Open this publication in new window or tab >>Show others...
2005 (English)In: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, ISSN 0885-3010, E-ISSN 1525-8955, Vol. 52, no 8, p. 1300-1311Article in journal (Refereed) Published
Abstract [en]
The longitudinal movement of blood vessel walls has so far gained little or no attention, as it has been presumed that these movements are of a negligible magnitude. However, modern high-resolution ultrasound scanners can demonstrate that the inner layers of the arterial wall exhibit considerable movements in the longitudinal direction. This paper evaluates a new, noninvasive, echo-tracking technique, which simultaneously can track both the radial and the longitudinal movements of the arterial wall with high resolution in vivo. Initially, the method is evaluated in vitro using a specially designed ultrasound phantom, which is attached to and moved by an X-Y system, the movement of which was compared with two high-resolution triangulation lasers. The results show an inaccuracy of 2.5% full scale deflection (fsd), reproducibility of 12 µm and a resolution of 5 µm, which should be more than sufficient for in vivo studies. The ability of the method is also demonstrated in a limited in vivo study in which a preselected part of the inner vessel wall of the right common carotid artery of a healthy volunteer is tracked in two dimensions over many cardiac cycles. The results show well reproducible x-y movement loops in which the recorded radial and longitudinal movements both are of the magnitude millimetre. © 2005 IEEE.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-50455 (URN)10.1109/TUFFC.2005.1509788 (DOI)
2009-10-112009-10-112017-12-12