liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 101) Show all publications
Calmunger, M., Chai, G., Eriksson, R., Johansson, S. & Moverare, J. J. (2017). Characterization of austenitic stainless steels deformed at elevated temperature. Metallurgical and Materials Transactions. A, 48A(10), 4525-4538.
Open this publication in new window or tab >>Characterization of austenitic stainless steels deformed at elevated temperature
Show others...
2017 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, no 10, 4525-4538 p.Article in journal (Refereed) Published
Abstract [en]

Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2017
Keyword
Austenitic stainless steel, Nickel-based alloy, Microstructural characterization, Deformation twinning, Stress-strain response
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-122942 (URN)10.1007/s11661-017-4212-9 (DOI)000408884300012 ()
Note

Previous status of this publication was manuscript

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Available from: 2015-11-30 Created: 2015-11-30 Last updated: 2017-09-22Bibliographically approved
Norman, V., Skoglund, P., Leidermark, D. & Moverare, J. (2017). Damage Mechanisms in Silicon-Molybdenum Cast Irons Subjected to Thermo-mechanical Fatigue. International Journal of Fatigue, 99(2), 258-265.
Open this publication in new window or tab >>Damage Mechanisms in Silicon-Molybdenum Cast Irons Subjected to Thermo-mechanical Fatigue
2017 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 99, no 2, 258-265 p.Article in journal (Refereed) Published
Abstract [en]

The damage mechanisms active in silicon-molybdenum cast irons, namely EN-GJS-SiMo5-1 and SiMo1000, under thermo-mechanical fatigue and combined thermo-mechanical and high-cycle fatigue conditions have been investigated. The studied load conditions are those experienced at critical locations in exhaust manifolds of heavy-vehicle diesel engines, namely a temperature cycle of 300–750 °C with varied total mechanical and high-cycle fatigue strain ranges. It is established that oxide intrusions are formed in the early life from which macroscopic fatigue cracks are initiated close to the end-of-life. However, when high-cycle fatigue loading is superimposed, small cracks are preferentially initiated at graphite nodules within the bulk. In addition, it is found that both the oxidation growth rate and casting defects located near the surface affect the intrusion growth.

Place, publisher, year, edition, pages
Elsevier, 2017
Keyword
Cast iron, Thermo-mechanical fatigue, High-cycle fatigue, Enviromental assisted fatigue, Fatigue crack growth
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-137287 (URN)10.1016/j.ijfatigue.2017.01.014 (DOI)000400718300007 ()2-s2.0-85017123996 (Scopus ID)
Note

Funding agencies: Scania CV AB; Swedish Governmental Agency for Innovation Systems [FFI-2012-03625]; Swedish Foundation for Strategic Research [SM12-0014]; Strategic Faculty Grant AFM (SFO-MAT-LiU) at Linkoping University [2009-00971]

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-06-20Bibliographically approved
Chen, Z., Peng, R. L., Zhou, J., Bushlya, V., Saoubi, R. M., Johansson, S. & Moverare, J. (2017). Effect of Cutting Conditions on Machinability of AD 730 TM during High Speed Turning with PCBN Tools. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1). .
Open this publication in new window or tab >>Effect of Cutting Conditions on Machinability of AD 730 TM during High Speed Turning with PCBN Tools
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143973 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16
Lundberg, M., Saarimäki, J., Moverare, J. & Peng, R. L. (2017). Effective X-ray Elastic Constant of Cast Iron. Journal of Materials Science, 53(4), 2766-2773.
Open this publication in new window or tab >>Effective X-ray Elastic Constant of Cast Iron
2017 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, no 4, 2766-2773 p.Article in journal (Refereed) Published
Abstract [en]

X-ray diffraction is a non-destructive method used for strain measurements in crystalline materials. Conversion of strain to stress can be achieved using the X-ray elastic constants (XEC), s1 and ½s2. The sin2ψ method was used during in situ loading to determine XEC for flake, vermicular, and spherical graphite iron. A fully pearlitic steel was used as reference. Uniaxial testing was conducted on the cast iron to create a homogeneous strain field, as well as four-point bending in both tension and compression due to the tension/compression asymmetry. The commonly used XEC value ½s2 = 5.81 × 10−6 MPa−1 is theoretically derived from an α-Fe single crystal. When investigating materials that contain ferrite, such as polycrystalline cast iron, this value is not accurate. Determination of an effective XEC for polycrystalline cast iron yields a better correlation between the measured microstrains and the properties observed on a macroscopic scale. The need for an effective XEC is evident, especially when it comes to model validation of, for example, casting simulations. Effective XEC values have been determined for flake, vermicular, and spherical graphite iron. The determined value is lower than the theoretical value.

National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-141980 (URN)10.1007/s10853-017-1657-6 (DOI)000416544500040 ()2-s2.0-85031402118 (Scopus ID)
Note

Funding agencies: Agora Materiae, graduate school, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]; Volvo Trucks; Vinnova FFI, Scania

Available from: 2017-10-16 Created: 2017-10-16 Last updated: 2017-12-15Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S. & Moverare, J. (2017). Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1). .
Open this publication in new window or tab >>Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143972 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S., Högberg, J. & Moverare, J. (2017). Local Surface Phase Stability During Cyclic Oxidation Process. Paper presented at THERMEC'16, May 30 - June 3, 2016, Graz, Austria. Materials Science Forum, 879, 855-860.
Open this publication in new window or tab >>Local Surface Phase Stability During Cyclic Oxidation Process
Show others...
2017 (English)In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 879, 855-860 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Trans Tech Publications, 2017
Keyword
Austenitic stainless steels, thermal cycling, corrosion, surface phase stability
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-129244 (URN)10.4028/www.scientific.net/MSF.879.855 (DOI)
Conference
THERMEC'16, May 30 - June 3, 2016, Graz, Austria
Available from: 2016-06-14 Created: 2016-06-14 Last updated: 2017-11-28
Deng, D., Moverare, J., Peng, R. L. & Söderberg, H. (2017). Microstructural Heterogeneity Along the Building Direction of Inconel 718 Produced by Electron Beam Melting (EBM). In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1). .
Open this publication in new window or tab >>Microstructural Heterogeneity Along the Building Direction of Inconel 718 Produced by Electron Beam Melting (EBM)
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143975 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Deng, D., Moverare, J., Peng, R. L. & Söderberg, H. (2017). Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment. Materials Science & Engineering: A, 693, 151-163.
Open this publication in new window or tab >>Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
2017 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 693, 151-163 p.Article in journal (Refereed) Published
Abstract [en]

Materials manufactured with electron beam melting (EBM) have different microstructures and properties to those manufactured using conventional manufacturing methods. A detailed study of the microstructures and mechanical properties of Inconel 718 manufactured with EBM was performed in both as-manufactured and heat-treated conditions. Different scanning strategies resulted in different microstructures: contour scanning led to heterogeneous grain morphologies and weak texture, while hatch scanning resulted in predominantly columnar grains and strong 〈001〉 building direction texture. Precipitates in the as-manufactured condition included γ′, γ″, δ  , TiN and NbC, among which considerable amounts of γ″ yielded relatively high hardness and strength. Strong texture, directionally aligned pores and columnar grains can lead to anisotropic mechanical properties when loaded in different directions. Heat treatments increased the strength and led to different δ precipitation behaviours depending on the solution temperatures, but did not remove the anisotropy. Ductility seemed to be not significantly affected by heat treatment, but instead by the NbC and defects inherited from manufacturing. The study thereby might provide the potential processing windows to tailor the microstructure and mechanical properties of EBM IN718.

Place, publisher, year, edition, pages
Elsevier, 2017
Keyword
Electron beam melting; Nickel based superalloy; Microstructure; Anisotropy; Mechanical properties; Heat treatments
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-137289 (URN)10.1016/j.msea.2017.03.085 (DOI)000401384400018 ()2-s2.0-85016252903 (Scopus ID)
Note

Funding agencies: Sandvik Machining Solutions AB in Sandviken, Sweden; Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]; Chinese Scholarship Council; Agora Materiae

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2017-06-13Bibliographically approved
Lundberg, M., Saarimäki, J., Peng, R. & Moverare, J. (2017). Residual Stresses in Uniaxial Cyclic Loaded Pearlitic Lamellar Graphite Iron. In: Residual Stresses 2016:ICRS-10, Materials Research Proceedings 2 (2016: . Paper presented at International Conference in Residual Stresses ICRS-10, 4-8 July 2016, Sydney, Australia (pp. 67-72). .
Open this publication in new window or tab >>Residual Stresses in Uniaxial Cyclic Loaded Pearlitic Lamellar Graphite Iron
2017 (English)In: Residual Stresses 2016:ICRS-10, Materials Research Proceedings 2 (2016, 2017, 67-72 p.Conference paper, Published paper (Refereed)
Series
Materials Research Proceeding, ISSN 2474-395X
Keyword
Residual stress, XRD, lamellar graphite iron
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-130893 (URN)10.21741/9781945291173-12 (DOI)000401041500012 ()978-1-9452-9116-6 (ISBN)
Conference
International Conference in Residual Stresses ICRS-10, 4-8 July 2016, Sydney, Australia
Available from: 2016-08-30 Created: 2016-08-30 Last updated: 2017-06-13Bibliographically approved
Wärner, H., Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2017). Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1). .
Open this publication in new window or tab >>Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143978 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8304-0221

Search in DiVA

Show all publications