liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 247) Show all publications
Gerasimov, J., Karlsson, R. H., Forchheimer, R., Stavrinidou, E., Simon, D. T., Berggren, M. & Fabiano, S. (2019). An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications. ADVANCED SCIENCE, 6(7), Article ID 1801339.
Open this publication in new window or tab >>An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications
Show others...
2019 (English)In: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, no 7, article id 1801339Article in journal (Refereed) Published
Abstract [en]

An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2019
Keywords
conducting polymers; evolvable electronics; neuromorphic; organic electrochemical transistors; organic electronics
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:liu:diva-156560 (URN)10.1002/advs.201801339 (DOI)000463153100015 ()30989020 (PubMedID)2-s2.0-85061035781 (Scopus ID)
Note

Funding Agencies|Knut and Alice Wallenberg Foundation [2012.0302]; VINNOVA [2015-04859]; Swedish Research Council [2016-03979]; Swedish Foundation for Strategic Research (BioCom Lab) [RIT15-0119]; Marie Sklodowska Curie Individual Fellowship (MSCA-IF-EF-ST, Trans-Plant) [702641]

Available from: 2019-05-15 Created: 2019-05-15 Last updated: 2019-06-20Bibliographically approved
Wang, X., Grimoldi, A., Hakansson, K., Fall, A., Granberg, H., Mengistie, D., . . . Gustafsson, G. (2019). Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Organic electronics, 66, 258-264
Open this publication in new window or tab >>Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool
Show others...
2019 (English)In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 66, p. 258-264Article in journal (Refereed) Published
Abstract [en]

The conducive polymer poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) is widely used in organic electronics and printed electronics due to its excellent electronic and ionic conductivity. PEDOT:PSS films exhibit anisotropic conductivities originating from the interplay of film deposition processes and chemical structure. The previous studies found that high boiling point solvent treated PEDOT:PSS exhibits an anisotropy of 3-4 orders magnitude. Even though both the in-plane and out-of-plane conductivities are important for the device performance, the out-of-plane conductivity is rarely studied due to the complexity with the experiment procedure. Cellulose-based paper or films can also exhibit anisotropic behavior due to the combination of their intrinsic fibric structure and film formation process. We have previously developed a conducive paper based on PEDOT:PSS and cellulose which could be used as the electrodes in energy storage devices. In this work we developed a novel measurement set-up for studying the anisotropy of the charge transport in such composite materials. A tool with two parallel plates mounted with spring loaded probes was constructed enabling probing both lateral and vertical directions and resistances from in-plane and out-of-plane directions to be obtained. The measurement results were then input and analyzed with a model based on a transformation method developed by Montgomery, and thus the in-plane and out-of-plane conductivities could be detangled and derived. We also investigated how the conductivity anisotropy depends on the microstructure of the cellulose template onto which the conducive polymer self-organizes. We show that there is a relatively small difference between the in-plane and out-of-plane conductivities which is attributed to the unique 3D-structure of the composites. This new knowledge gives a better understanding of the possibilities and limitations for using the material in electronic and electrochemical devices.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2019
Keywords
Cellulose; PEDOT: PSS; Composite material; Anisotropic conductivity; Four-point probe
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-154091 (URN)10.1016/j.orgel.2018.12.023 (DOI)000455249800035 ()
Note

Funding Agencies|Swedish Foundation for Strategic Research [GMT14-0058]

Available from: 2019-01-29 Created: 2019-01-29 Last updated: 2019-10-10
Kim, N., Petsagkourakis, I., Chen, S., Berggren, M., Crispin, X., Jonsson, M. & Zozoulenko, I. (2019). Electric Transport Properties in PEDOT Thin Films. In: John R. Reynolds; Barry C. Thompson; Terje A. Skotheim (Ed.), Conjugated Polymers: Properties, Processing, and Applications (pp. 45-128). Boca Raton: CRC Press
Open this publication in new window or tab >>Electric Transport Properties in PEDOT Thin Films
Show others...
2019 (English)In: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, p. 45-128Chapter in book (Refereed)
Abstract [en]

In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

Place, publisher, year, edition, pages
Boca Raton: CRC Press, 2019
National Category
Materials Engineering Bio Materials
Identifiers
urn:nbn:se:liu:diva-160891 (URN)10.1201/9780429190520-3 (DOI)9780429190520 (ISBN)
Available from: 2019-10-14 Created: 2019-10-14 Last updated: 2019-10-14Bibliographically approved
Brooke, R., Edberg, J., Crispin, X., Berggren, M., Engquist, I. & Jonsson, M. (2019). Greyscale and Paper Electrochromic Polymer Displays by UV Patterning. Polymers, 11(2), Article ID 267.
Open this publication in new window or tab >>Greyscale and Paper Electrochromic Polymer Displays by UV Patterning
Show others...
2019 (English)In: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, no 2, article id 267Article in journal (Refereed) Published
Abstract [en]

Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

Place, publisher, year, edition, pages
MDPI, 2019
Keywords
conductive polymers; PEDOT; patterning; electrochromic; electrochromic displays; paper displays; digital cellulose; cellulose; paper electronics; electrochromism; vapor phase polymerization
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-155591 (URN)10.3390/polym11020267 (DOI)000460296000081 ()2-s2.0-85061197759 (Scopus ID)
Note

Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Foundation for Strategic Research; Wenner-Gren Foundations; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Vinnova

Available from: 2019-03-21 Created: 2019-03-21 Last updated: 2019-10-10Bibliographically approved
Berggren, M. & Malliaras, G. G. (2019). How conducting polymer electrodes operate. Science, 364(6437), 233-234
Open this publication in new window or tab >>How conducting polymer electrodes operate
2019 (English)In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, no 6437, p. 233-234Article in journal, Editorial material (Other academic) Published
Abstract [en]

n/a

Place, publisher, year, edition, pages
Washington, DC, United States: American Association for the Advancement of Science (A A A S), 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-157205 (URN)10.1126/science.aaw9295 (DOI)000464956600026 ()31000650 (PubMedID)2-s2.0-85065022317 (Scopus ID)
Note

Funding Agencies|KAW; SSF; VINNOVA; VR; EPSRC; EU Horizon 2020; KAUST

Available from: 2019-06-14 Created: 2019-06-14 Last updated: 2019-06-19Bibliographically approved
Fahlman, M., Fabiano, S., Gueskine, V., Simon, D. T., Berggren, M. & Crispin, X. (2019). Interfaces in organic electronics. Nature Reviews Materials
Open this publication in new window or tab >>Interfaces in organic electronics
Show others...
2019 (English)In: Nature Reviews Materials, E-ISSN 2058-8437Article in journal (Refereed) Epub ahead of print
Abstract [en]

Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

Place, publisher, year, edition, pages
Nature Publishing Group, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-160114 (URN)10.1038/s41578-019-0127-y (DOI)2-s2.0-85069828729 (Scopus ID)
Available from: 2019-09-05 Created: 2019-09-23 Last updated: 2019-09-10Bibliographically approved
Seitanidou, M. S., Tybrandt, K., Berggren, M. & Simon, D. T. (2019). Overcoming transport limitations in miniaturized electrophoretic delivery devices. Lab on a Chip, 19(8), 1427-1435
Open this publication in new window or tab >>Overcoming transport limitations in miniaturized electrophoretic delivery devices
2019 (English)In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 19, no 8, p. 1427-1435Article in journal (Refereed) Published
Abstract [en]

Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and iontronic technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:liu:diva-157204 (URN)10.1039/c9lc00038k (DOI)000465283700008 ()30875418 (PubMedID)2-s2.0-85064156567 (Scopus ID)
Note

Funding Agencies|Swedish Foundation for Strategic Research; Advanced Functional Materials SFO-center at Linkoping University; Onnesjo Foundation; Knut and Alice Wallenberg Foundation

Available from: 2019-06-14 Created: 2019-06-14 Last updated: 2019-06-19Bibliographically approved
Jakešová, M., Arbring, T., Đerek, V., Poxson, D., Berggren, M., Glowacki, E. & Simon, D. T. (2019). Wireless organic electronic ion pumps driven by photovoltaics. npj Flexible Electronics, 3(1), 14-14
Open this publication in new window or tab >>Wireless organic electronic ion pumps driven by photovoltaics
Show others...
2019 (English)In: npj Flexible Electronics, ISSN 2397-4621, Vol. 3, no 1, p. 14-14Article in journal (Refereed) Published
Abstract [en]

The organic electronic ion pump (OEIP) is an emerging bioelectronic technology for on-demand and local delivery of pharmacologically active species, especially targeting alkali ions, and neurotransmitters. While electrical control is advantageous for providing precise spatial, temporal, and quantitative delivery, traditionally, it necessitates wiring. This complicates implantation. Herein, we demonstrate integration of an OEIP with a photovoltaic driver on a flexible carrier, which can be addressed by red light within the tissue transparency window. Organic thin-film bilayer photovoltaic pixels are arranged in series and/or vertical tandem to provide the 2.5–4.5 V necessary for operating the high-resistance electrophoretic ion pumps. We demonstrate light-stimulated transport of cations, ranging in size from protons to acetylcholine. The device, laminated on top of the skin, can easily be driven with a red LED emitting through a 1.5-cm-thick finger. The end result of our work is a thin and flexible integrated wireless device platform.

Place, publisher, year, edition, pages
Nature Publishing Group, 2019
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-160118 (URN)10.1038/s41528-019-0060-6 (DOI)
Available from: 2019-09-05 Created: 2019-09-05 Last updated: 2019-09-13Bibliographically approved
Gomez-Carretero, S., Libberton, B., Svennersten, K., Persson, K. M., Jager, E., Berggren, M., . . . Richter-Dahlfors, A. (2018). Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017). npj Biofilms and Microbiomes, 4(1), Article ID 19.
Open this publication in new window or tab >>Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)
Show others...
2018 (English)In: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, no 1, article id 19Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Nature Publishing Group, 2018
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-151743 (URN)10.1038/s41522-018-0061-6 (DOI)000452255400001 ()30109118 (PubMedID)2-s2.0-85051180846 (Scopus ID)
Note

This article corrects the research article with the DOI: 10.1038/s41522-017-0027-0. The research article is registered in DiVA: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151745

Available from: 2018-10-04 Created: 2018-10-04 Last updated: 2018-12-20Bibliographically approved
Chaharsoughi, M. S., Tordera, D., Grimoldi, A., Engquist, I., Berggren, M., Fabiano, S. & Jonsson, M. (2018). Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations. Advanced Optical Materials
Open this publication in new window or tab >>Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations
Show others...
2018 (English)In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071Article in journal (Refereed) Published
Abstract [en]

State-of-the-art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light-induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride-co-trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon-assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2018
Keywords
Gold nanodisks, Plasmonic heating, Pyroelectric copolymers, Solar energy harvesting
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-148574 (URN)10.1002/adom.201701051 (DOI)000434349300001 ()
Note

Funding agencies: Wenner-Gren Foundations; Swedish Research Council [2015-05070]; Swedish Foundation for Strategic Research; AForsk Foundation; Royal Swedish Academy of Sciences; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Lin

Available from: 2018-06-13 Created: 2018-06-13 Last updated: 2018-06-28
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-5154-0291

Search in DiVA

Show all publications