Open this publication in new window or tab >>Show others...
2023 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, no 10, article id 2213220Article in journal (Refereed) Published
Abstract [en]
The integration of organic photovoltaic (OPV) modules on greenhouses is an encouraging practice to offset the energy demands of crop growth and provide extra functionality to dedicated farmland. Nevertheless, such OPV devices must meet certain optical and stability requirements to turn net zero energy greenhouse systems a reality. Here a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. Optical modeling is performed and a greenhouse figure-of-merit is introduced to benchmark the trade-off between photovoltaic performance and transparency for both chloroplasts and humans. Balanced donor:acceptor ratios result in better-performing and more thermally stable devices than acceptor-enriched counterparts. The optimized polymer blend and state-of-the-art polymer:small-molecule blends are next transferred to 25 cm(2) laminated modules processed entirely from solution and in ambient conditions. The modules are mounted on a greenhouse as standalone or 4-terminal tandem configurations and their outdoor stability is tracked for months. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10-20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated OPV systems.
Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH, 2023
Keywords
agrivoltaics; building integrations; laminated solar cells; organic photovoltaics; outdoor stability
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-191200 (URN)10.1002/adfm.202213220 (DOI)000903682000001 ()
Note
Funding Agencies|Knut and Alice Wallenberg Foundation; Marie Sklodowska-Curie Actions [101025608]; Spanish Ministry of Science and Innovation [PID2021-128924OB-I00]
2023-01-252023-01-252024-02-13Bibliographically approved