = 0, 1, 2, ...} denote a Markov chain on a general state space and let f be a nonnegative function. The purpose of this paper is to present conditions which will imply that f(Xn) tends to 0 a.s., as n tends to infinity. As an application we obtain a result on synchronisation for random dynamical systems. At the end of the paper, we also present a result on convergence in distribution for Markov chains on general state spaces, thereby generalising a similar result for Markov chains on compact metric spaces.

AMS 2010 Subject Classification: 60J05, 60F15, 60F05.

Ort, förlag, år, upplaga, sidor
Bucharest, Romania: Editura Academiei Romane / Publishing House of the Romanian Academy, 2017
Nyckelord
functions of Markov chains, synchronisation, convergence in distribution, random dynamical systems, iterated function systems
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-142821 (URN)000412410500003 ()
Tillgänglig från: 2017-11-06 Skapad: 2017-11-06 Senast uppdaterad: 2019-01-24Bibliografiskt granskad
Kaijser, T. (2017). A Note on the Rechargeable Polya Urn Scheme. Linköping: Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>A Note on the Rechargeable Polya Urn Scheme
2017 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

A very simple specific case of a Polya urn scheme is as follows. At each trial one draws a ball from an urn with balls of two different colours. Then, one looks at the ball, and returns the ball to the urn together with another ball of the same colour. Then one makes another draw. Et cetera. At the first draw there is one ball of each colour.

The rechargeable Polya urn scheme is essentially the same except that between each draw there is a fixed probability that the process starts over with two balls in the urn having different colours.

Now, for n = 1,2, ..., let B(n) and G(n) denote respectively the number of blue and yellow balls in the urn and let Y(n) denote the colour of the ball drawn at the nth draw. Further let Z(n) denote the probability distribution of (B(n),G(n)) given that we have observed Y(m), from m = 1 to m = n. In this note we prove that the sequence Z(1),Z(2),.... converges in distribution.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 21
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 13
Nyckelord
Polya urn scheme, Hidden Markov Models, random systems with complete connections, asymptotic stability
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:liu:diva-141831 (URN)LiTH-MAT-R--2017/13--SE (ISRN)
Tillgänglig från: 2017-10-09 Skapad: 2017-10-09 Senast uppdaterad: 2018-03-16Bibliografiskt granskad
Kaijser, T. (2016). On convergence in distribution of the Markov chain generated by the filter kernel induced by a fully dominated Hidden Markov Model. Dissertationes Mathematicae, 514
Öppna denna publikation i ny flik eller fönster >>On convergence in distribution of the Markov chain generated by the filter kernel induced by a fully dominated Hidden Markov Model
2016 (Engelska)Ingår i: Dissertationes Mathematicae, ISSN 0012-3862, E-ISSN 1730-6310, Vol. 514Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Consider a Hidden Markov Model (HMM) such that both the state space and the observation space are complete, separable, metric spaces and for which both the transition probability function (tr.pr.f.) determining the hidden Markov chain of the HMM and the tr.pr.f. determining the observation sequence of the HMM have densities. Such HMMs are called fully dominated. In this paper we consider a subclass of fully dominated HMMs which we call regular. A fully dominated, regular HMM induces a tr.pr.f. on the set of probability density functions on the state space which we call the filter kernel induced by the HMM and which can be interpreted as the Markov kernel associated to the sequence of conditional state distributions. We show that if the underlying hidden Markov chain of the fully dominated, regular HMM is strongly ergodic and a certain coupling condition is fulfilled, then, in the limit, the distribution of the conditional distribution becomes independent of the initial distribution of the hidden Markov chain and, if also the hidden Markov chain is uniformly ergodic, then the distributions tend towards a limit distribution. In the last part of the paper, we present some more explicit conditions, implying that the coupling condition mentioned above is satisfied.

Ort, förlag, år, upplaga, sidor
POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN, 2016
Nyckelord
hidden Markov models; filtering processes; Markov chains on nonlocally compact spaces; Kantorovich distance; barycenter
Nationell ämneskategori
Matematisk analys
Identifikatorer
urn:nbn:se:liu:diva-129178 (URN)10.4064/dm739-9-2015 (DOI)000376340100001 ()
Tillgänglig från: 2016-06-13 Skapad: 2016-06-13 Senast uppdaterad: 2017-11-28
Kaijser, T. (2016). Stochastic Perturbations of Iterations of a Simple, Non-expanding, Nonperiodic, Piecewise Linear, Interval-map. Linköping: Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>Stochastic Perturbations of Iterations of a Simple, Non-expanding, Nonperiodic, Piecewise Linear, Interval-map
2016 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Let g(x) = x/2 + 17/30 (mod 1), let 𝝃i i = 1,2, … to be a sequence of independent, identically distributed random variables with uniform distribution on the interval [0,1/15], define gi(x) = g(x) + 𝝃i (mod 1) and for n = 1,2, …, define gn (x) = gn(gn-1(…(g1(x))…)). For x ϵ [0,1) let μn,x denote the distribution of gn(x). The purpose of this note is to show that there exists a unique probability measure μ, such that, for all x ϵ [0,1); μn,x tends to μ as n → ∞. This contradicts a claim by Lasota and Mackey from 1987 stating that the process has an asymptotic three-periodicity.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. s. 18
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 2016:05
Nyckelord
convergence of distributions, random dynamical systems, stochastic perturbations of iterations, nonexpanding interval maps
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-128167 (URN)LiTH-MAT-R--2016/05--SE (ISRN)
Tillgänglig från: 2016-05-19 Skapad: 2016-05-19 Senast uppdaterad: 2016-09-28Bibliografiskt granskad
Kaijser, T. (2015). A Contraction Theorem for Markov Chains on General State Spaces. Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>A Contraction Theorem for Markov Chains on General State Spaces
2015 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Let {X(n), n=0,1,2,...} denote a Markov chain on a general state space and let f be a nonnegative function. The purpose of this paper is to present conditions which will imply that f(X(n)) tends to 0 a.s., as n tends to infinity. As an application we obtain a result on "synchronisation for random dynamical systems". At the end of the paper we also present a result on  "convergence in distribution" for random dynamical system on complete, separable, metric spaces, a result, which is a generalisation of  a similar result for random dynamical systems on compact, metric spaces.

Ort, förlag, år, upplaga, sidor
Linköping University Electronic Press, 2015. s. 17
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 2015:11
Nyckelord
functions of Markov chains, synchronisation, convergence in distribution, random dynamical systems
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-121465 (URN)LiTH-MAT-R--2015/11--SE (ISRN)
Tillgänglig från: 2015-09-22 Skapad: 2015-09-21 Senast uppdaterad: 2016-11-24Bibliografiskt granskad
Kaijser, T. (2013). Convergence in distribution for filtering processes associated to Hidden Markov Models with densities. Linköping: Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>Convergence in distribution for filtering processes associated to Hidden Markov Models with densities
2013 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

A Hidden Markov Model generates two basic stochastic processes, a Markov chain, which is hidden, and an observation sequence. The filtering process of a Hidden Markov Model is, roughly speaking, the sequence of conditional distributions of the hidden Markov chain that is obtained as new observations are received.

It is well-known, that the filtering process itself, is also a Markov chain. A classical, theoretical problem is to find conditions which implies that the distributions of the filtering process converge towards a unique limit measure.

This problem goes back to a paper of D Blackwell for the case when the Markov chain takes its values in a finite set and it goes back to a paper of H Kunita for the case when the state space of the Markov chain is a compact Hausdor space.

Recently, due to work by F Kochmann, J Reeds, P Chigansky and R van Handel, a necessary and sucient condition for the convergence of the distributions of the filtering process has been found for the case when the state space is finite. This condition has since been generalised to the case when the state space is denumerable.

In this paper we generalise some of the previous results on convergence in distribution to the case when the Markov chain and the observation sequence of a Hidden Markov Model take their values in complete, separable, metric spaces; it has though been necessary to assume that both the transition probability function of the Markov chain and the transition probability function that generates the observation sequence have densities.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2013. s. 79
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 2013:05
Nyckelord
Hidden Markov Models, filtering processes, Markov chains on nonlocally compact spaces, convergence in distribution, barycenter, ergodicity, Kantorovich metric.
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-92590 (URN)LiTH-MAT-R--2013/05--SE (ISRN)
Tillgänglig från: 2013-05-14 Skapad: 2013-05-14 Senast uppdaterad: 2013-05-14Bibliografiskt granskad
Kaijser, T. (2011). On Markov Chains Induced by Partitioned Transition Probability Matrices. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 27(3), 441-476
Öppna denna publikation i ny flik eller fönster >>On Markov Chains Induced by Partitioned Transition Probability Matrices
2011 (Engelska)Ingår i: ACTA MATHEMATICA SINICA-ENGLISH SERIES, ISSN 1439-8516, Vol. 27, nr 3, s. 441-476Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Let S be a denumerable state space and let P be a transition probability matrix on S. If a denumerable set M of nonnegative matrices is such that the sum of the matrices is equal to P, then we call M a partition of P. Let K denote the set of probability vectors on S. With every partition M of P we can associate a transition probability function PM on K defined in such a way that if p is an element of K and M is an element of M are such that parallel to pM parallel to andgt; 0, then, with probability parallel to pM parallel to, the vector p is transferred to the vector PM/parallel to pM parallel to. Here parallel to . parallel to denotes the l(1)-norm. In this paper we investigate the convergence in distribution for Markov chains generated by transition probability functions induced by partitions of transition probability matrices. The main motivation for this investigation is the application of the convergence results obtained to filtering processes of partially observed Markov chains with denumerable state space.

Ort, förlag, år, upplaga, sidor
Springer Business Business Media, 2011
Nyckelord
Markov chains on nonlocally compact spaces, filtering processes, hidden Markov chains, Kantorovich metric, barycenter
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-66907 (URN)10.1007/s10114-010-9696-9 (DOI)000287769600003 ()
Tillgänglig från: 2011-03-21 Skapad: 2011-03-21 Senast uppdaterad: 2011-04-06
Kaijser, T. (2009). On Markov chains induced by partitioned transition probability matrices. Linköping: Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>On Markov chains induced by partitioned transition probability matrices
2009 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Let S be a denumerable state space and let P be a transition probability matrix on S. If a denumerable set M of nonnegative matrices is such that the sum of the matrices is equal to P, then we call M a partition of P.

Let K denote the set of probability vectors on S. With every partition M of P we can associate a transition probability function P M on K defined in such a way that if pK and MM are such that ‖pM‖ > 0, then, with probability ‖pM‖, the vector p is transferred to the vector pM/‖pM‖. Here ‖·‖ denotes the l 1-norm.

In this paper we investigate the convergence in distribution for Markov chains generated by transition probability functions induced by partitions of transition probability matrices. The main motivation for this investigation is the application of the convergence results obtained to filtering processes of partially observed Markov chains with denumerable state space.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2009
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 2009:07
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-19841 (URN)LiTH-MAT-R-2009/07--SE (ISRN)
Tillgänglig från: 2009-08-12 Skapad: 2009-08-12 Senast uppdaterad: 2016-07-08Bibliografiskt granskad
Kaijser, T. (2008). On the convergence in distribution of the sequence of conditional state distributions induced by a Hidden Markov chain with denumerable state space. Linköping: Linköpings universitet
Öppna denna publikation i ny flik eller fönster >>On the convergence in distribution of the sequence of conditional state distributions induced by a Hidden Markov chain with denumerable state space
2008 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

  

Ort, förlag, år, upplaga, sidor
Linköping: Linköpings universitet, 2008
Serie
LiTH-MAT-R ; 3
Nyckelord
Tillämpad matematik
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-42461 (URN)LiTH-MAT-R-2008-03 (ISRN)64707 (Lokalt ID)64707 (Arkivnummer)64707 (OAI)
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10
Kaijser, T. (1978). A Note on a Theorem by Larry Shepp. Linköping University Electronic Press
Öppna denna publikation i ny flik eller fönster >>A Note on a Theorem by Larry Shepp
1978 (Engelska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Linköping University Electronic Press, 1978. s. 4
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 1978:18
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-112263 (URN)LiTH-MAT-R-78-18 (ISRN)
Tillgänglig från: 2014-11-20 Skapad: 2014-11-20 Senast uppdaterad: 2014-11-20
Organisationer

Sök vidare i DiVA

Visa alla publikationer