Open this publication in new window or tab >>Show others...
2007 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 55, no 4, p. 1479-1488Article in journal (Refereed) Published
Abstract [en]
The thermal stability of Ti3SiC2(0 0 0 1) thin films is studied by in situ X-ray diffraction analysis during vacuum furnace annealing in combination with X-ray photoelectron spectroscopy, transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray analysis. The films are found to be stable during annealing at temperatures up to ∼1000 °C for 25 h. Annealing at 1100–1200 °C results in the rapid decomposition of Ti3SiC2 by Si out-diffusion along the basal planes via domain boundaries to the free surface with subsequent evaporation. As a consequence, the material shrinks by the relaxation of the Ti3C2 slabs and, it is proposed, by an in-diffusion of O into the empty Si-mirror planes. The phase transformation process is followed by the detwinning of the as-relaxed Ti3C2 slabs into (1 1 1)-oriented TiC0.67 layers, which begin recrystallizing at 1300 °C. Ab initio calculations are provided supporting the presented decomposition mechanisms.
Keywords
Ti3SiC2 thin films, Phase transformations, X-ray diffraction, Transmission electron microscopy, Ab initio electron theory
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-14478 (URN)10.1016/j.actamat.2006.10.010 (DOI)
2007-05-142007-05-142017-12-13