liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 269) Show all publications
Bydler, R., Björkström, A., Fritzson, P., Gullberg, A., Schütt, L. & Sundblad, Y. (2022). Omställning till ett hållbart transport- och mobilitetssystem med människan i centrum. Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Omställning till ett hållbart transport- och mobilitetssystem med människan i centrum
Show others...
2022 (Swedish)Report (Refereed)
Abstract [sv]

Den globala uppvärmningen är vår tids stora utma­ning. FN:s klimatpanels, IPCC:s, första rapport publicerades 1990. Det är alltså över 30 år sedan forskar­samhället konstaterade att en snabb klimatförändring sker. Ny forskning har sedan dess visat att redan vid 1,5 graders global uppvärmning finns uppenbara ris­ker för såväl människors som djurs och naturs mil­jöer. Det ledde till att en stor majoritet av världens länder skrev under Parisöverenskommelsen vid FN:s klimatmöte, COP 21, 2015. Parisöverenskommelsen anger att världens länder ska vidta åtgärder som leder till att den globala medeltemperaturhöjningen hålls långt under 2 grader och helst begränsas till under 1,5 grader. Trots att det är vetenskapligt belagt och allmänt accepterat att de utsläpp människan orsakat är den helt överskuggande orsaken till globala upp­värmningen, så saknas de nödvändiga åtgärderna för att minska utsläppen av växthusgaser. Den globala temperaturhöjningen är nu 1,1 grader jämfört med förindustriell tid.

Det är mot denna bakgrund Klimatriksdagen tar fram ett förslag till klimatpolitiska insatser där utgångs­punkten är Sveriges åtaganden enligt Parisöverens­kommelsen. Koldioxidbudgeten, som gällde för Sveri­ge 2020 utifrån dessa förutsättningar, visar att senast 2035 tar budgeten slut.

Denna rapport om Mobilitet och transport är en fri­stående rapport och samtidigt ett underlag till Kli­matriksdagens samlade Klimatomställningsplan. Inrikes transporter orsakar ungefär en tredjedel av de territoriella utsläppen, inkluderas utsläppen från bränslen som lagras i Sverige, bunkrade bränslen, för utrikes flyg och sjöfart hela 40 procent. Transport­sektorn karaktäriseras av många kopplingar till andra sektorer och är beroende av ett stort antal aktörer. Ut­byggnad av transportinfrastrukturen tar lång tid och kräver stora investeringar. Omställningen till en kli­matneutral transportsektor inom loppet av ett drygt decennium kräver därför kraftfulla och snabbt insatta åtgärder.

För analysen och valet av åtgärder har en målbild för en utsläppsfri transportsektor år 2035 varit vägledan­de. Genom att sätta denna i relation till situationen idag har ett antal alternativa scenarier med olika upp­sättningar åtgärder tagits fram – en metodik benämnd back-casting. Utsläppsbanor för dessa alternativ illustrerar hur minskningen av utsläpp kan komma att fördelas tidsmässigt. För analyser av hur och när olika åtgärder bör sättas in har även dynamisk modellering och simulering använts.

Vi hävdar i rapporten att synen på transporter och transportplanering måste ändras i grunden. Människors behov och förhållanden, hög tillgänglighet och låg resursbelastning bör vara ledstjärnor och trans­portplaneringen inordnas i övrig samhällsplaneringen. Ett klimatvänligt mobilitetsmönster behöver skapas. Människors acceptans och engagemang kommer att vara helt avgörande för att omställningen ska lyckas.

Föreslagna åtgärderna ska ses i ljuset av de åtag­anden som Sverige gjort och den koldioxidbudget som följer av dessa. Vissa förslag kan framstå som mindre populära och därför svåra att genomföra. Ändå är de inte tillräckliga. Detta gäller speciellt flyg men också persontrafik på väg och sjöfart. Efter hand behöver de föreslagna åtgärderna kompletteras och skärpas för att transportsektorns utsläpp ska rymmas inom ramen för gällande koldioxidbudget.

Rapporten ger inledningsvis en sammanfattning av slutsatser och förslag i rapporten, följt av vad som måste ha uppnåtts av klimatomställningen målåret 2035. Vad har hänt och genomförts under åren fram till dess? Vanligtvis utgår framtidsbeskrivningar från situationen idag för att därifrån blicka framåt i tiden. Detta låser dock lätt tanken vid rådande förutsättning­ar. Klimatomställningen kommer emellertid att kräva så genomgripande förändringar att dagens tankesätt, rutiner och lagbundenheter måste överges och ersät­tas med nya ordningar och kreativa lösningar.

De delar, som beskriver föreslagna åtgärder, är skriv­na utifrån vad som gäller idag. De ska beslutas nu och genomföras skyndsamt för att nödvändiga förändring­ar ska kunna ske i tid. Under resans gång kommer om­prövningar att ske, nya förutsättningar att gälla och nya möjligheter att dyka upp. Antalet åtgärder och de många sambanden och kopplingarna dem emellan som krävs för att få önskad effekt visar komplexiteten i omställningen.

Överväganden och slutsatser i korthet

Det korta tidsperspektivet – omställningen till ett klimatvänligt mobilitetsmönster ska ske på ett drygt decennium – medför krav på beslut och genomförande av kraftfulla och snabbt insatta åtgärder.

  • Ett helt nytt synsätt, ett systemperspektiv, anläggs på mobilitet, transporter och deras roll i samhäl­let. Utbud och åtgärder inom olika transportslag samordnas och understöds i relation till samhällsnytta som tillgänglighet, rättvisa, minskad klimat­påverkan, hälsa, lokal miljö och biologisk mångfald. Först när utformningen av transportsektorn utgår från dessa mål, med hänsyn till den tillgängliga koldioxidbudgeten och överger dagens prognosstyr­da och snäva infrastrukturplanering inleds sektorns klimatomställning på allvar.
  • Digitalt system för dynamiska och differentierade priser på användningen av väginfrastrukturen – dy­namiska och differentierade vägavgifter – samord­nat med utbud och biljettsystem i kollektivtrafik påverkar trafikvolymer, val av transportsätt och skapar långsiktig finansiering för kollektivtrafiken. De offentliga insatserna finansieras ur en gemensam kassa.
  • Insatser för minskade trafikvolymer på väg kom­bineras med åtgärder för ökad gång-, cykel-och kollektivtrafik samt en snabb elektrifiering av motorfordonen.
  • Omfattande investeringar görs inom järnväg, kollek­tivtrafik, laddinfrastruktur och bredband. Dessa genomförs mycket snabbt för att bidra med positiva klimateffekter fram till 2035.
  • Transportsektorns totala utsläpp av biogen och fos­sil koldioxid är av en storleksordning som innebär att de praktiskt inte kan reduceras ner till netto noll med tillgängliga åtgärder fram till 2035.
  • Koldioxidbudgeten för mobilitets-och transport­sektorn bryts ner på regional nivå där klimatom­ställningen drivs på under ledning av länsstyrelser­na, i samverkan med berörda parter och med statliga stimulanspengar.
Abstract [en]

The global warming is the greatest challenge of our time. The first report by the UN climate panel, IPCC, was published 1990. Thus, it is more than 30 years since the research community concluded that a rapid climate change is ongoing. Since then new research has shown that already at 1.5 degrees global warming there are definite risks for environments needed by both humans, animals, and nature. This motivated a large majority of the world’s countries to sign the Paris Agreement at the UN climate conference, COP 21, in 2015. The Paris Agreement states that the countries of the World shall take action to keep the global average temperature increase far below 2.0 degrees and preferably below 1.5 degrees. Despite the fact that it is scientifically shown and generally accepted that human caused emissions is the completely dominating cause of the global warming, the necessary actions to reduce emissions are still missing. The average global temperature increase is now 1.1 degrees Celsius compared to pre-industrial times.       With this as background, the Swedish Climate Parliament (an NGO, www.klimatriksdagen.se) develops a set of proposals for climate policy actions based on Sweden’s commitments according to the Paris Agreement. The CO2 emission budget for Sweden 2020 according to these assumptions show that the Swedish emission budget will be used up latest 2035.

This report about mobility and transport is an independent report and at the same time input to the Climate Parliament’s comprehensive climate-based transition plan. Domestic transport causes about a third of Sweden’s territorial emission. If we also include emissions from fuels stored in Sweden, bunkered fuels for aircraft and ships, Sweden’s emissions related to transport amounts to about 40 percent. The transport sector is characterized by many interactions to other sectors and requires large investments. The transition to a climate neutral neutral transport section within slightly more than a decade therefore requires powerful and rapidly executed actions.      The goal of an emission free transport sector for Sweden 2035 has been guiding the analysis and choice of actions. By putting this in relation to the situation of today, a number of alternative scenarios with different sets of actions to reach this goal have been developed. This methodology is called back-casting. Emission trajectories for these scenarios illustrate how emission reductions can be distributed over time. Moreover, dynamic system modeling and simulation has also been employed regarding analysis of how and when different actions should be executed.

In this report we claim that the view of transport and transport planning must be fundamentally changed. Human needs and conditions, high availability, and low resource usage should be long term goals and the transport planning should be included in the general societal planning. A climate friendly mobility pattern must be created. People’s acceptance and engagement will be absolutely crucial for the success of the sustainability transition.    The proposed actions should be viewed in view of the commitments that Sweden has done and the CO2 budget for Sweden that becomes the consequence. Certain proposals may appear to be less popular and therefore difficult to implement. Nonetheless, even these are not enough. This is true especially for air traffic but also for person transport on road and at sea. Over time the proposed actions need to be extended and applied more strictly in order for the CO2 budget of the transport sector to be accommodated within the applicable CO2 budget.

The introductory part of the report first presents a summary of the conclusions and proposals of the report, followed by the goals that need to be reached at the target year 2035. What will happen and which actions have been realized until the year 2035? Usually visions of the future starts at the current situation today and projects current trends forward in time. This has the drawback that the current situation and trends may lock thinking and prevent necessary actions. However, the climate induced transition will need such large and comprehensive changes that parts of today’s thinking, methodology and tradition have to be abandoned and replaced by new methods and creative solutions. The parts of the report that describe proposed actions are written based on what is applicable today. They should be decided on and executed very soon in order that necessary changes should happen in time. During this process re-evaluation of policies and solutions will need to be done continuously. New conditions and new possibilities will appear. The many solutions and actions and the connections and inter-relations between those that must be fulfilled to get the desired results indicate the complexity of the climate sustainability transition.

Considerations and conclusions summarized:

The short time available – since the transition to a climate friendly mobility and transport system needs to take place during a little bit more than a decade – results in requirements on decisions and implementation of powerful and rapidly implemented measures.

  • A fundamentally new point of view, a system perspective, is applied to mobility, transport, and their roles in society. Availability and measures related to different modes of transportation will be coordinated and supported in relation to societal benefits such as availability, equity, reduced climate impact, health, local environment, and biodiversity. The climate related transformation of the transport sector will be seriously begun only if these goals are used as guidance, in relation to available carbon dioxide budgets, abandoning todays’ forecast driven and short term oriented infra structure planning.
  • A digital system for dynamic and differentiated prices on usage of road infra structure – dynamic and differentiated road fees – coordinated with supply and a comprehensive public transport ticket system will influence traffic volumes, choice of transport mode, and create long term financing of public transport. The public investments will be financed from a general governmental fund.
  • Measures for reduced road traffic volumes are combined with actions to stimulate increased mobility on foot, via bicycle, or public transport, and a rapid electrification of motor vehicles.
  • Large scale investments are done within the railway system, public transport, charge infrastructure and broadband. These should be implemented very rapidly to contribute to reduced climate emissions until 2035.
  • The total emissions from the transport sector, including both biogenic and fossil carbon dioxide, are at a such a large order of magnitude that they cannot be completely eliminated to net zero until 2035 using practically available measures.
  • The national carbon dioxide budget for mobility and transport is regionalized at a level where the climate transition can be effectively coordinated in collaboration with affected parties and with support from governmental investment funds.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2022. p. 60
Series
Linköping University Interdisciplinary Studies, ISSN 1650-9625 ; 21
National Category
Peace and Conflict Studies Other Social Sciences not elsewhere specified
Identifiers
urn:nbn:se:liu:diva-187628 (URN)10.3384/9789179294700 (DOI)9789179294700 (ISBN)
Available from: 2022-08-30 Created: 2022-08-30 Last updated: 2025-02-20Bibliographically approved
Fritzson, P., Pop, A., Abdelhak, K., Asghar, A., Bachmann, B., Braun, W., . . . Östlund, P. (2020). The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Modeling, Identification and Control, 41(4), 241-295
Open this publication in new window or tab >>The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development
Show others...
2020 (English)In: Modeling, Identification and Control, ISSN 0332-7353, E-ISSN 1890-1328, Vol. 41, no 4, p. 241-295Article in journal (Refereed) Published
Abstract [en]

OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simulation, optimization, model-based analysis and development environment. Moreover, the OpenModelica environment provides a number of facilities such as debugging; optimization; visualization and 3D animation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab; efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica-UML integration; requirement verification; and generation of parallel code for multi-core architectures. The environment is based on the equation-based object-oriented Modelica language and currently uses the MetaModelica extended version of Modelica for its model compiler implementation. This overview paper gives an up-to-date description of the capabilities of the system, short overviews of used open source symbolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons learned, and the main vision behind its development.

Place, publisher, year, edition, pages
Kristiansand, Norway: Norsk Forening for Automatisering, 2020
Keywords
Modelica, OpenModelica, MetaModelica, FMI, modeling, simulation, optimization, development, environment, numeric, symbolic, compilation, embedded system, real-time
National Category
Computer Engineering Computer Sciences Software Engineering
Identifiers
urn:nbn:se:liu:diva-172069 (URN)10.4173/mic.2020.4.1 (DOI)000605964400001 ()2-s2.0-85097216447 (Scopus ID)
Funder
VinnovaSwedish Foundation for Strategic ResearchELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Note

Funding agencies: Vinnova in the ITEA OPENPROD projectVinnova; Vinnova in the ITEA MODRIO projectVinnova; Vinnova in the ITEA OPENCPS projectVinnova; Vinnova in the ITEA EMPHYSIS projectVinnova; Vinnova in the ITEA EMBRACE projectVinnova; Vinnova RTISIM projectVinnova; Vin

Available from: 2020-12-19 Created: 2020-12-19 Last updated: 2022-06-23Bibliographically approved
Jain, R., Nayak, P., A. S, R., Dalve, P., Moudgalya, K., Naren, P. R., . . . Fritzson, P. (2019). Implementation of a Property Database and Thermodynamic Calculations in OpenModelica for Chemical Process Simulation. Industrial & Engineering Chemistry Research, 58(81), 7551-7560
Open this publication in new window or tab >>Implementation of a Property Database and Thermodynamic Calculations in OpenModelica for Chemical Process Simulation
Show others...
2019 (English)In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 58, no 81, p. 7551-7560Article in journal (Refereed) Published
Abstract [en]

An attempt has been made to enhance the thermodynamic capabilityof the general purpose modelling and simulation environment OpenModelica. The propertydatabase ChemSep and the thermodynamic algorithms of DWSIM are made available inOpenModelica. Following three approaches, listed in the order of increasing computationaleciency, are attempted in this work: Python-C API, socket programming and a nativeport. The most ecient method of native port is adopted to make available NRTL, Peng-Robinson, UNIFAC and UNIQUAC algorithms in OpenModelica. Through several examples,OpenModelica results are compared with Aspen Plus, indicating a good match in all cases.This work is released as open source to enhance the collaboration amongst chemical engineers.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019
Keywords
OpenModelica, DWSIM, ChemSep, Python-C API, socket programming, NRTL, Peng-Robinson, UNIFAC, UNIQUAC, Aspen Plus, Crowdsourcing
National Category
Chemical Engineering
Identifiers
urn:nbn:se:liu:diva-172753 (URN)10.1021/acs.iecr.8b05147 (DOI)000467781400014 ()2-s2.0-85065665199 (Scopus ID)
Note

Funding Agencies|Ministry of Human Resource Development, Government of India through the National Mission on Education through ICT

Available from: 2021-01-21 Created: 2021-01-21 Last updated: 2025-02-18Bibliographically approved
Fritzson, P., Pop, A., Sjölund, M. & Asghar, A. (2019). MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia. In: Anton Haumer: OTH Regensburg, Germany (Ed.), Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019: . Paper presented at The 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019. Linköping
Open this publication in new window or tab >>MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia
2019 (English)In: Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019 / [ed] Anton Haumer: OTH Regensburg, Germany, Linköping, 2019Conference paper, Published paper (Refereed)
Abstract [en]

The need for integrating system modeling with advanced tool capabilities is becoming increasingly pronounced. For example, a set of simulation experiments may give rise to new data that are used to systematically construct a series of new models, e.g. for further simulation and design optimization. Such combined symbolic-numeric capabilities have been pioneered by dynamically typed interpreted languages such as Lisp and Mathematica. Such capabilities are also relevant for advanced modeling and simulation applications but lacking in the standard Modelica language. Therefore, this is a topic of long-running design discussions in the Modelica Design group. One contribution in this direction is MetaModelica, that has been developed to extend Modelica with symbolic operations and advanced data structures, while preserving safe engineering practices through static type checking and a compilation-based efficient implementation. Another recent effort is Modia, implemented using the Julia macro mechanism, making it dynamically typed but also adding new capabilities. The Julia language has appeared rather recently and has expanded into a large and fast-growing ecosystem. It is dynamically typed, provides both symbolic and numeric operations, advanced data structures, and has a just-intime compilation-based efficient implementation. Despite independent developments there are surprisingly many similarities between Julia and MetaModelica. This paper presents MetaModelica and its environment as a large case study, together with a short comparison to Julia. Since Julia may be important for the future Modelica, some integration options between Modelica tools and Julia are also discussed, including a possible approach for implementing MetaModelica (and OpenModelica) in Julia.

Place, publisher, year, edition, pages
Linköping: , 2019
Series
Linköping Electronic Conference Proceedings, ISSN 1650-3686, E-ISSN 1650-3740 ; 157
Keywords
Modelica, MetaModelica, symbolic, Julia, meta-programming, language, compilation
National Category
Computer Systems
Identifiers
urn:nbn:se:liu:diva-154346 (URN)10.3384/ecp19157289 (DOI)978-91-7685-122-7 (ISBN)
Conference
The 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019
Funder
Vinnova, 2015-03027
Available from: 2019-02-06 Created: 2019-02-06 Last updated: 2022-05-04Bibliographically approved
Qin, X., Tang, J., Feng, Y., Bachmann, B. & Fritzson, P. (2016). Efficient index reduction algorithm for large scale systems of differential algebraic equations. Applied Mathematics and Computation, 277, 10-22
Open this publication in new window or tab >>Efficient index reduction algorithm for large scale systems of differential algebraic equations
Show others...
2016 (English)In: Applied Mathematics and Computation, ISSN 0096-3003, E-ISSN 1873-5649, Vol. 277, p. 10-22Article in journal (Refereed) Published
Abstract [en]

In many mathematical models of physical phenomenons and engineering fields, such as electrical circuits or mechanical multibody systems, which generate the differential algebraic equations (DAEs) systems naturally. In general, the feature of DAEs is a sparse large scale system of fully nonlinear and high index. To make use of its sparsity, this paper provides a simple and efficient algorithm for index reduction of large scale DAEs system. We exploit the shortest augmenting path algorithm for finding maximum value transversal (MVT) as well as block triangular forms (BTFs). We also present the extended signature matrix method with the block fixed point iteration and its complexity results. Furthermore, a range of nontrivial problems are demonstrated by our algorithm. (C) 2015 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE INC, 2016
Keywords
Differential algebraic equations; Sparsity; Shortest augmenting path; Block triangular forms; Structural analysis
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:liu:diva-125794 (URN)10.1016/j.amc.2015.11.091 (DOI)000369369700002 ()
Note

Funding Agencies|China 973 Project [NKBRPC-201103302402]; National Natural Science Foundation of China [61402537, 91118001]; Youth Innovation Promotion Association CAS [2012335]; China Postdoctoral Science Foundation [2012M521692]; Open Project of Chongqing Key Laboratory of Automated Reasoning and Cognition [CARC2014004]

Available from: 2016-03-08 Created: 2016-03-04 Last updated: 2018-03-26
Fritzson, P. (2015). Introducción al Modelado y Simulación de Sistemas Técnicos y Físicos con Modelica. Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Introducción al Modelado y Simulación de Sistemas Técnicos y Físicos con Modelica
2015 (Spanish)Book (Other academic)
Abstract [es]

Domine el modelamiento y simulación usando Modelica, el nuevo poderoso y altamente versátil lenguaje de modelamiento basado en objetos.

Modelica, el nuevo lenguaje de modelamiento de software/hardware orientado a objetos que está ganando una rápida popularidad en el mundo entero, ofrece un acercamiento casi universal al modelamiento y simulación computacional de alto nivel. Modelica maneja un amplio rango de dominios de aplicación, por ejemplo, sistemas mecánicos, eléctricos, de control, y termodinámicos, y facilita el uso de notación general así como el uso de poderosas abstracciones e implementaciones eficientes. Usando el versátil lenguaje de Modelica y su tecnología asociada, este texto presenta un acercamiento orientado a objetos basado en componentes que le hace posible a los lectores dominar rápidamente las bases del modelamiento matemático basado en ecuaciones orientado a objetos (EOO por sus siglas en inglés) y simulación soportado por computadora.

A través de este texto Modelica se usa para ilustrar los diferentes aspectos del modelamiento y la simulación. A la vez, se explican varios conceptos claves del lenguaje Modelica con el uso de ejemplos de modelamiento y simulación. Este libro:

  • Examina los conceptos básicos tales como sistemas, modelos y simulaciones
  • Guía al lector a través del lenguaje Modelica con la ayuda de varios ejemplos paso a paso
  • Introduce el concepto de la clase Modelica y su uso en el modelamiento gráfico y basado en texto.
  • Explora las metodologías de modelamiento para sistemas continuos, discretos e híbridos
  • Presenta una revisión de la Librería Estándar de Modelica y las librerías clave de modelos de Modelica

Los lectores encontrarán una buena cantidad de ejemplos de modelos que simulan aplicaciones en distintos dominios así como ejemplos que combinan varios dominios. Todos los ejemplos y ejercicios en el texto están disponibles a través de DrModelica. Este programa de auto enseñanza electrónico, disponible gratuitamente en el sitio web  que acompaña al texto, guía a los lectores desde ejemplos introductorios y simples hasta ejercicios mas avanzados.

Escrito por el Director del consorcio Open Source Modelica Consortium, Introducción al Modelamiento y Simulación de Sistemas Físicos y Técnicos con Modelica es un libro recomendado para ingenieros y estudiantes interesados en el diseño, modelamiento, simulación y análisis asistido por computador de sistemas técnicos y naturales. Partiendo de conceptos básicos, el texto es ideal para estudiantes quienes desean aprender del modelamiento y la simulación orientado a objetos.

Este libro está enfocado en la enseñanza del modelamiento y simulación usando Modelica para principiantes, o en cursos donde hay limitado espacio de tiempo para una introducción a Modelica. Para un cubrimiento con mayor profundidad de este tópico se recomienda el libro Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, el cual también incluye el material introductorio de este libro.

Abstract [en]

Master modeling and simulation using Modelica, the new powerful, highly versatile object-based modeling language

Modelica, the new object-based software/hardware modeling language that is quickly gaining popularity around the world, offers an almost universal approach to high-level computational modeling and simulation. It handles a broad range of application domains, for example mechanics, electrical systems, control, and thermodynamics, and facilitates general notation as well as powerful abstractions and efficient implementations. Using the versatile Modelica language and its associated technology, this text presents an object-oriented, component-based approach that makes it possible for readers to quickly master the basics of computer-supported equation-based object-oriented (EOO) mathematical modeling and simulation.

Throughout the text, Modelica is used to illustrate the various aspects of modeling and simulation. At the same time, a number of key concepts underlying the Modelica language are explained with the use of modeling and simulation examples. This book:

  • Examines basic concepts such as systems, models, and simulations

  • Guides readers through the Modelica language with the aid of several step-by-step examples

  • Introduces the Modelica class concept and its use in graphical and textual modeling

  • Explores modeling methodology for continuous, discrete, and hybrid systems

  • Presents an overview of the Modelica Standard Library and key Modelica model libraries

Readers will find plenty of examples of models that simulate distinct application domains as well as examples that combine several domains. All the examples and exercises in the text are available via DrModelica. This electronic self-teaching program, freely available on the text's companion website, guides readers from simple, introductory examples and exercises to more advanced ones.

Written by the Director of the Open Source Modelica Consortium, Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica is recommended for engineers and students interested in computer-aided design, modeling, simulation, and analysis of technical and natural systems. By building on basic concepts, the text is ideal for students who want to learn modeling, simulation, and object orientation.

This book is aimed at teaching Modelica modeling and simulation to beginners, or in courses where there is only limited time for an introduction to Modelica. For more in-dept coverage of this topic, the book Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach is recommended. That book also includes the introductory material of the small book.

This book is aimed at teaching Modelica modeling and simulation to beginners, or in courses where there is only limited time for an introduction to Modelica.

For more in-dept coverage of this topic, the book Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach is recommended. That book also includes the introductory material of the small book.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. p. 215
Keywords
Modelamiento, Simulación, Sistemas Físicos
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Information Systems
Identifiers
urn:nbn:se:liu:diva-121342 (URN)978-91-7685-924-7 (ISBN)
Available from: 2015-09-15 Created: 2015-09-14 Last updated: 2018-01-11Bibliographically approved
Fritzson, P. (2015). Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach (2ed.). New York: John Wiley & Sons
Open this publication in new window or tab >>Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach
2015 (English)Book (Other academic)
Abstract [en]

The second edition features improvements and updates of the Modelica language including synchronous clocked constructs, examines basic concepts of cyber-physical, equation-based, object-oriented system modeling and simulation. Prof. Fritzson introduces the Modelica class concept and its use in graphical and textual modeling with several hundred examples from many application areas and explores modeling methodology for continuous, discrete, and hybrid systems; and more.

This text is aimed at System Modeling and Simulation engineers, control engineers, mechanical engineers, those working with CAD (Computer Aided Design), virtual reality, biochemistry, embedded systems, and data communication.

Fritzson covers the Modelica language in impressive depth from the basic concepts such as cyber-physical, equation-base, object-oriented, system, model, and simulation, while also incorporating over a hundred exercises and their solutions for a tutorial, easy-to-read experience.

  • The only book with complete Modelica 3.3 coverage
  • Over one hundred exercises and solutions
  • Examines basic concepts such as cyber-physical, equation-based, object-oriented, system, model, and simulation

Place, publisher, year, edition, pages
New York: John Wiley & Sons, 2015. p. 1256 Edition: 2
Keywords
Modelica, Object-oriented methods (Computer science), Computer simulation, Databehandling, Datorsimulering, Objektorientering
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-109724 (URN)9781118859124 (ISBN)
Note

                     

Available from: 2014-08-26 Created: 2014-08-26 Last updated: 2018-03-26Bibliographically approved
Samlaus, R. & Fritzson, P. (2015). Semantic validation of physical models using role models. Simulation (San Diego, Calif.), 91(4), 383-399
Open this publication in new window or tab >>Semantic validation of physical models using role models
2015 (English)In: Simulation (San Diego, Calif.), ISSN 0037-5497, E-ISSN 1741-3133, Vol. 91, no 4, p. 383-399Article in journal (Refereed) Published
Abstract [en]

The complexity of models for the simulation of physical systems is steadily increasing. This makes the effective validation of models for different design aspects crucial. One of the many important aspects is the structural correctness and the behavior due to design parameters which are of particular concern for the modeling of wind turbines. This article presents a design and implementation of a role-based validation framework. The framework allows for the creation of validation rules for different design aspects. This is done by role models that are used to define restrictions for an aspect by roles and rules. Multiple role models can be combined to cover all design features during model development. Restrictions on how models can interact with each other can be defined, which broadens language-specific restriction capabilities. The resulting rules can then be tested on arbitrary models based on the Eclipse Modeling Framework, for which mapping between elements of the role model and elements of the validated modeling language must be provided. In the domain of wind turbines, this approach is evaluated by application to two kinds of modeling languages (Modelica and UML2). Role models and rules have shown to be easily described with the frameworks role model language and role model definitions are successfully re-used by the definition of mappings for both kinds of modeling languages.

Place, publisher, year, edition, pages
SAGE Publications (UK and US), 2015
Keywords
Modelica; OneModelica; role models; validation; semantic constraints
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:liu:diva-118063 (URN)10.1177/0037549715580174 (DOI)000353448600006 ()
Note

Funding Agencies|Federal Ministry for the Environment, Nature Conservation and Nuclear Safety of the Parliament of the Federal Republic of Germany; ELLIIT project; Swedish Strategic Research Foundation in the EDOp projects; Vinnova in the RTSIM project; Vinnova in the ITEA2 MODRIO project

Available from: 2015-05-20 Created: 2015-05-20 Last updated: 2018-01-11
Disqah, A., Maheri, A., Busawon, K. & Fritzson, P. (2015). Standalone DC Microgrids as Complementarity Dynamical Systems: Modeling and Applications.. Control Engineering Practice, 35(10), 102-112
Open this publication in new window or tab >>Standalone DC Microgrids as Complementarity Dynamical Systems: Modeling and Applications.
2015 (English)In: Control Engineering Practice, ISSN 0967-0661, Vol. 35, no 10, p. 102-112Article in journal (Refereed) Published
Abstract [en]

It is well known that, due to bimodal operation as well as existent discontinuous differential states of batteries, standalone microgrids belong to the class of hybrid dynamical systems of non-Filippov type. In this work, however, standalone microgrids are presented as complementarity systems (CSs) of the Filippov type which is then used to develop a multivariable nonlinear model predictive control (NMPC)-based load tracking strategy as well as Modelica models for long-term simulation purposes. The developed load tracker strategy is a multi-source maximum power point tracker (MPPT) that also regulates the DC bus voltage at its nominal value with the maximum of ±2.0% error despite substantial demand and supply variations.

Place, publisher, year, edition, pages
Elsevier, 2015
Keywords
Nonlinear model predictive control (NMPC);Wind energy;Photovoltaic (PV);Lead-acid battery;Modelica;Maximum power point tracking (MPPT)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-114204 (URN)10.1016/j.conengprac.2014.10.006 (DOI)000349427800010 ()
Available from: 2015-02-13 Created: 2015-02-13 Last updated: 2019-12-04Bibliographically approved
Thiele, B. A., Knoll, A. & Fritzson, P. (2015). Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica. Modeling, Identification and Control, 36(1), 23-52
Open this publication in new window or tab >>Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica
2015 (English)In: Modeling, Identification and Control, ISSN 0332-7353, E-ISSN 1890-1328, Vol. 36, no 1, p. 23-52Article in journal (Refereed) Published
Abstract [en]

So far no qualifiable automatic code generators (ACGs) are available for Modelica. Hence, digital control applications can be modeled and simulated in Modelica, but require tedious additional efforts (e.g., manual reprogramming) to produce qualifiable target system production code. In order to more fully leverage the potential of a model-based development (MBD) process in Modelica, a qualifiable automatic code generator is needed. Typical Modelica code generation is a fairly complex process which imposes a huge development burden to any efforts of tool qualification. This work aims at mapping a Modelica subset for digital control function development to a well-understood synchronous data-flow kernel language. This kernel language allows to resort to established compilation techniques for data-flow languages which are understood enough to be accepted by certification authorities. The mapping is established by providing a translational semantics from the Modelica subset to the synchronous data-flow kernel language. However, this translation turned out to be more intricate than initially expected and has given rise to several interesting issues that require suitable design decisions regarding the mapping and the language subset.

Place, publisher, year, edition, pages
Norsk Forening for Automatisering (Norwegian Society of Automatic Control), 2015
Keywords
Modelica; Automatic Code Generation; Model-Based Development; Safety-Relevant Systems
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:liu:diva-117266 (URN)10.4173/mic.2015.1.3 (DOI)000351718000003 ()
Note

Funding Agencies|German Aerospace Center (DLR)

Available from: 2015-04-22 Created: 2015-04-21 Last updated: 2018-01-11
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3435-4996

Search in DiVA

Show all publications