liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 29) Show all publications
Li, Z., Sun, H., Hsiao, C.-L., Yao, Y., Xiao, Y., Shahi, M., . . . Zhang, F. (2018). A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS. Advanced Electronic Materials, 4(2), Article ID 1700496.
Open this publication in new window or tab >>A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS
Show others...
2018 (English)In: Advanced Electronic Materials, ISSN 2199-160X, Vol. 4, no 2, article id 1700496Article in journal (Refereed) Published
Abstract [en]

A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2018
Keywords
free-standing PEDOT:PSS film; output power density; p-type; thermoelectric generators
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:liu:diva-145465 (URN)10.1002/aelm.201700496 (DOI)000424888600015 ()2-s2.0-85039784826 (Scopus ID)
Note

Funding Agencies|Vinnova Marie Curie incoming project [2016-04112]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [200900971]; Recruitment Program of Global Youth Experts; National Natural Science Foundation of China [21474035]; United States National Science Foundation [DMR-1262261]; Open Fund of the State Key Laboratory of Luminescent Materials and Devices [2016-skllmd-03]; European Research Council [ERC 307596]

Available from: 2018-03-13 Created: 2018-03-13 Last updated: 2018-04-09Bibliographically approved
Junaid, M., Hsiao, C.-L., Chen, Y.-T., Lu, J., Palisaitis, J., Persson, P. O., . . . Birch, J. (2018). Effects of N2 Partial Pressure on Growth, Structure, and Optical Properties of GaN Nanorods Deposited by Liquid-Target Reactive Magnetron Sputter Epitaxy. Nanomaterials, 8(4), Article ID 223.
Open this publication in new window or tab >>Effects of N2 Partial Pressure on Growth, Structure, and Optical Properties of GaN Nanorods Deposited by Liquid-Target Reactive Magnetron Sputter Epitaxy
Show others...
2018 (English)In: Nanomaterials, ISSN 2079-4991, Vol. 8, no 4, article id 223Article in journal (Other academic) Published
Abstract [en]

GaN nanorods, essentially free from crystal defects and exhibiting very sharp band-edge luminescence, have been grown by reactive direct-current magnetron sputter epitaxy onto Si (111) substrates at a low working pressure of 5 mTorr. Upon diluting the reactive N2 working gas with a small amount of Ar (0.5 mTorr), we observed an increase in the nanorod aspect ratio from 8 to ~35, a decrease in the average diameter from 74 to 35 nm, and a two-fold increase in nanorod density. With further dilution (Ar = 2.5 mTorr), the aspect ratio decreased to 14, while the diameter increased to 60 nm and the nanorod density increased to a maximum of 2.4 × 109 cm−2. Yet, lower N2 partial pressures eventually led to the growth of continuous GaN films. The observed morphological dependence on N2 partial pressure is explained by a change from N-rich to Ga-rich growth conditions, combined with reduced GaN-poisoning of the Ga-target as the N2 gas pressure is reduced. Nanorods grown at 2.5 mTorr N2 partial pressure exhibited a high intensity 4 K photoluminescence neutral donor bound exciton transitions (D0XA) peak at ~3.479 eV with a full-width-at-half-maximum of 1.7 meV. High-resolution transmission electron microscopy corroborated the excellent crystalline quality of the nanorods.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI, 2018
Keywords
GaN, nanorods, X-ray diffraction, TEM, photoluminescence, magnetron sputter epitaxy, sputtering
National Category
Condensed Matter Physics Nano Technology
Identifiers
urn:nbn:se:liu:diva-84654 (URN)10.3390/nano8040223 (DOI)000434889100044 ()
Note

Funding agencies: Swedish Research Council (VR) [621-2013-5360, 621-2012-4420, 2016-04412]; Swedish Government Strategic Research Area Grant in Materials Science AFM-SFO MatLiU [2009-00971]; Knut and Alice Wallenberg Foundation

Available from: 2018-04-09 Created: 2012-10-16 Last updated: 2018-06-28Bibliographically approved
Serban, E. A., Palisaitis, J., Persson, P. O., Hultman, L., Birch, J. & Hsiao, C.-L. (2018). Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy. Thin Solid Films, 660, 950-955
Open this publication in new window or tab >>Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy
Show others...
2018 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 660, p. 950-955Article in journal (Refereed) Published
Abstract [en]

Catalyst-free GaN nanorod regular arrays have been realized by reactive magnetron sputter epitaxy. Two nanolithographic methods, nanosphere lithography (NSL) and focused ion beam lithography (FIBL), were applied to pattern Si substrates with TiNx masks. The growth temperature was optimized for achieving selectivity and well-faceted nanorods grown onto the NSL-patterned substrates. With increasing temperature from 875 to 985 °C, we observe different growth behaviors and associate them with selective insensitive, diffusion-dominated, and desorption-dominated zones. To further achieve site-specific and diameter control, these growth parameters were transferred onto FIBL-patterned substrates. Further investigation into the FIBL process through tailoring of milling current and time in combination with varying nanorod growth temperature, suggests that minimization of mask and substrate damage is the key to attain uniform, well-defined, single, and straight nanorods. Destruction of the mask results in selective area growth failure, while damage of the substrate surface promotes inclined nanorods grown into the openings, owning to random oriented nucleation.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Gallium nitride, Magnetron sputter epitaxy, Selective-area growth, Nanorods, Lithography, Focused ion beam, Nanosphere
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-147648 (URN)10.1016/j.tsf.2018.01.050 (DOI)000441177500138 ()2-s2.0-85041572645 (Scopus ID)
Note

Funding agencies: Swedish Research Council (VR) [621-2012-4420, 621-2013-5360, 2016-04412]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Foundation for Strategic Research (SSF) [RIF 14-0074]; Sw

Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-09-03Bibliographically approved
Serban, A., Palisaitis, J., Junaid, M., Tengdelius, L., Högberg, H., Hultman, L., . . . Hsiao, C.-L. (2017). Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates. Energies, 10(9), Article ID 1322.
Open this publication in new window or tab >>Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates
Show others...
2017 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 9, article id 1322Article in journal (Refereed) Published
Abstract [en]

We demonstrate the versatility of magnetron sputter epitaxy by achieving high-quality GaN nanorods on different substrate/template combinations, specifically Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti. Growth temperature was optimized on Si, TiN/Si, and ZrB2/Si, resulting in increased nanorod aspect ratio with temperature. All nanorods exhibit high purity and quality, proved by the strong bandedge emission recorded with cathodoluminescence spectroscopy at room temperature as well as transmission electron microscopy. These substrates/templates are affordable compared to many conventional substrates, and the direct deposition onto them eliminates cumbersome post-processing steps in device fabrication. Thus, magnetron sputter epitaxy offers an attractive alternative for simple and affordable fabrication in optoelectronic device technology.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI AG, 2017
Keywords
GaN, nanorods, Si, SiC, Ti, Mo, TiN and ZrB2 templates, magnetron sputtering, epitaxy
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-141597 (URN)10.3390/en10091322 (DOI)000411225200078 ()2-s2.0-85029362447 (Scopus ID)
Note

Funding agencies: Swedish Research Council (VR) [621-2012-4420, 621-2013-5360, 2016-04412]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Foundation for Strategic Research (SSF) through the Resea

Available from: 2017-10-02 Created: 2017-10-02 Last updated: 2018-05-03Bibliographically approved
Hsiao, C.-L., Magnusson, R., Palisaitis, J., Sandström, P., Persson, P. O. Å., Valyukh, S., . . . Birch, J. (2015). Curved-Lattice Epitaxial Growth of InxAl1-xN Nanospirals with Tailored Chirality. Nano letters (Print), 15(1), 294-300
Open this publication in new window or tab >>Curved-Lattice Epitaxial Growth of InxAl1-xN Nanospirals with Tailored Chirality
Show others...
2015 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 1, p. 294-300Article in journal (Refereed) Published
Abstract [en]

Chirality, tailored by external morphology and internal composition, has been realized by controlled curved-lattice epitaxial growth (CLEG) of uniform coatings of single-crystalline InxAl1-xN nanospirals. The nanospirals are formed by sequentially stacking segments of curved nanorods on top of each other, where each segment is incrementally rotated around the spiral axis. By controlling the growth rate, segment length, rotation direction, and incremental rotation angle, spirals are tailored to predetermined handedness, pitch, and height.  The curved morphology of the segments is a result of a lateral compositional gradient across the segments while maintaining a preferred crystallographic growth direction, implying a lateral gradient in optical properties as well. Left- and right-handed nanospirals, tailored with 5 periods of 200 nm pitch, as confirmed by scanning electron microscopy, exhibit uniform spiral diameters of ~80 nm (local segment diameters of ~60 nm) with tapered hexagonal tips.  High resolution electron microscopy, in combination with nanoprobe energy dispersive X-ray spectroscopy and valence electron energy loss spectroscopy, show that individual nanospirals consist of an In-rich core with ~15 nm-diameter hexagonal cross-section, comprised of curved basal planes. The core is surrounded by an Al-rich shell with a thickness asymmetry spiraling along the core. The ensemble nanospirals, across the 1 cm2 wafers, show high in-plane ordering with respect to shape, crystalline orientation, and direction of compositional gradient. Mueller matrix spectroscopic ellipsometry shows that the tailored chirality is manifested in the polarization state of light reflected off the CLEG nanospiral-coated wafers. In that, the polarization state is shown to be dependent on the handedness of the nanospirals and the wavelength of the incident light in the ultraviolet-visible region.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2015
Keywords
InAlN, nanospirals, chirality, sputtering, CLEG, GLAD, STEM, VEELS
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-112512 (URN)10.1021/nl503564k (DOI)000348086100047 ()25427233 (PubMedID)
Projects
Growth of Metastable Ternary Group III-Nitride Semiconductor Nanostructures by unique design concepts and doping
Funder
Swedish Research Council, 621-2012-4420
Available from: 2014-12-01 Created: 2014-12-01 Last updated: 2018-03-08
Magnusson, R., Birch, J., Hsiao, C.-L., Sandström, P., Arwin, H. & Järrendahl, K. (2015). InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles. In: Akhlesh Lakhtakia, Mato Knez, Raúl Martín-Palma (Ed.), SPIE Proceedings Vol. 942: Bioinspiration, Biomimetics, and Bioreplication 2015. Paper presented at SPIE: smart structures NDE Bioinspiration, Biomimetics, and Bioreplication 2015 (pp. 94290A-1-94290A-8). SPIE - International Society for Optical Engineering, 9429
Open this publication in new window or tab >>InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles
Show others...
2015 (English)In: SPIE Proceedings Vol. 942: Bioinspiration, Biomimetics, and Bioreplication 2015 / [ed] Akhlesh Lakhtakia, Mato Knez, Raúl Martín-Palma, SPIE - International Society for Optical Engineering, 2015, Vol. 9429, p. 94290A-1-94290A-8Conference paper, Published paper (Refereed)
Abstract [en]

The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2015
Series
Proceedings of SPIE, ISSN 0277-786X ; 9429
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-119058 (URN)10.1117/12.2084164 (DOI)000357257400003 ()978-1-62841-532-2 (ISBN)
Conference
SPIE: smart structures NDE Bioinspiration, Biomimetics, and Bioreplication 2015
Funder
Swedish Research CouncilKnut and Alice Wallenberg Foundation
Available from: 2015-06-08 Created: 2015-06-08 Last updated: 2018-03-08Bibliographically approved
Muhammad, J., Chen, Y.-T., Palisaitis, J., Garbrecht, M., Hsiao, C.-L., Persson, P., . . . Birch, J. (2015). Liquid-target Reactive Magnetron Sputter Epitaxy of High Quality GaN(0001ɸ)ɸ Nanorods on Si(111). Materials Science in Semiconductor Processing, 39, 702-710
Open this publication in new window or tab >>Liquid-target Reactive Magnetron Sputter Epitaxy of High Quality GaN(0001ɸ)ɸ Nanorods on Si(111)
Show others...
2015 (English)In: Materials Science in Semiconductor Processing, ISSN 1369-8001, E-ISSN 1873-4081, Vol. 39, p. 702-710Article in journal (Refereed) Published
Abstract [en]

Direct current magnetron sputter epitaxy with a liquid Ga sputtering target hasbeen used to grow single-crystal GaN(0001) nanorods directly on Si(111)substrates at different working pressures ranging from 5 to 20 mTorr of pure N2,.The as-grown GaN nanorods exhibit very good crystal quality from bottom to topwithout stacking faults, as determined by transmission electron microscopy. Thecrystal quality is found to increase with increasing working pressure. X-raydiffraction results show that all the rods are highly (0001)-oriented. Thenanorods exhibit an N-polarity, as determined by convergent beam electrondiffraction methods. Sharp and well-resolved 4 K photoluminescence peaks at ~3.474 eV with a FWHM ranging from 1.7 meV to 35 meV are attributed to theintrinsic GaN band edge emission and corroborate the superior structuralproperties of the material. Texture measurements reveal that the rods haverandom in-plane orientation when grown on Si(111) with native oxide, while theyhave an in-plane epitaxial relationship of GaN[110] // Si[110] when grown onsubstrates without surface oxide.

Place, publisher, year, edition, pages
Elsevier, 2015
Keywords
GaN, Nanorods, X-ray Diffraction, TEM, PL, magnetron sputter epitaxy, sputtering
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-84653 (URN)10.1016/j.mssp.2015.05.055 (DOI)000361774100097 ()
Note

Funding: Swedish Foundation for Strategic Research; Swedish Research Council Linnaeus [2008-6572]; Swedish Government Strategic Research Area Grant in Materials Science AFM-SFO MatLiU [2009-00971]; Knut and Alice Wallenberg Foundation

Available from: 2012-10-16 Created: 2012-10-16 Last updated: 2018-03-08Bibliographically approved
Forsberg, M., Serban, A., Poenaru, I., Hsiao, C.-L., Junaid, M., Birch, J. & Pozina, G. (2015). Stacking fault related luminescence in GaN nanorods. Nanotechnology
Open this publication in new window or tab >>Stacking fault related luminescence in GaN nanorods
Show others...
2015 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528Article in journal (Refereed) Published
Abstract [en]

Optical and structural properties are presented for GaN nanorods grown in the [0001]direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy.Transmission electron microscopy reveals clusters of dense stacking faults (SFs) regularlydistributed along the c-axis. A strong emission at ~3.42 eV associated with basal plane SFsdemonstrates thermal stability up to room temperatures together with a relatively shortrecombination time suggesting carrier localization in the system similar to multiple quantumwells.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2015
Keywords
GaN nanorods, stacking faults, time-resolved photoluminescence, recombination time, multiple quantum wells, sputtering
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-113740 (URN)10.1088/0957-4484/26/35/355203 (DOI)000360947200008 ()
Note

Funding: Swedish Research Council (VR); SFF; Angpanneforeningen

Available from: 2015-01-29 Created: 2015-01-29 Last updated: 2018-03-08Bibliographically approved
Serban, A., Persson, P. O., Poenaru, I., Junaid, J., Hultman, L., Birch, J. & Hsiao, C.-L. (2015). Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy. Nanotechnology, 26(21), 215602
Open this publication in new window or tab >>Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy
Show others...
2015 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, no 21, p. 215602-Article in journal (Refereed) Published
Abstract [en]

Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11 (2) over bar0]//Si[1 (1) over bar0] by removing the native SiOx layer from the substrate.

Place, publisher, year, edition, pages
IOP Publishing: Hybrid Open Access, 2015
Keywords
InAlN; core-shell; nanorods; sputtering; MSE; STEM; EDX
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-118979 (URN)10.1088/0957-4484/26/21/215602 (DOI)000354598800010 ()25944838 (PubMedID)
Note

Funding Agencies|Swedish Research Council (VR) [621-2012-4420]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Knut and Alice Wallenberg Foundation

Available from: 2015-06-08 Created: 2015-06-05 Last updated: 2018-05-03
Xie, M., Schubert, M., Lu, J., Persson, P. O., Stanishev, V., Hsiao, C.-L., . . . Darakchieva, V. (2014). Assessing structural, free-charge carrier, and phonon properties of mixed-phase epitaxial films: The case of InN. Physical Review B. Condensed Matter and Materials Physics, 90(19), 195306
Open this publication in new window or tab >>Assessing structural, free-charge carrier, and phonon properties of mixed-phase epitaxial films: The case of InN
Show others...
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, no 19, p. 195306-Article in journal (Refereed) Published
Abstract [en]

We develop and discuss appropriate methods based on x-ray diffraction and generalized infrared spectroscopic ellipsometry to identify wurtizte and zinc-blende polymorphs, and quantify their volume fractions in mixed-phase epitaxial films taking InN as an example. The spectral signatures occurring in the azimuth polarization (Muller matrix) maps of mixed-phase epitaxial InN films are discussed and explained in view of polymorphism (zinc-blende versus wurtzite), volume fraction of different polymorphs and their crystallographic orientation, and azimuth angle. A comprehensive study of the structural, phonon and free electron properties of zinc-blende InN films containing inclusions of wurtzite InN is also presented. Thorough analysis on the formation of the zinc-blende and wurtzite phases is given and the structural evolution with film thickness is discussed in detail. The phonon properties of the two phases are determined and discussed together with the determination of the bulk free-charge carrier concentration, and electron accumulation at the mixed-phase InN film surfaces.

Place, publisher, year, edition, pages
American Physical Society, 2014
National Category
Chemical Sciences Physical Sciences
Identifiers
urn:nbn:se:liu:diva-113012 (URN)10.1103/PhysRevB.90.195306 (DOI)000345423000003 ()
Note

Funding Agencies|Swedish Research Council (VR) [2013-5580]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program [2011-03486]; Swedish Foundation for Strategic Research (SSF) [FFL12-0181]; Linkoping Linnaeus Initiative on Nanoscale Functional Materials (LiLiNFM) by VR; National Science Foundation [MRSEC DMR-0820521]; University of Nebraska-Lincoln; J. A. Woollam Co., Inc.; J. A. Woollam Foundation

Available from: 2015-01-12 Created: 2015-01-08 Last updated: 2018-03-08
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7192-0670

Search in DiVA

Show all publications