liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Alternativa namn
Publikationer (10 of 70) Visa alla publikationer
Xu, W., Hu, Q., Bai, S., Bao, C., Miao, Y., Yuan, Z., . . . Gao, F. (2019). Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 13(6), 418-424
Öppna denna publikation i ny flik eller fönster >>Rational molecular passivation for high-performance perovskite light-emitting diodes
Visa övriga...
2019 (Engelska)Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 13, nr 6, s. 418-424Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.

Ort, förlag, år, upplaga, sidor
Springer Nature Publishing AG, 2019
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:liu:diva-157707 (URN)10.1038/s41566-019-0390-x (DOI)000468752300019 ()
Anmärkning

Funding agencies:  ERC Starting Grant [717026]; National Basic Research Program of China (973 Program) [2015CB932200]; National Natural Science Foundation of China [61704077, 51572016, 51721001, 61634001, 61725502, 91733302, U1530401]; Natural Science Foundation of Jiangsu 

Tillgänglig från: 2019-06-19 Skapad: 2019-06-19 Senast uppdaterad: 2019-07-01Bibliografiskt granskad
Hou, J., Inganäs, O., Friend, R. H. & Gao, F. (2018). Organic solar cells based on non-fullerene acceptors. Nature Materials, 17(2), 119-128
Öppna denna publikation i ny flik eller fönster >>Organic solar cells based on non-fullerene acceptors
2018 (Engelska)Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 17, nr 2, s. 119-128Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

Organic solar cells (OSCs) have been dominated by donor: acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2018
Nationell ämneskategori
Övrig annan teknik
Identifikatorer
urn:nbn:se:liu:diva-144871 (URN)10.1038/NMAT5063 (DOI)000423153800009 ()29358765 (PubMedID)
Anmärkning

Funding Agencies|National Natural Science Foundation of China [91633301, 91333204, 51673201, 21325419, 51711530159]; Chinese Academy of Sciences [XDB12030200]; Swedish Research Council VR [2017-00744, 2016-06146]; Swedish Energy Agency Energimyndigheten [2016-010174]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU #2009-00971]; Engineering and Physical Sciences Research Council in the UK; Knut and Alice Wallenberg foundation (KAW) through a Wallenberg Scholar grant

Tillgänglig från: 2018-02-09 Skapad: 2018-02-09 Senast uppdaterad: 2018-03-16
Yuan, Z., Bai, S., Yan, Z., Liu, J.-M. & Gao, F. (2018). Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization. Chemical Communications, 54(50), 6887-6890
Öppna denna publikation i ny flik eller fönster >>Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization
Visa övriga...
2018 (Engelska)Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 50, s. 6887-6890Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We investigate the effect of commonly used solution-processed TiOx, SnO2 and ZnO interlayers on the perovskite film crystallization process. We find that the ZnO/perovskite interface can efficiently catalyze the perovskite crystallization even without thermal annealing.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2018
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:liu:diva-149712 (URN)10.1039/c8cc02482k (DOI)000436029000052 ()29781476 (PubMedID)
Anmärkning

Funding Agencies|ERC [717026]; Carl Tryggers Stiftelse; European Commission [691210]; China Scholarship Council; VINNMER Marie Curie Fellowships

Tillgänglig från: 2018-07-24 Skapad: 2018-07-24 Senast uppdaterad: 2019-06-19
Xu, W. & Gao, F. (2018). The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells. Materials Horizons, 5(2), 206-221
Öppna denna publikation i ny flik eller fönster >>The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells
2018 (Engelska)Ingår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 5, nr 2, s. 206-221Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

The rapid development of organic solar cells (OSCs) based on non-fullerene acceptors has attracted increasing attention during the past few years, with a record power conversion efficiency of over 13% in a binary bulk heterojunction architecture. This exciting development also enables new possibilities for ternary OSCs to further enhance their efficiency and stability. This review summarizes very recent developments of ternary OSCs, with a focus on blends involving non-fullerene acceptors. We also highlight the challenges and perspectives for further development of ternary blend organic solar cells.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2018
Nationell ämneskategori
Teoretisk kemi
Identifikatorer
urn:nbn:se:liu:diva-149389 (URN)10.1039/c7mh00958e (DOI)000433442800004 ()
Anmärkning

Funding Agencies|Wenner-Gren Foundation [UPD2016-0144]; Swedish Research Council VR [2017-00744]; Swedish Energy Agency - Energimyndigheten [2016-010174]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]; National Natural Science Foundation of China [61704077]; Natural Science Foundation of Jiangsu Province [BK20171007]; China Postdoctoral Science Foundation [2016M601784, 2017T100358]

Tillgänglig från: 2018-07-02 Skapad: 2018-07-02 Senast uppdaterad: 2018-08-10
Schwarze, M., Tress, W., Beyer, B., Gao, F., Scholz, R., Poelking, C., . . . Leo, K. (2016). Band structure engineering in organic semiconductors. Science, 352(6292), 1446-1449
Öppna denna publikation i ny flik eller fönster >>Band structure engineering in organic semiconductors
Visa övriga...
2016 (Engelska)Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 352, nr 6292, s. 1446-1449Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

Ort, förlag, år, upplaga, sidor
AMER ASSOC ADVANCEMENT SCIENCE, 2016
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:liu:diva-130126 (URN)10.1126/science.aaf0590 (DOI)000377975400045 ()27313043 (PubMedID)
Anmärkning

Funding Agencies|DFG [LE-747/44-1]; European Communitys Seventh Framework Programme [EP7-267995]; Knut and Alice Wallenberg Foundation through a Wallenberg Scholar grant; Swedish Research Council (VR) [330-2014-6433]; European Commission, Made Sklodowska-Curie Actions [INCA 600398]; Bundesministerium fur Bildung und Forschung [FKZ 03EK3503B]; Dr Isolde-Dietrich-Stiftung

Tillgänglig från: 2016-07-12 Skapad: 2016-07-11 Senast uppdaterad: 2017-11-28
Bai, S., Yuan, Z. & Gao, F. (2016). Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. Journal of Materials Chemistry C, 4(18), 3898-3904
Öppna denna publikation i ny flik eller fönster >>Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications
2016 (Engelska)Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 18, s. 3898-3904Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Colloidal metal halide perovskite nanocrystals (NCs) have emerged as promising materials for optoelectronic devices and received considerable attention recently. Their superior photoluminescence (PL) properties provide significant advantages for lighting and display applications. In this Highlight, we discuss recent developments in the design and chemical synthesis of colloidal perovskite NCs, including both organic-inorganic hybrid and all inorganic perovskite NCs. We review the excellent PL properties and current optoelectronic applications of these perovskite NCs. In addition, critical challenges that currently limit the applicability of perovskite NCs are discussed, and prospects for future directions are proposed.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2016
Nationell ämneskategori
Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-128980 (URN)10.1039/c5tc04116c (DOI)000375694900002 ()
Anmärkning

Funding Agencies|Swedish Research Council (VR); Swedish Research Council (FORMAS); European Commission Marie Sklodowska-Curie actions; Carl Tryggers Stiftelse; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]; China Scholarship Council

Tillgänglig från: 2016-06-09 Skapad: 2016-06-07 Senast uppdaterad: 2018-03-26
Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F. & Hou, J. (2016). Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 28(23), 4734-4739
Öppna denna publikation i ny flik eller fönster >>Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability
Visa övriga...
2016 (Engelska)Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 23, s. 4734-4739Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene-based PSCs with respect to the power-conversion efficiency is demonstrated for the first time. An efficiency of amp;gt;11%, which is among the top values in the PSC field, and excellent thermal stability is obtained using PBDB-T and ITIC as donor and acceptor, respectively.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH, 2016
Nationell ämneskategori
Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-130061 (URN)10.1002/adma.201600281 (DOI)000377531900023 ()27061511 (PubMedID)
Anmärkning

Funding Agencies|National Basic Research Program 973 [2014CB643501]; NSFC [91333204, 21325419]; Chinese Academy of Sciences [XDB12030200]; CAS-Croucher Funding Scheme for Joint Labs [CAS14601]; China Scholarship Council (CSC)

Tillgänglig från: 2016-07-06 Skapad: 2016-07-06 Senast uppdaterad: 2018-03-23
Wang, Y., Bai, S., Cheng, L., Wang, N., Wang, J., Gao, F. & Huang, W. (2016). High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 28(22), 4532-4540
Öppna denna publikation i ny flik eller fönster >>High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites
Visa övriga...
2016 (Engelska)Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 22, s. 4532-4540Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH, 2016
Nationell ämneskategori
Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-129659 (URN)10.1002/adma.201504260 (DOI)000377123500026 ()26669326 (PubMedID)
Anmärkning

Funding Agencies|National Basic Research Program of China-Fundamental Studies of Perovskite Solar Cells [2015CB932200]; Natural Science Foundation of Jiangsu Province, China [BK20131413, BK20140952, BM2012010]; National Natural Science Foundation of China [11474164, 61405091]; Specialized Research Fund for the Doctoral Program of Higher Education [20113223110005]; Synergetic Innovation Center for Organic Electronics and Information Displays; Jiangsu Specially Appointed Professor program; Swedish Research Council (VR); European Commission Marie Sklodowska-Curie actions

Tillgänglig från: 2016-06-27 Skapad: 2016-06-23 Senast uppdaterad: 2017-11-28
Li, G., Wisnivesky Rocca Rivarola, F., Davis, N. J. L., Bai, S., Jellicoe, T. C., de la Pena, F., . . . Tan, Z.-K. (2016). Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method. Advanced Materials, 28(18), 3528-+
Öppna denna publikation i ny flik eller fönster >>Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method
Visa övriga...
2016 (Engelska)Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 18, s. 3528-+Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH, 2016
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:liu:diva-129165 (URN)10.1002/adma.201600064 (DOI)000376250600014 ()26990965 (PubMedID)
Anmärkning

Funding Agencies|EPSRC [EP/M005143/1, EP/J017361/1, EP/G037221/1]; Gates Cambridge Trust; CNPq [246050/2012-8]; ERC [259619 PHOTO-EM]; EU [312483 ESTEEM2]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [200900971]; Cambridge Commonwealth European and International Trust; Cambridge Australian Scholarships

Tillgänglig från: 2016-06-13 Skapad: 2016-06-13 Senast uppdaterad: 2017-11-28
Xia, Y., Musumeci, C., Bergqvist, J., Ma, W., Gao, F., Tang, Z., . . . Wang, E. (2016). Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing. Journal of Materials Chemistry A, 4(10), 3835-3843
Öppna denna publikation i ny flik eller fönster >>Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing
Visa övriga...
2016 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, nr 10, s. 3835-3843Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY, 2016
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:liu:diva-127066 (URN)10.1039/c6ta00531d (DOI)000371967000030 ()
Anmärkning

Funding Agencies|Swedish Energy Agency; Swedish Research council, NSFC [21504006, 21534003]; Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant; China Scholarship Council (CSC); graduate student short-term abroad research project of Jinan University; program for the Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114]; U.S. Department of Energy [DE-AC02-05CH11231]

Tillgänglig från: 2016-04-13 Skapad: 2016-04-13 Senast uppdaterad: 2019-01-04
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-2582-1740

Sök vidare i DiVA

Visa alla publikationer