liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Lawrence, Akvile
Publications (3 of 3) Show all publications
Lawrence, A., Nehler, T., Andersson, E., Karlsson, M. & Thollander, P. (2019). Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry. Journal of Cleaner Production, 223, 67-82
Open this publication in new window or tab >>Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry
Show others...
2019 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 223, p. 67-82Article in journal (Refereed) Published
Abstract [en]

Research has revealed the existence of an energy-efficiency gap – the difference between optimal and actual energy end-use, suggesting that energy efficiency can be improved. Energy management (EnM) is a means for improving industrial energy efficiency. However, due to various barriers, the full potential of EnM is not realised. Several studies have addressed drivers and barriers to energy efficiency but few to EnM. This study aims to identify EnM practices, the most important perceived drivers and barriers for EnM, and relations among them in the energy-intensive Swedish pulp and paper industry (PPI), which has the longest experience internationally of practising EnM systems, and has worked according to the standards since 2004. Our results show that, altogether, the PPI works regularly and continuously with EnM, with a clear division of responsibilities. The highest maturity for EnM practices was for energy policy, followed by organization, investments, and performance measurement. The study also shows that communication between middle management and operations personnel has potential for improvement. The most important categories of drivers were economic, whereas for barriers they were organizational. Nevertheless, knowledge-related barriers and drivers were amongst the most important, suggesting that the absorptive capacity for energy issues could be improved.

Keywords
Barriers, Drivers, Success factors, Energy management, Energy efficiency, Pulp and paper industry
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-156271 (URN)10.1016/j.jclepro.2019.03.143 (DOI)000466253100008 ()
Note

Funding agencies: Swedish Energy Agency [2015-002143]; Swedish Environmental Protection Agency, Carbonstruct research project [802-0082-17]

Available from: 2019-04-10 Created: 2019-04-10 Last updated: 2019-06-23
Lawrence, A., Karlsson, M., Nehler, T. & Thollander, P. (2019). Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry. Applied Energy, 240, 499-512
Open this publication in new window or tab >>Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry
2019 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 240, p. 499-512Article in journal (Refereed) Published
Abstract [en]

Our study looked at the extent to which firm characteristics such as total firm capital affect electricity saving in energy-intensive industry in Sweden from 2007 to 2015. Specifically, the most influential variables for systematic variation in electricity saving in the energy-intensive companies participating in Sweden’s voluntary programme for improving energy efficiency in energy-intensive industry (the PFE) were studied by analysing monetary investment, payback time and firm characteristics. Monetary investment and payback time influenced electricity savings during the PFE more than firm characteristics, with monetary investment being most influential. Nevertheless, the total systematic variation in firm characteristics may account for ∼16% of the systematic variation in electricity saving, where ∼74% (32 of 43) of the studied firm characteristics seemed to merit further investigation and where ∼49% (21 of 43) of firm characteristics appeared most influential. The most influential firm characteristics were total firm capital, stock turnover ratio, machinery, short-term liabilities per turnover ratio and goodwill. The overall results showed that firm characteristics can influence a firm’s energy-saving activities and indicated a tendency for more energy savings in companies that were financially weaker or had done less work to improve energy efficiency prior to the PFE.

Place, publisher, year, edition, pages
Aldring og helse, 2019
Keywords
Energy efficiency, Energy saving, Energy intensive industry, Energy management, Firm characteristics, Voluntary agreement
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-156280 (URN)10.1016/j.apenergy.2019.02.060 (DOI)000468714300036 ()
Note

Funding agencies:  Swedish Energy Agency

Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2019-07-01
Lawrence, A., Jonsson, S. & Borjesson, G. (2009). Ethanol, BTEX and microbial community interactions in E-blend contaminated soil slurry. INTERNATIONAL BIODETERIORATION and BIODEGRADATION, 63(6), 654-666
Open this publication in new window or tab >>Ethanol, BTEX and microbial community interactions in E-blend contaminated soil slurry
2009 (English)In: INTERNATIONAL BIODETERIORATION and BIODEGRADATION, ISSN 0964-8305, Vol. 63, no 6, p. 654-666Article in journal (Refereed) Published
Abstract [en]

Degradation of benzene, toluene, ethylbenzene, m-, p- and o-xylenes (BTEX) and microbial community shifts in soil slurries contaminated with ethanol-gasoline blends (E-blends), containing 10, 50 or 90% (v/v) ethanol (E10, E50 and E90) were studied in soil slurries previously uncontaminated, contaminated by E-blends or ethanol. BTEX originating from E50 degraded fastest whereas from E10 slowest. Among the individual compounds, ethylbenzene degraded fastest (max 30% d(-1)), and o-xylene slowest (min 1% d(-1)) during aerobic conditions in previously not contaminated soils. Previous contamination by E-blends increased BTEX degradation significantly (3-19 times) compared with previously uncontaminated soils, whereas previous contamination with ethanol did not show significant difference in BTEX degradation. At least one type of the E-blends during aerobic conditions had a positive effect on total PLFAs (phospholipid fatty acids) and specific PLFAs, i.e. 10Me18:0, 16:1w6 and cy17:0, but had a negative effect on cy19:0 and 18:2w6,9c. The effects on total PLFAs, as well as the individual PLFAs, were particularly strong after repeated contamination. The single most affected PLFA was 16:1w6, which increased 23 times during E10 treatment in soil slurries previously contaminated by E-blends. Altogether, the various E-blends had significantly different effects on BTEX degradation and also on individual PLFAs under aerobic conditions.

Keywords
Biodegradation, BTEX, Ethanol-gasoline blends, Peaty soil, Phospholipid fatty acid analysis
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-20600 (URN)10.1016/j.ibiod.2009.01.005 (DOI)
Available from: 2009-09-16 Created: 2009-09-15 Last updated: 2009-09-16
Organisations

Search in DiVA

Show all publications