liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 102) Show all publications
Wärner, H., Calmunger, M., Chai, G. & Moverare, J. (2018). Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys. In: EDP Sciences (Ed.), MATEC Web of Conferences 165 , 05001 (2018): . Paper presented at Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France. EDP Sciences, 165
Open this publication in new window or tab >>Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys
2018 (English)In: MATEC Web of Conferences 165 , 05001 (2018) / [ed] EDP Sciences, EDP Sciences, 2018, Vol. 165Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
EDP Sciences, 2018
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-148182 (URN)10.1051/matecconf/2018165505001 (DOI)
Conference
Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-06-01
Chen, Z., Zhou, J., Peng, R. L., M'Saoubi, R., Gustafsson, D., Palmert, F. & Moverare, J. (2018). Plastic Deformation and Residual Stress in High Speed Turning of AD730™ Nickel-based Superalloy with PCBN and WC Tools. In: Procedia CIRP 71 (2018) pp 440-445: . Paper presented at The 4th CIRP Conference on Surface Integrity, 11th-13th July, Tianjin, China (pp. 440-445). Elsevier, 71
Open this publication in new window or tab >>Plastic Deformation and Residual Stress in High Speed Turning of AD730™ Nickel-based Superalloy with PCBN and WC Tools
Show others...
2018 (English)In: Procedia CIRP 71 (2018) pp 440-445, Elsevier, 2018, Vol. 71, p. 440-445Conference paper, Published paper (Refereed)
Abstract [en]

A higher gas turbine efficiency can be achieved by increasing the operating temperature in hot sections. AD730™ is a recently-developed wrought/cast nickel-based superalloy which can maintain excellent mechanical properties above 700 ℃. However, machining of AD730™ could be a difficult task like other nickel-based superalloys. Therefore, studies are needed with respect to the machinability of this new alloy.

In this paper, high-speed turning was performed on AD730™ using polycrystalline cubic boron nitride (PCBN) tools and coated tungsten carbide (WC) tools at varied cutting speeds. The surface integrity was assessed in two important aspects, i.e., surface and sub-surface plastic deformation and residual stresses. The PCBN tools generally showed better performance compared with the WC tools since it led to reduced machining time without largely compromising the surface integrity achieved. The optimal cutting speed was identified in the range of 200-250 m/min when using the PCBN tools, which gives rise to a good combination of machining efficiency and surface integrity. The further increase of the cutting speed to 300 m/min resulted in severe and deep plastic deformation. Meanwhile, a continuous white layer was formed at the machined surface. When turning with the WC tools, the increased cutting speed from 80 m/min to 100 m/min showed very little effect with respect to the plastic deformation on the machined surface. It was found that tensile residual stresses were developed on all machined surfaces no matter when the PCBN or WC tools were used, and the surface tension was generally increased with increasing cutting speed. The tensile layer might need to be modified by e.g., post-machining surface treatments such as shot peening, if taking good fatigue performance into consideration.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
plastic deformation, residual stress, nickel-based superalloy, AD730TM, high-speed turning
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-148484 (URN)10.1016/j.procir.2018.05.051 (DOI)
Conference
The 4th CIRP Conference on Surface Integrity, 11th-13th July, Tianjin, China
Available from: 2018-06-12 Created: 2018-06-12 Last updated: 2018-07-03
Calmunger, M., Chai, G., Eriksson, R., Johansson, S. & Moverare, J. J. (2017). Characterization of austenitic stainless steels deformed at elevated temperature. Metallurgical and Materials Transactions. A, 48A(10), 4525-4538
Open this publication in new window or tab >>Characterization of austenitic stainless steels deformed at elevated temperature
Show others...
2017 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, no 10, p. 4525-4538Article in journal (Refereed) Published
Abstract [en]

Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2017
Keywords
Austenitic stainless steel, Nickel-based alloy, Microstructural characterization, Deformation twinning, Stress-strain response
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-122942 (URN)10.1007/s11661-017-4212-9 (DOI)000408884300012 ()
Note

Previous status of this publication was manuscript

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Available from: 2015-11-30 Created: 2015-11-30 Last updated: 2017-09-22Bibliographically approved
Norman, V., Skoglund, P., Leidermark, D. & Moverare, J. (2017). Damage Mechanisms in Silicon-Molybdenum Cast Irons Subjected to Thermo-mechanical Fatigue. International Journal of Fatigue, 99(2), 258-265
Open this publication in new window or tab >>Damage Mechanisms in Silicon-Molybdenum Cast Irons Subjected to Thermo-mechanical Fatigue
2017 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 99, no 2, p. 258-265Article in journal (Refereed) Published
Abstract [en]

The damage mechanisms active in silicon-molybdenum cast irons, namely EN-GJS-SiMo5-1 and SiMo1000, under thermo-mechanical fatigue and combined thermo-mechanical and high-cycle fatigue conditions have been investigated. The studied load conditions are those experienced at critical locations in exhaust manifolds of heavy-vehicle diesel engines, namely a temperature cycle of 300–750 °C with varied total mechanical and high-cycle fatigue strain ranges. It is established that oxide intrusions are formed in the early life from which macroscopic fatigue cracks are initiated close to the end-of-life. However, when high-cycle fatigue loading is superimposed, small cracks are preferentially initiated at graphite nodules within the bulk. In addition, it is found that both the oxidation growth rate and casting defects located near the surface affect the intrusion growth.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Cast iron, Thermo-mechanical fatigue, High-cycle fatigue, Enviromental assisted fatigue, Fatigue crack growth
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-137287 (URN)10.1016/j.ijfatigue.2017.01.014 (DOI)000400718300007 ()2-s2.0-85017123996 (Scopus ID)
Note

Funding agencies: Scania CV AB; Swedish Governmental Agency for Innovation Systems [FFI-2012-03625]; Swedish Foundation for Strategic Research [SM12-0014]; Strategic Faculty Grant AFM (SFO-MAT-LiU) at Linkoping University [2009-00971]

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2018-02-13Bibliographically approved
Chen, Z., Peng, R. L., Zhou, J., Bushlya, V., Saoubi, R. M., Johansson, S. & Moverare, J. (2017). Effect of Cutting Conditions on Machinability of AD 730 TM during High Speed Turning with PCBN Tools. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1).
Open this publication in new window or tab >>Effect of Cutting Conditions on Machinability of AD 730 TM during High Speed Turning with PCBN Tools
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143973 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-08-02Bibliographically approved
Lundberg, M., Saarimäki, J., Moverare, J. & Peng, R. L. (2017). Effective X-ray Elastic Constant of Cast Iron. Journal of Materials Science, 53(4), 2766-2773
Open this publication in new window or tab >>Effective X-ray Elastic Constant of Cast Iron
2017 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, no 4, p. 2766-2773Article in journal (Refereed) Published
Abstract [en]

X-ray diffraction is a non-destructive method used for strain measurements in crystalline materials. Conversion of strain to stress can be achieved using the X-ray elastic constants (XEC), s1 and ½s2. The sin2ψ method was used during in situ loading to determine XEC for flake, vermicular, and spherical graphite iron. A fully pearlitic steel was used as reference. Uniaxial testing was conducted on the cast iron to create a homogeneous strain field, as well as four-point bending in both tension and compression due to the tension/compression asymmetry. The commonly used XEC value ½s2 = 5.81 × 10−6 MPa−1 is theoretically derived from an α-Fe single crystal. When investigating materials that contain ferrite, such as polycrystalline cast iron, this value is not accurate. Determination of an effective XEC for polycrystalline cast iron yields a better correlation between the measured microstrains and the properties observed on a macroscopic scale. The need for an effective XEC is evident, especially when it comes to model validation of, for example, casting simulations. Effective XEC values have been determined for flake, vermicular, and spherical graphite iron. The determined value is lower than the theoretical value.

National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-141980 (URN)10.1007/s10853-017-1657-6 (DOI)000416544500040 ()2-s2.0-85031402118 (Scopus ID)
Note

Funding agencies: Agora Materiae, graduate school, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]; Volvo Trucks; Vinnova FFI, Scania

Available from: 2017-10-16 Created: 2017-10-16 Last updated: 2018-08-30Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S. & Moverare, J. (2017). Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1).
Open this publication in new window or tab >>Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143972 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S., Högberg, J. & Moverare, J. (2017). Local Surface Phase Stability During Cyclic Oxidation Process. Paper presented at THERMEC'16, May 30 - June 3, 2016, Graz, Austria. Materials Science Forum, 879, 855-860
Open this publication in new window or tab >>Local Surface Phase Stability During Cyclic Oxidation Process
Show others...
2017 (English)In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 879, p. 855-860Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Trans Tech Publications, 2017
Keywords
Austenitic stainless steels, thermal cycling, corrosion, surface phase stability
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-129244 (URN)10.4028/www.scientific.net/MSF.879.855 (DOI)
Conference
THERMEC'16, May 30 - June 3, 2016, Graz, Austria
Available from: 2016-06-14 Created: 2016-06-14 Last updated: 2017-11-28
Deng, D., Moverare, J., Peng, R. L. & Söderberg, H. (2017). Microstructural Heterogeneity Along the Building Direction of Inconel 718 Produced by Electron Beam Melting (EBM). In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1).
Open this publication in new window or tab >>Microstructural Heterogeneity Along the Building Direction of Inconel 718 Produced by Electron Beam Melting (EBM)
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143975 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Deng, D., Moverare, J., Peng, R. L. & Söderberg, H. (2017). Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment. Materials Science & Engineering: A, 693, 151-163
Open this publication in new window or tab >>Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
2017 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 693, p. 151-163Article in journal (Refereed) Published
Abstract [en]

Materials manufactured with electron beam melting (EBM) have different microstructures and properties to those manufactured using conventional manufacturing methods. A detailed study of the microstructures and mechanical properties of Inconel 718 manufactured with EBM was performed in both as-manufactured and heat-treated conditions. Different scanning strategies resulted in different microstructures: contour scanning led to heterogeneous grain morphologies and weak texture, while hatch scanning resulted in predominantly columnar grains and strong 〈001〉 building direction texture. Precipitates in the as-manufactured condition included γ′, γ″, δ  , TiN and NbC, among which considerable amounts of γ″ yielded relatively high hardness and strength. Strong texture, directionally aligned pores and columnar grains can lead to anisotropic mechanical properties when loaded in different directions. Heat treatments increased the strength and led to different δ precipitation behaviours depending on the solution temperatures, but did not remove the anisotropy. Ductility seemed to be not significantly affected by heat treatment, but instead by the NbC and defects inherited from manufacturing. The study thereby might provide the potential processing windows to tailor the microstructure and mechanical properties of EBM IN718.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Electron beam melting; Nickel based superalloy; Microstructure; Anisotropy; Mechanical properties; Heat treatments
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-137289 (URN)10.1016/j.msea.2017.03.085 (DOI)000401384400018 ()2-s2.0-85016252903 (Scopus ID)
Note

Funding agencies: Sandvik Machining Solutions AB in Sandviken, Sweden; Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]; Chinese Scholarship Council; Agora Materiae

Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2018-01-24Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8304-0221

Search in DiVA

Show all publications