liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Calmunger, Mattias
Publications (10 of 29) Show all publications
Wärner, H., Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2019). Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys. International Journal of Fatigue (127), 509-521
Open this publication in new window or tab >>Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys
Show others...
2019 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, no 127, p. 509-521Article in journal (Refereed) Published
Keywords
Thermomechanical fatigue, austenitic alloys, pre-ageing
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-159644 (URN)10.1016/j.ijfatigue.2019.06.012 (DOI)
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14
Wärner, H., Calmunger, M., Chai, G. & Moverare, J. (2018). Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys. In: EDP Sciences (Ed.), MATEC Web of Conferences 165 , 05001 (2018): . Paper presented at Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France. EDP Sciences, 165
Open this publication in new window or tab >>Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys
2018 (English)In: MATEC Web of Conferences 165 , 05001 (2018) / [ed] EDP Sciences, EDP Sciences, 2018, Vol. 165Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
EDP Sciences, 2018
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-148182 (URN)10.1051/matecconf/2018165505001 (DOI)
Conference
Fatigue 2018 , 12th International Fatigue Congress, 27 May-1 June 2018, Poitiers, France
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-11-27
Calmunger, M. (2018). Temperaturpåverkan på egenskaperna hos högtemperaturtåliga austenitiska rostfria stål KME 701. Energiforsk AB
Open this publication in new window or tab >>Temperaturpåverkan på egenskaperna hos högtemperaturtåliga austenitiska rostfria stål KME 701
2018 (English)Report (Refereed)
Abstract [sv]

Den globala ökningen av energianvändning och sammanhängande ökning i CO2-utsläpp vid förbränning har skärpt kraven på energileverantörer att i större utsträckning använda hållbara biobränslen samt att höja verkningsgraden på energiomvandlingsprocesserna. Detta kan uppnås genom att höja tryck och temperatur i biomasseldade förbränningspannor. Sådana omställningar leder oftast till nya utmaningar kopplade till materialegenskaper.

I framtiden kommer behovet av reglerkraft att öka för att kompensera för väderbaserade energianläggningar, såsom sol- och vindkraft. Detta leder till att anläggningarna måste stoppas och startas betydlig oftare än nu. Det skapar ett behov av provningsmetoder som tar hänsyn till cykliska mekaniska och temperaturbaserade laster. Tillsammans med att framtidens material måste tåla högre temperaturer och tuffare miljöer, relaterat till bränsleflexibiliteten, innebär detta att befintliga austenitiska rostfria stål måste förbättras. Inte bara genom en ökning av andelen nickel och andra verksamma legeringselement utan även genom att generera ny kunskap om hur de mekaniska egenskaperna påverkas av den tuffare högtemperatursmiljön.

Syftet med detta projekt var att utvärdera mekaniska beteenden relaterade till kombinerad cyklisk och statisk belastning, långtidsåldring samt cyklisk mekanisk och temperaturbelastning vid höga temperaturer. Detta uppnåddes genom att:

  1. Utvärdera kryp-utmattningsinteraktion beteendet hos pannmaterial.
  2. Utvärdera den strukturella stabiliteten hos de austenitiska rostfria stålen efter långtidsåldring vid hög temperatur.
  3. Utvärdera termomekaniska utmattningsegenskaper hos pannmaterial.
  4. Utvärdera spänningsrelaxation sprickningsbeteenden hos pannmaterial.

Mekanisk provning enligt ovan har utförts och analyserats vid Linköpings universitet samt Sandvik Materials Technology för att få en ökad förståelse för hur mekaniska egenskaper påverkas av den tuffare högtemperatursmiljön som framtidens biomasseldade pannor utgör. Detta kan användas i materialutveckling samt vidare för att förbättra konstruktionen av framtidens biomasseldade pannor.

Resultaten visade att:

  1. De undersökta pannmaterialen uppvisar kryp-utmattningsinteraktion skador och längre cykliskt liv är relaterat till högt krypmotstånd.
  2. Austenitiska rostfria stål uppvisar försprödning på grund av intermetalliska utskiljningar efter långtidsåldring vid höga temperaturer.
  3. De austenitiska rostfria stålen med högst högtemperaturshållfasthet uppvisade bäst termomekaniska utmattningsegenskaper.
  4. Mer metodutveckling och undersökning krävs för att utvärdera spänningsrelaxation sprickningsbeteendet hos pannmaterialen.
Abstract [be]

 A global increase in use of energy connected to an increase in CO2 emission during combustion has increased the demand on energy producers to use sustainable biomass fuels and to increase efficiency by increasing temperature and pressure in energy conversion plants. This often leads to problems related to materials properties.

In the future, clear signs of increasing needs for regulating power to compensate for weather-based energy facilities, such as solar and wind power. This means that the power plants must be stopped and started significantly more often than now. It creates a need for testing methods that take into account cyclic mechanical and temperature-based loads. In addition, the future materials needs to withstand higher temperatures and tougher environments related to fuel flexibility. All this means that existing austenitic stainless steels need to be improved. Not only by increasing the nickel content and other alloying elements, but also by generating new knowledge of how the mechanical properties are affected by the tougher high-temperature environment.

The purpose of this project was to evaluate mechanical behavior related to combined cyclic and static deformation, long-term ageing and cyclic mechanical and temperature stress at high temperatures. This was achieved by:

  1. Evaluate the creep-fatigue interaction behavior of boiler materials.
  2. Evaluate the structural stability of the austenitic stainless steel after long-term ageing at high temperature.
  3. Evaluate thermo-mechanical fatigue properties of boiler materials.
  4. Evaluate stress relaxation cracking behavior of boiler materials.

Mechanical testing mentioned above have been performed and analysed at Linköping University and Sandvik Materials Technology to obtain a greater understanding of how mechanical properties are affected by the tougher high-temperature environment that the future biomass-fired boilers will require. This knowledge can be used in material development and further to improve the design of future biomass-fired boilers.

The results showed that:

  1. The investigated boiler materials exhibit creep-fatigue interaction damage and longer cyclic life was related to high creep resistance.
  2. Austenitic stainless steels show an embrittlement after long-term ageing at high temperatures due to intermetallic precipitates.
  3. Austenitic stainless steel with higher high-temperature strength showed the best thermo-mechanical fatigue properties.
  4. Further method development and investigation are required to evaluate the stress relaxation cracking behavior of the boiler materials.
Place, publisher, year, edition, pages
Energiforsk AB, 2018. p. 25
Series
Rapport ; 2018:491
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-151060 (URN)9789176734919 (ISBN)
Available from: 2018-09-12 Created: 2018-09-12 Last updated: 2018-09-12Bibliographically approved
Calmunger, M., Chai, G., Eriksson, R., Johansson, S. & Moverare, J. J. (2017). Characterization of austenitic stainless steels deformed at elevated temperature. Metallurgical and Materials Transactions. A, 48A(10), 4525-4538
Open this publication in new window or tab >>Characterization of austenitic stainless steels deformed at elevated temperature
Show others...
2017 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, no 10, p. 4525-4538Article in journal (Refereed) Published
Abstract [en]

Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2017
Keywords
Austenitic stainless steel, Nickel-based alloy, Microstructural characterization, Deformation twinning, Stress-strain response
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-122942 (URN)10.1007/s11661-017-4212-9 (DOI)000408884300012 ()
Note

Previous status of this publication was manuscript

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Available from: 2015-11-30 Created: 2015-11-30 Last updated: 2017-09-22Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S. & Moverare, J. (2017). Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1).
Open this publication in new window or tab >>Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143972 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Calmunger, M., Eriksson, R., Chai, G., Johansson, S., Högberg, J. & Moverare, J. (2017). Local Surface Phase Stability During Cyclic Oxidation Process. Paper presented at THERMEC'16, May 30 - June 3, 2016, Graz, Austria. Materials Science Forum, 879, 855-860
Open this publication in new window or tab >>Local Surface Phase Stability During Cyclic Oxidation Process
Show others...
2017 (English)In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 879, p. 855-860Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Trans Tech Publications, 2017
Keywords
Austenitic stainless steels, thermal cycling, corrosion, surface phase stability
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-129244 (URN)10.4028/www.scientific.net/MSF.879.855 (DOI)
Conference
THERMEC'16, May 30 - June 3, 2016, Graz, Austria
Available from: 2016-06-14 Created: 2016-06-14 Last updated: 2017-11-28
Wärner, H., Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2017). Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys. In: : . Paper presented at EUROMAT17, Thessaloniki 17-21 September 2017,Greece (pp. 1-1).
Open this publication in new window or tab >>Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys
Show others...
2017 (English)Conference paper, Oral presentation with published abstract (Refereed)
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-143978 (URN)
Conference
EUROMAT17, Thessaloniki 17-21 September 2017,Greece
Available from: 2018-01-01 Created: 2018-01-01 Last updated: 2018-01-16Bibliographically approved
Calmunger, M., Chai, G., Johansson, S. & Moverare, J. (2016). Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel. Paper presented at 7th International Conference on Creep, 19-22 January 2016, IGCAR, Kalpakkam, India. Transactions of the Indian Institute of Metals, 69(2), 337-342
Open this publication in new window or tab >>Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel
2016 (English)In: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 69, no 2, p. 337-342Article in journal (Refereed) Published
Abstract [en]

Sanicro 25 is a newly developed advanced high strength heat resistant austenitic stainless steel. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than other austenitic stainless steels available today. It is thus an excellent candidate for superheaters and reheaters for advanced ultra-super critical power plants with efficiency higher than 50 %. This paper provides a study on the creep–fatigue interaction behavior of Sanicro 25 at 700 °C. Two strain ranges, 1 and 2 %, and two dwell times, 10 and 30 min, were used. The influences of dwell time on the cyclic deformation behavior and life has been evaluated. Due to stress relaxation the dwell time causes a larger plastic strain range compared to the tests without dwell time. The results also show that the dwell time leads to a shorter fatigue life for the lower strain range, but has no or small effect on the life for the higher strain range. Fracture investigations show that dwell times result in more intergranular cracking. With the use of the electron channeling contrast imaging technique, the influences of dwell time on the cyclic plastic deformation, precipitation behavior, recovery phenomena and local plasticity exhaustion have also been studied.

Place, publisher, year, edition, pages
Springer, 2016
Keywords
Sanicro 25, advanced ultra-super critical power plant, creep, low cycle fatigue, cyclic plastic deformation
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:liu:diva-123646 (URN)10.1007/s12666-015-0806-3 (DOI)000368032700027 ()
Conference
7th International Conference on Creep, 19-22 January 2016, IGCAR, Kalpakkam, India
Note

At the time for thesis presentation publication was in status: Manuscript

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Available from: 2016-01-04 Created: 2016-01-04 Last updated: 2017-12-01
Chai, G., Calmunger, M., Johansson, S., Moverare, J. & Odqvist, J. (2016). Influence of Dynamic Strain Ageing and Long Term Ageing on Deformation and Fracture Behaviors of Alloy 617. In: C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra (Ed.), THERMEC 2016: . Paper presented at THERMEC'16, Graz, Austria, May 29-June 3, 2016 (pp. 306-311). Trans Tech Publications, 879
Open this publication in new window or tab >>Influence of Dynamic Strain Ageing and Long Term Ageing on Deformation and Fracture Behaviors of Alloy 617
Show others...
2016 (English)In: THERMEC 2016 / [ed] C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra, Trans Tech Publications, 2016, Vol. 879, p. 306-311Conference paper, Published paper (Refereed)
Abstract [en]

Influences of dynamic strain ageing and long term ageing on deformation, damage and fracture behaviors of Alloy 617 material have been studied. Dynamic strain ageing can occur in this alloy at temperature from 400 to 700°C, which leads to a strain hardening and also an increase in fracture strain due to plastic deformation caused by twinning. Long term ageing at 700°C for up to 20 000 hours can cause different precipitation such as γ ́, M6C (Mo-rich) and M23C6 (Cr-rich) carbides. These carbides are both inter-and intra-granular particles. The long term ageing reduces the fracture toughness of the material, but the alloy can still have rather high impact toughness and fracture toughness even with an ageing at 700°C for 20 000 hour. The mechanisms have been studied using electron backscatter detection and electron channeling contrast imaging. It shows that besides dislocation slip, twinning is another main deformation mechanism in these aged Alloy 617 materials. At the crack front, plenty of micro or nanotwins can be observed. The formation of these twins leads to a high ductility and toughness which is a new observation or a new concept for this type of material.

Place, publisher, year, edition, pages
Trans Tech Publications, 2016
Series
Materials Science Forum, ISSN 1662-9752 ; 879
Keywords
Nickel based superalloy, Ageing, Fracture toughness, Microstructure, Twinning
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-129243 (URN)10.4028/www.scientific.net/MSF.879.306 (DOI)
Conference
THERMEC'16, Graz, Austria, May 29-June 3, 2016
Available from: 2016-06-14 Created: 2016-06-14 Last updated: 2016-11-30Bibliographically approved
Calmunger, M., Moverare, J., Johansson, S. & Chai, G. (2015). Characterisation of creep deformation during slow strain rate tensile testing.
Open this publication in new window or tab >>Characterisation of creep deformation during slow strain rate tensile testing
2015 (English)Manuscript (preprint) (Other academic)
Abstract [en]

The strain-rate dependent deformation of the superalloy Haynes 282 during slow strain-rate tensile testing (SSRT) at 700 C has been investigated. The stress-strain response is remarkably well described by a simple constitutive model over a wide range of different strain-rates. The microstructure development is characterised and related to the influence of both strainrate dependent and independent deformation. Damage and cracking similar to what has been observed previously during conventional creep testing of Haynes 282 was found and explained. The model and the microstructure investigations show that the deformation and damage mechanisms during SSRT are essentially the same as under creep.

Keywords
Slow strain-rate tensile testing, Creep, Norton equation, Constitutive modelling, Cavity
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-122943 (URN)
Available from: 2015-11-30 Created: 2015-11-30 Last updated: 2015-11-30Bibliographically approved
Organisations

Search in DiVA

Show all publications