liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 46) Show all publications
Artal, E., Costa, A. F. & Izquierdo, M. (2018). Correction: Professor Maria Teresa Lozano and universal links (vol 87, pg 441, 1987). REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 112(3), 621-621
Open this publication in new window or tab >>Correction: Professor Maria Teresa Lozano and universal links (vol 87, pg 441, 1987)
2018 (English)In: REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, ISSN 1578-7303, Vol. 112, no 3, p. 621-621Article in journal (Other academic) Published
Abstract [en]

Unfortunatelly an erratum appears in the foreword of this volume.

We claim that one of the authors of the article On universal groups and three-manifolds, Invent. Math. 87 (1987), no. 3, 441–456 is W. Witten. The correct name of this author is Wilbur Carrington Whitten. W. C. Whitten is not the father of the fields medallist E. Witten, as we claim there.

Place, publisher, year, edition, pages
Springer, 2018
National Category
Mathematics
Identifiers
urn:nbn:se:liu:diva-149691 (URN)10.1007/s13398-017-0468-6 (DOI)000437016800002 ()
Available from: 2018-07-24 Created: 2018-07-24 Last updated: 2018-08-14
Costa, A. F. & Izquierdo, M. (2018). One-dimensional families of Riemann surfaces of genus g with 4g+4automorphims. RACSAM, 112(3), 623-631
Open this publication in new window or tab >>One-dimensional families of Riemann surfaces of genus g with 4g+4automorphims
2018 (English)In: RACSAM, ISSN 1578-7303, Vol. 112, no 3, p. 623-631Article in journal (Refereed) Published
Abstract [en]

We prove that themaximal number ag+b of automorphisms of equisymmetric and

complex-uniparametric families of Riemann surfaces appearing in all genera is 4g + 4. For

each integer g ≥ 2 we find an equisymmetric complex-uniparametric family Ag of Riemann

surfaces of genus g having automorphism group of order 4g + 4. For g ≡ −1mod 4 we

present another uniparametric family Kg with automorphism group of order 4g + 4. The

family Ag contains the Accola–Maclachlan surface and the family Kg contains the Kulkarni

surface

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2018
Keywords
Riemann surface, Automorphism group, Fuchsian group
National Category
Mathematics
Identifiers
urn:nbn:se:liu:diva-140428 (URN)10.1007/s13398-017-0429-0 (DOI)000437016800003 ()
Note

Funding agencies: Ministerio de Economia y Competitividad [MTM2014-55812-P]

Available from: 2017-09-04 Created: 2017-09-04 Last updated: 2018-08-14Bibliographically approved
Artal, E., Costa, A. F. & Izquierdo, M. (2018). Professor Maria Teresa Lozano and universal links. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 112(3), 615-620
Open this publication in new window or tab >>Professor Maria Teresa Lozano and universal links
2018 (English)In: REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, ISSN 1578-7303, Vol. 112, no 3, p. 615-620Article in journal, Editorial material (Other academic) Published
Abstract [en]

María Teresa, Maite, Lozano is a great person and mathematician, in these pages we can only give a very small account of her results trying to resemble her personality. We will focus our attention only on a few of the facets of her work, mainly in collaboration with Mike Hilden and José María Montesinos because as Maite Lozano pointed out in an international conference in Umeå University in June 2017, where she was a plenary speaker:

I am specially proud of been part of the team Hilden-Lozano-Montesinos (H-L-M), and of our mathematical achievements

Place, publisher, year, edition, pages
SPRINGER-VERLAG ITALIA SRL, 2018
National Category
Mathematics
Identifiers
urn:nbn:se:liu:diva-149690 (URN)10.1007/s13398-017-0446-z (DOI)000437016800001 ()
Available from: 2018-07-24 Created: 2018-07-24 Last updated: 2018-08-14
Artal, E., Costa, A. F. & Izquierdo, M. (Eds.). (2018). Special Issue: Dedicated to María Teresa Lozano conmemorating her 70th Birthday. Springer
Open this publication in new window or tab >>Special Issue: Dedicated to María Teresa Lozano conmemorating her 70th Birthday
2018 (English)Collection (editor) (Refereed)
Place, publisher, year, edition, pages
Springer, 2018. p. 914
Series
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, ISSN 1578-7303, E-ISSN 1579-1505 ; 112(3)
National Category
Mathematics
Identifiers
urn:nbn:se:liu:diva-150155 (URN)
Available from: 2018-08-14 Created: 2018-08-14 Last updated: 2018-08-14Bibliographically approved
Izquierdo, M. & Johansson, K. (Eds.). (2017). Meeting of the Catalan, Spanish, Swedish Math Societies (CAT‐SP‐SW‐MATH). Paper presented at Meeting of the Catalan, Spanish, Swedish Math Societies (CAT‐SP‐SW‐MATH), June 12-15, Umeå, Sweden. Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Meeting of the Catalan, Spanish, Swedish Math Societies (CAT‐SP‐SW‐MATH)
2017 (English)Conference proceedings (editor) (Other academic)
Abstract [en]

A joint Meeting of the Catalan, Spanish, Swedish Math Societies (CAT-SP-SW-MATH) will be held in Umeå (Sweden) from 12th to 15th June 2017.

The meeting is a symposium devoted to mathematics at large.

The conference is thought as a meeting point between the different areas of mathematics and its applications.

The programme will consist of several plenary lectures, covering a wide range of areas of mathematics, and special sessions devoted to a single topic or area of mathematics.

The venue of the conference will be the Department of Mathematics and Mathematical Statistics of Umeå University.

Welcome!

Milagros Izquierdo (Svenska matematikersamfundet)

Xavier Jarque (Societat Catalana de Matemàtiques)

Francisco José Marcellán (Real Sociedad Matemática Española)

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. p. 895
National Category
Mathematics
Identifiers
urn:nbn:se:liu:diva-148489 (URN)
Conference
Meeting of the Catalan, Spanish, Swedish Math Societies (CAT‐SP‐SW‐MATH), June 12-15, Umeå, Sweden
Available from: 2018-06-12 Created: 2018-06-12 Last updated: 2018-06-26Bibliographically approved
Stokes, K. & Izquierdo, M. (2016). Geometric point-circle pentagonal geometries from Moore graphs. Ars Mathematica Contemporanea, 11(1), 215-229
Open this publication in new window or tab >>Geometric point-circle pentagonal geometries from Moore graphs
2016 (English)In: Ars Mathematica Contemporanea, ISSN 1855-3966, Vol. 11, no 1, p. 215-229Article in journal (Refereed) Published
Abstract [en]

We construct isometric point-circle configurations on surfaces from uniform maps. This gives one geometric realisation in terms of points and circles of the Desargues configuration in the real projective plane, and three distinct geometric realisations of the pentagonal geometry with seven points on each line and seven lines through each point on three distinct dianalytic surfaces of genus 57. We also give a geometric realisation of the latter pentagonal geometry in terms of points and hyperspheres in 24 dimensional Euclidean space. From these, we also obtain geometric realisations in terms of points and circles (or hyperspheres) of pentagonal geometries with k circles (hyperspheres) through each point and k 1 points on each circle (hypersphere).

Place, publisher, year, edition, pages
DMFA SLOVENIJE, 2016
Keywords
Uniform map; equivelar map; dessin denfants; configuration of points and circles
National Category
Mathematical Analysis Geometry
Identifiers
urn:nbn:se:liu:diva-127757 (URN)000373939900015 ()
Note

Funding Agencies|Spanish MEC project ICWT [TIN2012-32757]; Spanish MEC project ARES (CONSOLIDER INGENIO) [CSD2007-00004]

Available from: 2016-05-12 Created: 2016-05-12 Last updated: 2017-11-30
Izquierdo, M. & Stokes, K. (2016). Isometric Point-Circle Configurations on Surfaces from Uniform Maps. Springer Proceedings in Mathematics and Statistics, 159, 201-212
Open this publication in new window or tab >>Isometric Point-Circle Configurations on Surfaces from Uniform Maps
2016 (English)In: Springer Proceedings in Mathematics and Statistics, ISSN 2194-1009, Vol. 159, p. 201-212Article in journal (Refereed) Published
Abstract [en]

We embed neighborhood geometries of graphs on surfaces as point-circle configurations. We give examples coming from regular maps on surfaces with a maximum number of automorphisms for their genus, and survey geometric realization of pentagonal geometries coming from Moore graphs. An infinite family of point-circle v4'>v4v4 configurations on p-gonal surfaces with two p-gonal morphisms is given. The image of these configurations on the sphere under the two p-gonal morphisms is also described.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2016
National Category
Natural Sciences Geometry Discrete Mathematics Geophysics Tribology (Interacting Surfaces including Friction, Lubrication and Wear) Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:liu:diva-133470 (URN)10.1007/978-3-319-30451-9_10 (DOI)
Available from: 2016-12-28 Created: 2016-12-28 Last updated: 2019-01-28Bibliographically approved
Costa, A. F., Izquierdo, M. & Parlier, H. (2015). Connecting p-gonal loci in the compactification of moduli space. Revista Matemática Complutense, 28(2), 469-486
Open this publication in new window or tab >>Connecting p-gonal loci in the compactification of moduli space
2015 (English)In: Revista Matemática Complutense, ISSN 1139-1138, Vol. 28, no 2, p. 469-486Article in journal (Refereed) Published
Abstract [en]

Consider the moduli space M g of Riemann surfaces of genusg≥2 and its Deligne-Munford compactification M g ¯ . We are interested in the branch locus B g for g>2 , i.e., the subset of M g consisting of surfaces with automorphisms. It is well-known that the set of hyperelliptic surfaces (the hyperelliptic locus) is connected in M g but the set of (cyclic) trigonal surfaces is not. By contrast, we show that for g≥5 the set of (cyclic) trigonal surfaces is connected in M g ¯ . To do so we exhibit an explicit nodal surface that lies in the completion of every equisymmetric set of 3-gonal Riemann surfaces. For p>3 the connectivity of the p -gonal loci becomes more involved. We show that for p≥11 prime and genus g=p−1 there are one-dimensional strata of cyclic p -gonal surfaces that are completely isolated in the completion B g ¯ of the branch locus in M g ¯ .

Place, publisher, year, edition, pages
Springer, 2015
National Category
Geometry
Identifiers
urn:nbn:se:liu:diva-115125 (URN)10.1007/s13163-014-0161-7 (DOI)000354223100008 ()
Available from: 2015-03-09 Created: 2015-03-09 Last updated: 2015-06-11
Costa, A. F., Izquierdo, M. & Porto, A. M. (2015). On the connectedness of the branch loci of moduli spaces of orientable Klein surfaces. Geometriae Dedicata, 177(1), 149-164
Open this publication in new window or tab >>On the connectedness of the branch loci of moduli spaces of orientable Klein surfaces
2015 (English)In: Geometriae Dedicata, ISSN 0046-5755, E-ISSN 1572-9168, Vol. 177, no 1, p. 149-164Article in journal (Refereed) Published
Abstract [en]

Let M K (g,+,k) be the moduli space of orientable Klein surfaces of genus g with k boundary components (see Alling and Greenleaf in Lecture notes in mathematics, vol 219. Springer, Berlin, 1971; Natanzon in Russ Math Surv 45(6):53–108, 1990). The space M K (g,+,k) has a natural orbifold structure with singular locus B K (g,+,k) . If g>2 or k>0 and 2g+k>3 the set B K (g,+,k) consists of the Klein surfaces admitting non-trivial symmetries and we prove that, in this case, the singular locus is connected.

Place, publisher, year, edition, pages
Springer Netherlands, 2015
Keywords
Klein surface, Riemann surface, Moduli space, Automorphism
National Category
Geometry
Identifiers
urn:nbn:se:liu:diva-113695 (URN)10.1007/s10711-014-9983-1 (DOI)000358252200010 ()
Projects
Spanska projekt MTM2011-23092
Available from: 2015-01-28 Created: 2015-01-28 Last updated: 2017-12-05Bibliographically approved
Costa, A. F., Izquierdo, M. & Porto, A. M. (2014). Maximal and non-maximal NEC and Fuchsian groups uniformizing Klein and Riemann surfaces. In: Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Rubí E. Rodríguez (Ed.), Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces: (pp. 107-118). American Mathematical Society (AMS), 629
Open this publication in new window or tab >>Maximal and non-maximal NEC and Fuchsian groups uniformizing Klein and Riemann surfaces
2014 (English)In: Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces / [ed] Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Rubí E. Rodríguez, American Mathematical Society (AMS), 2014, Vol. 629, p. 107-118Chapter in book (Refereed)
Place, publisher, year, edition, pages
American Mathematical Society (AMS), 2014
Series
Contemporary Mathematics, ISSN 0271-4132 ; 629
Keywords
Riemann surface, Klein surface, Fuchsian group, Non-euclidean crystallographic group, Teichmüller space, Moduli space
National Category
Geometry
Identifiers
urn:nbn:se:liu:diva-113696 (URN)10.1090/conm/629 (DOI)000363093100008 ()978-1-4704-1093-3 (ISBN)978-1-4704-2058-1 (ISBN)
Projects
MTM2011-23092 (Spansk)
Note

The DOI applies to the book

Available from: 2015-01-28 Created: 2015-01-28 Last updated: 2019-01-28Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-9557-9566

Search in DiVA

Show all publications