liu.seSök publikationer i DiVA
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Chen, Shangzhi
Publikationer (3 of 3) Visa alla publikationer
Chen, S., Kang, E. S. H., Shiran Chaharsoughi, M., Stanishev, V., Kuhne, P., Sun, H., . . . Jonsson, M. (2020). Conductive polymer nanoantennas for dynamicorganic plasmonics [Letter to the editor]. Nature Nanotechnology, 15, Article ID s41565-019-0583-y.
Öppna denna publikation i ny flik eller fönster >>Conductive polymer nanoantennas for dynamicorganic plasmonics
Visa övriga...
2020 (Engelska)Ingår i: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15, artikel-id s41565-019-0583-yArtikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

Ort, förlag, år, upplaga, sidor
London: Nature Publishing Group, 2020
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:liu:diva-163089 (URN)10.1038/s41565-019-0583-y (DOI)2-s2.0-85076515412 (Scopus ID)
Tillgänglig från: 2020-01-10 Skapad: 2020-01-10 Senast uppdaterad: 2020-01-14Bibliografiskt granskad
Kim, N., Petsagkourakis, I., Chen, S., Berggren, M., Crispin, X., Jonsson, M. & Zozoulenko, I. (2019). Electric Transport Properties in PEDOT Thin Films. In: John R. Reynolds; Barry C. Thompson; Terje A. Skotheim (Ed.), Conjugated Polymers: Properties, Processing, and Applications (pp. 45-128). Boca Raton: CRC Press
Öppna denna publikation i ny flik eller fönster >>Electric Transport Properties in PEDOT Thin Films
Visa övriga...
2019 (Engelska)Ingår i: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, s. 45-128Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

Ort, förlag, år, upplaga, sidor
Boca Raton: CRC Press, 2019
Nationell ämneskategori
Materialteknik Biomaterial
Identifikatorer
urn:nbn:se:liu:diva-160891 (URN)10.1201/9780429190520-3 (DOI)9780429190520 (ISBN)
Tillgänglig från: 2019-10-14 Skapad: 2019-10-14 Senast uppdaterad: 2019-10-14Bibliografiskt granskad
Kang, E. S. H., Chen, S., Sardar, S., Tordera, D., Armakavicius, N., Darakchieva, V., . . . Jonsson, M. (2018). Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces. ACS Photonics, 4046-4055
Öppna denna publikation i ny flik eller fönster >>Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces
Visa övriga...
2018 (Engelska)Ingår i: ACS Photonics, E-ISSN 2330-4022, s. 4046-4055Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2018
Nyckelord
directional absorption; Fano interferences; J-aggregates; metasurfaces; nanoholes; plasmonics; polaritons; strong coupling
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:liu:diva-151716 (URN)10.1021/acsphotonics.8b00679 (DOI)000447954200023 ()
Anmärkning

Funding agencies: Wenner-Gren Foundations; Swedish Research Council; Swedish Foundation for Strategic Research; AForsk Foundation; Royal Swedish Academy of Sciences; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping Univer

Tillgänglig från: 2018-10-03 Skapad: 2018-10-03 Senast uppdaterad: 2018-11-09
Organisationer

Sök vidare i DiVA

Visa alla publikationer