Open this publication in new window or tab >>2023 (English)In: IEEE Transactions on Intelligent Vehicles, ISSN 2379-8858, E-ISSN 2379-8904, Vol. 8, no 9, p. 4223-4236Article in journal (Refereed) Published
Abstract [en]
Enabling resilient autonomous motion planning requires robust predictions of surrounding road users’ future behavior. In response to this need and the associated challenges, we introduce our model titled MTP-GO. The model encodes the scene using temporal graph neural networks to produce the inputs to an underlying motion model. The motion model is implemented using neural ordinary differential equations where the state-transition functions are learned with the rest of the model. Multimodal probabilistic predictions are obtained by combining the concept of mixture density networks and Kalman filtering. The results illustrate the predictive capabilities of the proposed model across various data sets, outperforming several state-of-the-art methods on a number of metrics.
Place, publisher, year, edition, pages
IEEE, 2023
Keywords
Predictive models;Trajectory;Computational modeling;Mathematical models;Data models;Roads;Behavioral sciences;Graph neural networks;neural ODEs;trajectory prediction
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:liu:diva-203164 (URN)10.1109/TIV.2023.3282308 (DOI)2-s2.0-8516155373 (Scopus ID)
Note
Fundng agencies: the Strategic Research Area at Linköping-Lund in Information Technology (ELLIIT), in part by the Swedish Research Council through the Project Handling Uncertainty in Machine Learning Systems under Grant 2020-04122, and in part by the Knutand Alice Wallenberg Foundation through Wallenberg AI, Autonomous Systemsand Software Program (WASP)
2024-04-302024-04-302024-12-03