Open this publication in new window or tab >>Show others...
2020 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 11, no 1, article id 617Article in journal (Refereed) Published
Abstract [en]
Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy. The coherence plays a decisive role in the initial ~200 femtoseconds as we observe distinct experimental signatures of coherent photocurrent generation. This coherent process breaks the energy barrier limitation for charge formation, thus competing with excitation energy transfer. The physics may inspire the design of new photovoltaic materials with high device performance, which explore the quantum effects in the next-generation optoelectronic applications.
Place, publisher, year, edition, pages
Nature Publishing Group, 2020
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-164232 (URN)10.1038/s41467-020-14476-w (DOI)000524950500001 ()32001688 (PubMedID)2-s2.0-85078713267 (Scopus ID)
Note
Funding agencies: Knut and Alice Wallenberg Foundation (KAW) through a Wallenberg Scholar grant; Crafoord Foundation; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW 2014.0041]; China Scholarship Council (CSC)China Scholarship Council [201508320
2020-03-102020-03-102023-03-28Bibliographically approved