liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 222) Show all publications
Mustafa, E., Tahira, A., Adam, R. E., Ibupoto, Z. H., Elhag, S., Willander, M. & Nur, O. (2019). Efficient Ni–Fe layered double hydroxides/ZnO nanostructures for photochemical water splitting. Journal of Solid State Chemistry, 273, 186-191
Open this publication in new window or tab >>Efficient Ni–Fe layered double hydroxides/ZnO nanostructures for photochemical water splitting
Show others...
2019 (English)In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 273, p. 186-191Article in journal (Refereed) Published
Abstract [en]

Zinc oxide (ZnO) nanostructures are widely investigated for photocatalytic applications but the functional properties are limited by the fast carrier recombination rate, which is an intrinsic property of ZnO. To optimize the recombination rate of ZnO, a study is carried out in which it is covered with Ni-Fe layered double hydroxides and synergistic effects are created which boosted the photocatalytic activity of ZnO. The nanostructured materials are synthesized by the low temperature aqueous chemical growth and electrodeposition methods. These nanostructures are characterized by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) technique. SEM study has revealed a Ni–Fe LDH coated ZnO NRs. The powder XRD has showed a cubic phase of the Ni-Fe layered double hydroxide on the ZnO NRs having an excellent crystalline quality. The optical characterization has shown low scattering of light for the Ni–Fe LDH coated ZnO NRs sample. The sample prepared with deposition time of 25 s showed excellent photochemical water splitting properties compared to counter photo-anodes in alkaline media. The photo response was highly stable and fast. The incident photon to current conversion efficiency for the photo-anode of Ni–Fe(LDHs)/ZnO over 25 s was 82% at a maximum absorption of 380 nm compared to the pristine ZnO NRs which has 70% at the same wavelength. This study is providing a simple, cost effective, earth abundant and environment friendly methodology for the fabrication of photo-anodes for diverse applications specifically water oxidation and solar radiation driven water splitting.

Place, publisher, year, edition, pages
Academic Press, 2019
Keywords
ZnO nanorods, Ni–Fe layered double hydroxides, Photochemical water splitting
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-155658 (URN)10.1016/j.jssc.2019.03.004 (DOI)000466261100027 ()2-s2.0-85062437722 (Scopus ID)
Note

Funding agencies:  department of Science and Technology, Campus Norrkoping, Linkoping University, Sweden

Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-06-22Bibliographically approved
Pirhashemi, M., Elhag, S., Elhadi Adam, R., Habibi-Yangjeh, A., Liu, X., Willander, M. & Nur, O. (2019). n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties. RSC Advances, 9(14), 7992-8001
Open this publication in new window or tab >>n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties
Show others...
2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 14, p. 7992-8001Article in journal (Refereed) Published
Abstract [en]

In this study, ZnO nanorods (NRs) were hydrothermally grown on an Au-coated glass substrate at a relatively low temperature (90 °C), followed by the deposition of Ag2CrO4 particles via a successive ionic layer adsorption and reaction (SILAR) route. The content of the Ag2CrO4 particles on ZnO NRs was controlled by changing the number of SILAR cycles. The fabricated ZnO–Ag2CrO4 heterojunction photoelectrodes were subjected to morphological, structural, compositional, and optical property analyses; their photoelectrochemical (PEC) properties were investigated under simulated solar light illumination. The photocurrent responses confirmed that the ability of the ZnO–Ag2CrO4 heterojunction photoelectrodes to separate the photo-generated electron–hole pairs is stronger than that of bare ZnO NRs. Impressively, the maximum photocurrent density of about 2.51 mA cm−2 at 1.23 V (vs. Ag/AgCl) was measured for the prepared ZnO–Ag2CrO4 photoelectrode with 8 SILAR cycles (denoted as ZnO–Ag2CrO4-8), which exhibited about 3-fold photo-enhancement in the current density as compared to bare ZnO NRs (0.87 mA cm−2) under similar conditions. The improvement in photoactivity was attributed to the ideal band gap and high absorption coefficient of the Ag2CrO4 particles, which resulted in improved solar light absorption properties. Furthermore, an appropriate annealing treatment was proven to be an efficient process to increase the crystallinity of Ag2CrO4 particles deposited on ZnO NRs, which improved the charge transport characteristics of the ZnO–Ag2CrO4-8 photoelectrode annealed at 200 °C and increased the performance of the photoelectrode. The results achieved in the present work present new insights for designing n–n heterojunction photoelectrodes for efficient and cost-effective PEC applications and solar-to-fuel energ

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-155657 (URN)10.1039/C9RA00639G (DOI)000462646000051 ()2-s2.0-85062919263 (Scopus ID)
Note

Funding agencies: University of Mohaghegh Ardabili-Iran and Linkoping University-Sweden; AForsk [17-457

Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-04-18Bibliographically approved
David, D., Alnoor, H., Mancir da Silva Santana, V., Bargiela, P., Nur, O., Willander, M., . . . Ferreira da Silva, A. (2019). Optical properties from photoelectron energy-loss spectroscopy of low-temperature aqueous chemically synthesized ZnO nanorods grown on Si. Semiconductor Science and Technology, 34(4), Article ID 045019.
Open this publication in new window or tab >>Optical properties from photoelectron energy-loss spectroscopy of low-temperature aqueous chemically synthesized ZnO nanorods grown on Si
Show others...
2019 (English)In: Semiconductor Science and Technology, ISSN 0268-1242, E-ISSN 1361-6641, Vol. 34, no 4, article id 045019Article in journal (Refereed) Published
Abstract [en]

The optical properties of zinc oxide (ZnO) nanorods (NRs) synthesized by the low-temperature aqueous chemical method on top of silicon (Si) substrate have been investigated by means of photoelectron energy loss spectroscopy (PEELS). The ZnO NRs were obtained by the low temperature aqueous chemical synthesis on top of Si substrate. The measured valence band, the dynamical dielectric functions and optical absorption of the material show a reasonable agreement when the trending and shape of the theoretical calculations are considered. A first-principle calculation based on density functional theory (DFT) was performed using the partially self-consistent GW approximation (scGW0) and compared to the experimental results. The application of these two techniques brings a new analysis of the electronic properties of this material. The experimental results regarding the density of states (DOS) obtained for the valence band using x-ray photoelectron spectroscopy (XPS) was found to be consistent with the theoretical calculated value. Due to this consistency, the same wavefunctions was then employed to calculate the dielectric function of the ZnO NRs. The experimentally extracted dielectric function was also consistent with the calculated values.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2019
Keywords
ZnO nanorods; optical properties; density of states; dielectric function; density functional theory
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-155654 (URN)10.1088/1361-6641/ab0bc4 (DOI)000461940800007 ()
Note

Funding agencies: National Research Council of Scientific and Technological Development (CNP); Bahia Research Foundation (FAPESB)/PRONEX; CAPES Foundation within the Ministry of Education, Research Council of Norway [243642]

Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-04-03Bibliographically approved
Elhadi Adam, R., Mustafa, E., Elhag, S., Nur, O. & Willander, M. (2019). Photocatalytic properties for different metal-oxide nanomaterials. In: Oxide-based Materials and Devices X: . Paper presented at SPIE OPTO, February 2-7 2019, San Francisco, California, United States. SPIE, Article ID 1091925.
Open this publication in new window or tab >>Photocatalytic properties for different metal-oxide nanomaterials
Show others...
2019 (English)In: Oxide-based Materials and Devices X, SPIE , 2019, article id 1091925Conference paper, Published paper (Refereed)
Abstract [en]

We here demonstrate the synthesis of different nanostructures, including nanoparticles, nanorods, core-shell structures,and compound metal oxide nanostructures all synthesized by a low temperature chemical process. We furtherinvestigated their photocatalytic properties for degradation of toxic waste and their photochemical efficiency for watersplitting. All the photocatalytic properties as well as the photochemical properties were utilized using sun radiation. Theresults presented indicate huge potential for the investigated processes with positive impact to energy consumption andbenefits for the environment.

Place, publisher, year, edition, pages
SPIE, 2019
Series
Proceedings of SPIE, ISSN 0277-786X, E-ISSN 1996-756X ; 10919
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-155664 (URN)10.1117/12.2517436 (DOI)
Conference
SPIE OPTO, February 2-7 2019, San Francisco, California, United States
Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-03-29
Elhadi Adam, R., Pirhashemi, M., Elhag, S., Liu, X., Habibi-Yangjeh, A., Willander, M. & Nur, O. (2019). ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation. RSC Advances, 9(15), 8271-8279
Open this publication in new window or tab >>ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation
Show others...
2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 15, p. 8271-8279Article in journal (Refereed) Published
Abstract [en]

Ag-based compounds are excellent co-catalyst that can enhance harvesting visible light and increase photo-generated charge carrier separation owing to its surface plasmon resonance (SPR) effect in photoelectrochemical (PEC) applications. However, the PEC performance of a ZnO/Ag/Ag2WO4 heterostructure with SPR behavior has not been fully studied so far. Here we report the preparation of a ZnO/Ag/Ag2WO4 photo-electrode with SPR behavior by a low temperature hydrothermal chemical growth method followed by a successive ionic layer adsorption and reaction (SILAR) method. The properties of the prepared samples were investigated by different characterization techniques, which confirm that Ag/Ag2WO4 was deposited on the ZnO NRs. The Ag2WO4/Ag/ZnO photo-electrode showed an enhancement in PEC performance compared to bare ZnO NRs. The observed enhancement is attributed to the red shift of the optical absorption spectrum of the Ag2WO4/Ag/ZnO to the visible region (>400 nm) and to the SPR effect of surface metallic silver (Ag0) particles from the Ag/Ag2WO4 that could generate electron–hole pairs under illumination of low energy visible sun light. Finally, we proposed the PEC mechanism of the Ag2WO4/Ag/ZnO photo-electrode with an energy band structure and possible electron–hole separation and transportation in the ZnO/Ag/Ag2WO4 heterostructure with SPR effect for water oxidation. ER

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-155655 (URN)10.1039/C8RA10141H (DOI)000461445300016 ()
Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-04-08Bibliographically approved
Wahab, H. A., Salama, A. A., El Saeid, A. A., Willander, M., Nour, O. & Battisha, I. K. (2018). Zinc oxide nano-rods based glucose biosensor devices fabrication. RESULTS IN PHYSICS, 9, 809-814
Open this publication in new window or tab >>Zinc oxide nano-rods based glucose biosensor devices fabrication
Show others...
2018 (English)In: RESULTS IN PHYSICS, ISSN 2211-3797, Vol. 9, p. 809-814Article in journal (Refereed) Published
Abstract [en]

ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 degrees C (ZNRP150) and silver wire with annealing temperature 250 degrees C (ZN(R)W250), for the extracellular glucose concentration determination with functionalized ZN(R)-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 mu M to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively. (C) 2018 The Authors. Published by Elsevier B.V.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2018
Keywords
ZN(R)P150; ZN(R)W250; Sol-Gel; Glucose biosensors; Blood plasma
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-149734 (URN)10.1016/j.rinp.2018.02.077 (DOI)000435611100108 ()
Note

Funding Agencies|Science and Technology Development Fund (STDF) project [5368]

Available from: 2018-07-24 Created: 2018-07-24 Last updated: 2018-08-14
Elhag, S., Khun, K., Khranovskyy, V., Liu, X., Willander, M. & Nour, O. (2016). Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties. Sensors, 16(2)
Open this publication in new window or tab >>Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties
Show others...
2016 (English)In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 16, no 2Article in journal (Refereed) Published
Abstract [en]

In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.

Place, publisher, year, edition, pages
MDPI AG, 2016
Keywords
potentiometric sensor; ZnO nanorods; glutamate; doping
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Chemical Sciences Physical Sciences
Identifiers
urn:nbn:se:liu:diva-126849 (URN)10.3390/s16020222 (DOI)000371787800096 ()26861342 (PubMedID)
Note

Funding Agencies|University of Kordofan, El-Obeid, Kordofan Sudan [700]

Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2017-11-30
Alnoor, H., Pozina, G., Khranovskyy, V., Liu, X., Iandolo, D., Willander, M. & Nur, O. (2016). Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes. Journal of Applied Physics, 119(16), 165702
Open this publication in new window or tab >>Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes
Show others...
2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 16, p. 165702-Article in journal (Refereed) Published
Abstract [en]

Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5M exhibit stronger yellow emission (similar to 575 nm) compared to those based on 1:1 and 1:3M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination. Published by AIP Publishing.

Place, publisher, year, edition, pages
AMER INST PHYSICS, 2016
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-129174 (URN)10.1063/1.4947593 (DOI)000375929900043 ()
Note

Funding Agencies|Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

Available from: 2016-06-13 Created: 2016-06-13 Last updated: 2017-11-28
Nour, E., Chey, C., Willander, M. & Nur, O. (2016). Low frequency accelerator sensor based on piezoelectric ZnO nanorods grown by low temperature scalable process. Physica Status Solidi (a) applications and materials science, 213(9), 2503-2508
Open this publication in new window or tab >>Low frequency accelerator sensor based on piezoelectric ZnO nanorods grown by low temperature scalable process
2016 (English)In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 213, no 9, p. 2503-2508Article in journal (Refereed) Published
Abstract [en]

Piezoelectric vertically aligned zinc oxide (ZnO) nanorods (NRs) were grown by low temperature aqueous chemical approach and successfully used as a low frequency self-powered accelerator detector system. The nanogenerator (NG) device was tested under the influence of low frequency vibrations, different load masses, and finger prints pressure. The experimental results show relatively high sensitivity to frequencies as low as 5 Hz. This energy conversion device has produced a maximum output voltage of about 0.3 and 1.4 V under a frequency of 41 Hz and a mass of 1000 g, respectively. The fabricated NG can be used as an accelerator sensor with a good performance in the range from about 0.67 to 5.5 m s−2 with a sensitivity of 0.045 V s2 m−1. Furthermore, it has been demonstrated that the NG is able to harvest energy under finger-print scanning. The result from the finger-print pressure was consistent with the masses testing results. This energy-harvesting technology also provides a simple and cost-effective platform to capture low-frequency mechanical energy, i.e., body movements, and other applications like developing a sensitive finger print camera, etc.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2016
National Category
Nano Technology
Identifiers
urn:nbn:se:liu:diva-128901 (URN)10.1002/pssa.201600142 (DOI)000388318600035 ()
Note

Funding agencies: Advanced Functional Materials (AFM) at Linkoping University, Sweden; CeNano grant at Linkoping University, Sweden

Available from: 2016-06-07 Created: 2016-06-07 Last updated: 2017-05-11Bibliographically approved
Nour, E., Bondarevs, A., Huss, P., Sandberg, M., Gong, S., Willander, M. & Nour, O. (2016). Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate. Nanoscale Research Letters, 11(156)
Open this publication in new window or tab >>Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate
Show others...
2016 (English)In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 11, no 156Article in journal (Refereed) Published
Abstract [en]

In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

Place, publisher, year, edition, pages
SPRINGER, 2016
Keywords
ZnO; Hydrothermal growth; Piezoelectric nanowire; Nanogenerator; Energy harvesting; Wireless data transmission
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-127433 (URN)10.1186/s11671-016-1373-1 (DOI)000373089300004 ()27000024 (PubMedID)
Note

Funding Agencies|CeNano grant; Swedish Government strategic research area in material science on functional materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

Available from: 2016-05-01 Created: 2016-04-26 Last updated: 2017-11-30
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9566-041X

Search in DiVA

Show all publications