Open this publication in new window or tab >>2023 (English)In: Frontiers in Manufacturing Technology, E-ISSN 2813-0359, Vol. 3Article in journal (Refereed) Published
Abstract [en]
Introduction: Digitization is a crucial step towards achieving automation in production quality control for mechanical products. Engineering drawings are essential carriers of information for production, but their complexity poses a challenge for computer vision. To enable automated quality control, seamless data transfer between analog drawings and CAD/CAM software is necessary.
Methods: This paper focuses on autonomous text detection and recognition in engineering drawings. The methodology is divided into five stages. First, image processing techniques are used to classify and identify key elements in the drawing. The output is divided into three elements: information blocks and tables, feature control frames, and the rest of the image. For each element, an OCR pipeline is proposed. The last stage is output generation of the information in table format.
Results: The proposed tool, called eDOCr, achieved a precision and recall of 90% in detection, an F1-score of 94% in recognition, and a character error rate of 8%. The tool enables seamless integration between engineering drawings and quality control.
Discussion: Most OCR algorithms have limitations when applied to mechanical drawings due to their inherent complexity, including measurements, orientation, tolerances, and special symbols such as geometric dimensioning and tolerancing (GD&T). The eDOCr tool overcomes these limitations and provides a solution for automated quality control.
Conclusion: The eDOCr tool provides an effective solution for automated text detection and recognition in engineering drawings. The tool's success demonstrates that automated quality control for mechanical products can be achieved through digitization. The tool is shared with the research community through Github.
Place, publisher, year, edition, pages
Frontiers Media S.A., 2023
Keywords
optical character recognition, image segmentation, object detection, engineering drawings, quality control, keras-ocr
National Category
Engineering and Technology Production Engineering, Human Work Science and Ergonomics
Identifiers
urn:nbn:se:liu:diva-195416 (URN)10.3389/fmtec.2023.1154132 (DOI)
Funder
Vinnova, 2021-02481
2023-06-202023-06-202025-03-14Bibliographically approved