liu.seSearch for publications in DiVA
Change search
Link to record
Permanent link

Direct link
BETA
Ajjan, Fátima
Alternative names
Publications (6 of 6) Show all publications
Admassie, S., Ajjan, F., Elfwing, A. & Inganäs, O. (2016). Biopolymer hybrid electrodes for scalable electricity storage. Materials Horizons, 3(3), 174-185
Open this publication in new window or tab >>Biopolymer hybrid electrodes for scalable electricity storage
2016 (English)In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 3, no 3, p. 174-185Article, review/survey (Refereed) Published
Abstract [en]

Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2016
National Category
Other Environmental Engineering
Identifiers
urn:nbn:se:liu:diva-128741 (URN)10.1039/c5mh00261c (DOI)000375296600002 ()
Note

Funding Agencies|Knut and Alice Wallenberg Foundation; Wallenberg Scholar grant

Available from: 2016-05-31 Created: 2016-05-30 Last updated: 2017-11-30
Ajjan, F., Casado, N., Rebis, T., Elfwing, A., Solin, N., Mecerreyes, D. & Inganäs, O. (2016). High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. Journal of Materials Chemistry A, 4(5), 1838-1847
Open this publication in new window or tab >>High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
Show others...
2016 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 5, p. 1838-1847Article in journal (Refereed) Published
Abstract [en]

Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2016
National Category
Biological Sciences
Identifiers
urn:nbn:se:liu:diva-125323 (URN)10.1039/c5ta10096h (DOI)000368839200035 ()
Note

Funding Agencies|Power Papers project from the Knut and Alice Wallenberg foundation; Wallenberg Scholar grant from the Knut and Alice Wallenberg foundation; Marie Curie network Renaissance (NA); European Research Council by Starting Grant Innovative Polymers for Energy Storage (iPes) [306250]; Basque Government

Available from: 2016-02-23 Created: 2016-02-19 Last updated: 2017-11-30
Zeglio, E., Vagin, M., Musumeci, C., Ajjan, F., Gabrielsson, R., Trinh, X. t., . . . Inganäs, O. (2015). Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices. Chemistry of Materials, 27(18), 6385-6393
Open this publication in new window or tab >>Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices
Show others...
2015 (English)In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 27, no 18, p. 6385-6393Article in journal (Refereed) Published
Abstract [en]

Two self-doped conjugated polyelectrolytes, having semiconducting and metallic behaviors, respectively, have been blended from aqueous solutions in order to produce materials with enhanced optical and electrical properties. The intimate blend of two anionic conjugated polyelectrolytes combine the electrical and optical properties of these, and can be tuned by blend stoichiometry. In situ conductance measurements have been done during doping of the blends, while UV vis and EPR spectroelectrochemistry allowed the study of the nature of the involved redox species. We have constructed an accumulation/depletion mode organic electrochemical transistor whose characteristics can be tuned by balancing the stoichiometry of the active material.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2015
National Category
Materials Chemistry Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-122212 (URN)10.1021/acs.chemmater.5b02501 (DOI)000361935000028 ()
Note

Funding Agencies|Marie Curie network "Renaissance"; Knut and Alice Wallenberg foundation through Wallenberg Scholar grant; Swedish Research Council [VR-2014-3079, D0556101]; Carl Trygger Foundation [CTS 12:206]

Available from: 2015-10-26 Created: 2015-10-23 Last updated: 2017-12-01
Ajjan, F., Javad Jafari, M., Rebis, T., Ederth, T. & Inganäs, O. (2015). Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material. Journal of Materials Chemistry A, 3(24), 12927-12937
Open this publication in new window or tab >>Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material
Show others...
2015 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 24, p. 12927-12937Article in journal (Refereed) Published
Abstract [en]

We report spectroelectrochemical studies to investigate the charge storage mechanism of composite polypyrrole/lignin electrodes. Renewable bioorganic electrode materials were produced by electropolymerization of pyrrole in the presence of a water-soluble lignin derivative acting as a dopant. The resulting composite exhibited enhanced charge storage abilities due to a lignin-based faradaic process, which was expressed after repeated electrochemical redox of the material. The in situ FTIR spectroelectrochemistry results show the formation of quinone groups, and reversible oxidation-reduction of these groups during charge-discharge experiments in the electrode materials. The most significant IR bands include carbonyl absorption near 1705 cm(-1), which is attributed to the creation of quinone moieties during oxidation, and absorption at 1045 cm(-1) which is due to hydroquinone moieties.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2015
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-120069 (URN)10.1039/c5ta00788g (DOI)000356022800044 ()
Note

Funding Agencies|Knut and Alice Wallenberg foundation; Marie Curie network Renaissance; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2015-07-06 Created: 2015-07-06 Last updated: 2017-12-04
Bäcklund, F. G., Ajjan, F. N. & Solin, N.Convection Induced Air-Water Interface Assembly of Amyloid Fibrils.
Open this publication in new window or tab >>Convection Induced Air-Water Interface Assembly of Amyloid Fibrils
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We report that hydrophobically modified amyloid fibrils form macroscopic films at the air-water interface. The hydrophobically modified fibrils are prepared in a two step process. First bovine insulin is ground with a hydrophobic compound. The resulting material is dissolved in acidic water and heated to induce assembly into fibrils incorporating the hydrophobic compounds. Upon dilution followed by asymmetric heating, resulting in convection flow, the fibrills form highly ordered films with thicknesses from 80 nm and up. The thickness of the film can be controlled by the fibril concentration and/or reaction time. The films contain anisotropic domains spanning several square centimeters. In addition, the films contains ordered assemblies of dyes that display emission of polarized light.

National Category
Organic Chemistry Biomaterials Science
Identifiers
urn:nbn:se:liu:diva-121019 (URN)
Available from: 2015-09-02 Created: 2015-09-02 Last updated: 2015-09-02
Bäcklund, F., Elfwing, A., Ajjan, F. N., Babenko, V., Dzwolak, W., Solin, N. & Inganäs, O.PEDOT-S coated protein fibril microhelices.
Open this publication in new window or tab >>PEDOT-S coated protein fibril microhelices
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We show here the preparation and characterization of micrometer sized conductive helices. We utilize protein fibrils as structural templates to create chiral helices with either right or left handed helicity. The helices are coated with the conductive polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S) to create micrometer sized conductive helices. The coating acts as a stabilizer for the template structure, facilitates the preparation of solid state films and shows significant conductivity. The helices have been investigated using Circular Dichroism (CD) and scanning electron microscopy (SEM) and the conductivity have been measured for solid state films.

National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-121020 (URN)
Available from: 2015-09-02 Created: 2015-09-02 Last updated: 2015-09-02Bibliographically approved
Organisations

Search in DiVA

Show all publications