liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Carstensen, Anna-Karin
Publications (7 of 7) Show all publications
Bernhard, J. & Carstensen, A.-K. (2017). “Real” experiments or computers in labs – opposites or synergies?: Experiences from a course in electric circuit theory. In: José Carlos Quadrado, Jorge Bernardino, João Rocha (Ed.), Proceedingsof the 45th SEFI Annual Conference 2017 Education Excellence for Sustainability: Education Excellence for Sustainability. Paper presented at 45th SEFI Conference, 18-21 September 2017, Azores, Portugal (pp. 1300-1307). Bryssels: SEFI – Société Européenne pour la Formation des Ingénieurs
Open this publication in new window or tab >>“Real” experiments or computers in labs – opposites or synergies?: Experiences from a course in electric circuit theory
2017 (English)In: Proceedingsof the 45th SEFI Annual Conference 2017 Education Excellence for Sustainability: Education Excellence for Sustainability / [ed] José Carlos Quadrado, Jorge Bernardino, João Rocha, Bryssels: SEFI – Société Européenne pour la Formation des Ingénieurs , 2017, p. 1300-1307Conference paper, Published paper (Refereed)
Abstract [en]

In this study we report from our experiences designing and re-designing a lab where engineering students studied transient response in electric circuits. In the first version of the lab students had difficulties doing the mathematical modeling of the experimentally measured graphs as it required students’ to link the time- and frequency domains as well as the object/event and theory/model worlds simultaneously. In the re-designed lab some computer simulations were included together with the original experiments on real circuits. The simulations opened up for learning and enabled students to establish links that are hard access directly with real experiments.Still doing real experiments is important to secure students ability to make links between models and theories and the physical reality. This study demonstrates that synergetic learning effects can be achieved by a careful design using an insightful combination of real experiments and computer simulations.  Hence, we propose that the question of “real” experiments or “virtual” labs using computer simulations are best for students’ learning is not an either or question. Rather, it is a question of finding the right blend to achieve synergetic effects.

Place, publisher, year, edition, pages
Bryssels: SEFI – Société Européenne pour la Formation des Ingénieurs, 2017
Keywords
Interaction analysis, experiential learning, modeling, simulations
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-153470 (URN)9789899887572 (ISBN)
Conference
45th SEFI Conference, 18-21 September 2017, Azores, Portugal
Funder
Swedish Research Council, VR 721-2011-5570
Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2018-12-19Bibliographically approved
Carstensen, A.-K. & Bernhard, J. (2014). Interactive lectures - linking theory to practice: Helping students pass the threshold when learning two-terminal equivalents in electrical engineering education. In: : . Paper presented at Threshold concepts in practice, 5th Biennial International Threshold Concepts Conference, 9–11 July 2014, Durham, UK.
Open this publication in new window or tab >>Interactive lectures - linking theory to practice: Helping students pass the threshold when learning two-terminal equivalents in electrical engineering education
2014 (English)Conference paper, Published paper (Refereed)
Keywords
threshold concepts, engineering education research
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-108597 (URN)
Conference
Threshold concepts in practice, 5th Biennial International Threshold Concepts Conference, 9–11 July 2014, Durham, UK
Funder
Swedish Research Council, VR 721-2011-5570
Available from: 2014-06-30 Created: 2014-06-30 Last updated: 2014-09-01
Carstensen, A.-K. (2013). Connect: Modelling Learning to Facilitate Linking Models and the Real World trough Lab-Work in Electric Circuit Courses for Engineering Students. (Doctoral dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Connect: Modelling Learning to Facilitate Linking Models and the Real World trough Lab-Work in Electric Circuit Courses for Engineering Students
2013 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

A recurring question in science and engineering education is why the students do not link knowledge from theoretical classes to the real world met in laboratory courses.

Mathematical models and visualisations are widely used in engineering and engineering education. Very often it is assumed that the students are familiar with the mathematical concepts used. These may be concepts taught in high school or at university level. One problem, though, is that many students have never or seldom applied their mathematical skills in other subjects, and it may be difficult for them to use their skills in a new context. Some concepts also seem to be "too difficult" to understand.

One of these mathematical tools is to use Laplace Transforms to solve differential equations, and to use the derived functions to visualise transient responses in electric circuits, or control engineering. In many engineering programs at college level the application of the Laplace Transform is considered too difficult for the students to understand, but is it really, or does it depend on the teaching methods used?

When applying mathematical concepts during lab work, and not teaching the mathematics and practical work in different sessions, and also using examples varied in a very systematic way, our research shows that the students approach the problem in a very different way. It shows that by developing tasks consequently according to the Theory of Variation, it is not impossible to apply the Laplace Transform already in the first year of an engineering program.

The original aim of this thesis was to show:

  • how students work with lab-tasks, especially concerning the goal to link theory to the real world
  • how it is possible to change the ways students approach the task and thus their learning, by systematic changes in the lab-instructions

During the spring 2002 students were video-recorded while working with labs in Electric Circuits. Their activity was analysed. Special focus was on what questions the students raised, and in what ways these questions were answered, and in what ways the answers were used in the further activities.

This work informed the model ”learning of a complex concept”, which was used as well to analyse what students do during lab-work, and what teachers intend their students to learn. The model made it possible to see what changes in the lab-instructions that would facilitate students learning of the whole, to link theoretical models to the real world, through the labactivities.

The aim of the thesis has thus become to

  • develop a model: The learning of a complex concept
  • show how this model can be used as well for analysis of the intended object of learning as students activities during lab-work, and thus the lived object of learning
  • use the model in analysis of what changes in instruction that are critical for student learning.

The model was used to change the instructions. The teacher interventions were included into the instructions in a systematic way, according to as well what questions that were raised by the students, as what questions that were not noticed, but expected by the teachers, as a means to form relations between theoretical aspects and measurement results. Also, problem solving sessions have been integrated into the lab sessions.

Video recordings were also conducted during the spring 2003, when the new instructions were used. The students' activities were again analysed. A special focus of the thesis concerns the differences between the results from 2002 and 2003.

The results are presented in four sections:

  • Analysis of the students' questions and the teachers' answers during the lab-course 2002
  • Analysis of the links students need to make, the critical links for learning
  • Analysis of the task structure before and after changes
  • Analysis of the students' activities during the new course

The thesis ends with a discussion of the conclusions which may be drawn about the possibilities to model and develop teaching sequences through research, especially concerning the aim to link theoretical models to the real world.

Abstract [sv]

En stående fråga som lärare i naturvetenskapliga och tekniska utbildningar ställer är varför elever och studenter inte kopplar samman kunskaper från teoretiska kursmoment med den verklighet som möts vid laborationerna. Ett vanligt syfte med laborationer är att åstadkomma länkar mellan teori och verklighet, men dessa uteblir ofta.

Många gånger används avancerade matematiska modeller och grafiska representationer, vilka studenterna lärt sig i tidigare kurser, men de har sällan eller aldrig tillämpat dessa kunskaper i andra ämnen. En av dessa matematiska hjälpmedel är Laplacetransformen, som främst används för att lösa differentialekvationer, och åskådliggöra transienta förlopp i ellära eller reglerteknik. På många universitet anses Laplacetransformen numera för svår för studenterna på kortare ingenjörsutbildningar, och kurser eller kursmoment som kräver denna har strukits ut utbildningsplanerna. Men, är det för svårt, eller beror det bara på hur man presenterar Laplacetransformen?

Genom att låta studenterna arbeta parallellt med matematiken och de laborativa momenten, under kombinerade lab-lektionspass, och inte vid separata lektioner och laborationer, samt genom att variera övningsexemplen på ett mycket systematiskt sätt, enligt variationsteorin, visar vår forskning att studenterna arbetar med uppgifterna på ett helt annat sätt än tidigare. Det visar sig inte längre vara omöjligt att tillämpa Laplacetransformen redan under första året på civilingenjörsutbildning inom elektroteknik.

Ursprungliga syftet med avhandlingen var att visa

  • hur studenter arbetar med laborationsuppgifter, speciellt i relation till målet att länka samman teori och verklighet
  • hur man kan förändra studenternas aktivitet, och därmed studenternas lärande, genom att förändra laborationsinstruktionen på ett systematiskt sätt.

Under våren 2002 videofilmades studenter som utförde laborationer i en kurs i elkretsteori. Deras aktivitet analyserades. Speciellt studerades vilka frågor studenterna ställde till lärarna, på vilket sätt dessa frågor besvarades, och på vilket sätt svaren användes i den fortsatta aktiviteten.

Detta ledde fram till en modell för lärande av sammansatta begrepp, som kunde användas både för att analysera vad studenterna gör och vad lärarna förväntar sig att studenterna ska lära sig. Med hjälp av modellen blev det då möjligt att se vad som behövde ändra i instruktionerna för att studenterna lättare skulle kunna utföra de aktiviteter som krävs för att länka teori och verklighet.

Syftet med avhandlingen är därmed att

ta fram en modell för lärande av ett sammansatt begrepp

  • visa hur denna modell kan användas för såväl analys av önskat lärandeobjekt, som av studenternas aktivitet under laborationer, och därmed det upplevda lärandeobjektet
  • använda modellen för att analysera vilka förändringar som är kritiska för  studenters lärande.

Modellen användes för att förändra laborationsinstruktionerna. Lärarinterventionerna inkluderades i instruktionerna på ett systematiskt sätt utifrån dels vilka frågor som ställdes av studenterna, dels vilka frågor studenterna inte noterade, men som lärarna velat att studenterna skulle använda för att skapa relationer framför allt mellan teoretiska aspekter och mätresultat. Dessutom integrerades räkneövningar och laborationer.

Videoinspelningar utfördes även våren 2003, då de nya instruktionerna användes. Även dessa analyserades med avseende på studenternas aktiviteter. Skillnader mellan resultaten från 2002 och 2003 står i fokus.

Avhandlingens resultatdel består av:

  • Analys av studenternas frågor och lärarnas svar under labkursen 2002
  • Analys av de länkar studenterna behöver skapa för att lära
  • Analys av laborationsinstruktionerna före och efter förändringarna
  • Analys av den laborationsaktivitet som blev resultatet av de nya instruktionerna, och vilket lärande som då blev möjligt

Avhandlingen avlutas med en diskussion om de slutsatser som kan dras angående möjligheter att via forskning utveckla modeller av undervisningssekvenser för lärande där målet är att länka samman teori och verklighet

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. p. 174
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1529Studies in Science and Technology Education, ISSN 1652-5051 ; 67
Keywords
Engineering Education, Engineering Education Research, Key concepts, Labwork, Laplace Transforms, Learning, Learning of a Complex Concept, Learning to model, Modelling learning, Models, Practical Epistemologies, Threshold concepts, Variation Theory
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-97395 (URN)978-91-7519-562-9 (ISBN)
Public defence
2013-09-27, E1405, Högskolan i Jönköping, Jönköping, 13:00 (English)
Opponent
Supervisors
Available from: 2013-09-11 Created: 2013-09-11 Last updated: 2013-09-13Bibliographically approved
Bernhard, J., Carstensen, A.-K. & Holmberg (née Gonzalez-Sampayo), M. (2012). Beyond simplistic conceptual change: Learning electric circuit theory as the ”learning of a complex concept”. In: : . Paper presented at World Conference of Physics Education, 1-6 July, Istanbul, Turkey.
Open this publication in new window or tab >>Beyond simplistic conceptual change: Learning electric circuit theory as the ”learning of a complex concept”
2012 (English)Conference paper, Poster (with or without abstract) (Other academic)
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-93427 (URN)
Conference
World Conference of Physics Education, 1-6 July, Istanbul, Turkey
Funder
Swedish Research Council, 2011-5570
Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2013-09-12
Carstensen, A.-K. & Bernhard, J. (2012). Make links: Overcoming the Threshold and Entering the Portal of Understanding. In: : . Paper presented at 4th Biennial Threshold Concept Conference and 6th NAIRTL Annual Conference, 27-29 June 2012, Dublin, Ireland.
Open this publication in new window or tab >>Make links: Overcoming the Threshold and Entering the Portal of Understanding
2012 (English)Conference paper, Oral presentation with published abstract (Other academic)
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-93424 (URN)
Conference
4th Biennial Threshold Concept Conference and 6th NAIRTL Annual Conference, 27-29 June 2012, Dublin, Ireland
Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2013-09-12
Bernhard, J., Carstensen, A.-K. & Holmberg (née Gonzalez-Sampayo), M. (2012). Understanding phase as an entrance to the portal of understanding in physics and electrical engineering. In: : . Paper presented at 4th Biennial Threshold Concept Conference and 6th NAIRTL Annual Conference, 27-29 June 2012, Dublin, Ireland.
Open this publication in new window or tab >>Understanding phase as an entrance to the portal of understanding in physics and electrical engineering
2012 (English)Conference paper, Oral presentation with published abstract (Other academic)
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-93425 (URN)
Conference
4th Biennial Threshold Concept Conference and 6th NAIRTL Annual Conference, 27-29 June 2012, Dublin, Ireland
Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2013-09-12
Bernhard, J., Carstensen, A.-K. & Holmberg (née Gonzalez-Sampayo), M. (2011). Analytical tools in engineering education research: The “learning a complex concept” model, threshold concepts and key concepts in understanding and designing for student learning. In: Research in Engineering Education Symposium, 2011: . Paper presented at Research in Engineering Education Symposium (REES 2011), 4-7 October 2011, Madrid, Spain (pp. 51-60). Madrid: Universidad Politécnica de Madrid (UPM)
Open this publication in new window or tab >>Analytical tools in engineering education research: The “learning a complex concept” model, threshold concepts and key concepts in understanding and designing for student learning
2011 (English)In: Research in Engineering Education Symposium, 2011, Madrid: Universidad Politécnica de Madrid (UPM) , 2011, p. 51-60Conference paper, Published paper (Refereed)
Abstract [en]

For a long time, most research relating to science and engineering education has examined “misconceptions” about “single concepts”, despite the fact that one common objective in many subjects is “to learn relationships”. In this paper we introduce the notion of “a complex concept”, i.e. the idea of describing knowledge as a complex, a holistic unit, consisting of interdependent and interrelated “single concepts”. We describe how this conception could be used to identify both problems associated with learning as well potentials for learning. We will also relate the notion of a complex concept to the notion of threshold and key concepts.

Place, publisher, year, edition, pages
Madrid: Universidad Politécnica de Madrid (UPM), 2011
National Category
Didactics
Identifiers
urn:nbn:se:liu:diva-93377 (URN)978-84-695-2615-6 (ISBN)
Conference
Research in Engineering Education Symposium (REES 2011), 4-7 October 2011, Madrid, Spain
Funder
Swedish Research Council, 2003-4445
Available from: 2013-05-31 Created: 2013-05-31 Last updated: 2013-09-12Bibliographically approved

Search in DiVA

Show all publications